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ABSTRACT
Double-blind randomized controlled trials are traditionally seen as the gold standard for causal inferences
as the difference-in-means estimator is an unbiased estimator of the average treatment effect in the
experiment. The fact that this estimator is unbiased over all possible randomizations does not, however,
mean that any given estimate is close to the true treatment effect. Similarly, while predetermined covariates
will be balanced between treatment and control groups on average, large imbalances may be observed
in a given experiment and the researcher may therefore want to condition on such covariates using
linear regression. This article studies the theoretical properties of both the difference-in-means and OLS
estimators conditional on observed differences in covariates. By deriving the statistical properties of the
conditional estimators, we can establish guidance for how to deal with covariate imbalances.
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1. Introduction

Double blind randomized controlled trials (RCT) are tradition-
ally seen as the gold standard for causal inferences as it provides
probabilistic inference of the unbiased difference-in-means esti-
mator under no model assumption (see Freedman 2008). This
concept of the unbiasedness of an estimator is, however, often
misunderstood as the estimate being “the truth” (see Deaton
and Cartwright 2018). In a single experiment the estimate may
still be very far from the true effect due to an, unfortunate, bad
treatment assignment.

The reason for the unique position of the RCT in the research
community is that it provides an objective and transparent
strategy for conducting an empirical study, not necessarily that
it is most efficient way of scientific learning. To facilitate the
transparency, it is common practice in scientific journals that
researchers present imbalances of pre-experimental covariates
of the treated and controls, typically showing the means and
standard deviations of these covariates. Of course, as pointed
out by Mutz, Pemantle, and Pham (2019), if one knows that
treatment is randomly assigned, there is no such thing as a
“failed” randomization (in a randomized design, any treatment
assignment is possible) which means that any large imbalance
in observed covariates does not necessitate any further action.

Indeed, Mutz, Pemantle, and Pham (2019) argue that by
studying balance on observed covariates, researchers run the
risk of making their results less credible as researchers may
be tempted to adjust for observed imbalances, which compro-
mises the inference. By doing so, they may also estimate several
different models, raising the concern of “p-hacking.” At the
same time, removing descriptive tables of balances between
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treated and controls does not seem to be possible given that the
transparency of the research design is an important reason for
using an RCT. Furthermore, while it is true that the difference-
in-means estimator is an unbiased estimator over all possible
randomizations, this fact may be of little solace to the applied
researcher who have conducted an experiment in which they
have observed imbalances, as imbalances may indicate that the
estimate is far from the true value.

In this article, we provide a framework for conditional infer-
ence that are not compromised by conditioning on covariates.
We derive the distributions of different treatment effect estima-
tors conditional on covariate imbalances to establish guidance
for how to deal with any observed imbalances. Different from
Mutz, Pemantle, and Pham (2019), who considers inference to
the population conditional on imbalance in a single covariate,
we consider randomization inference to the sample conditional
on observed imbalances in a vector of covariates. By focusing
on randomization inference, that is, that the stochasticity comes
from random treatment assignment rather than random sam-
pling, we follow, among others, Freedman (2008), Cox (2009),
and Lin (2013) who study unconditional inference to the sam-
ple. Our article is also related to Miratrix, Sekhon, and Yu
(2013), who study conditional inference to the sample when
using post-stratification, that is, with a categorical covariate
which form mutually exhaustive and exclusive groups.

We consider both homogeneous and heterogeneous treat-
ment effects and show that when explanatory covariates are
imbalanced, the difference-in-means estimator is conditionally
biased while the conditional OLS estimator is close to unbiased.
The variance of the conditional OLS estimator is increasing with
the imbalance of the covariates and in the number of covariates.
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Thus, in an experiment there is a tradeoff between bias and
variance reduction in how many covariates to adjust for, and
the tradeoff depends on the imbalance of the covariates as well
as the importance of the covariates in explaining the outcome.
In situations with a large set of covariates relative to the sample
size we provide algorithms for covariate-adjustments that do
not suffer from the pitfalls pointed out by Mutz, Pemantle, and
Pham (2019), where the procedures make use of the principal
components of the covariates. Based on the imbalance of these
principal components, the number of components to adjust for
is chosen such that randomized inference can be justified.

The article proceeds by presenting the theoretical justifica-
tion for conditional inference under homogeneous treatment
effects in the next section with Section 3 illustrating these
results. Section 4 discusses the problem with a large set of
covariates in comparison to sample size and presents the
different algorithms together with Monte Carlo simulation
results. In Section 5, we study the case with heterogeneous
treatment effects both theoretically and with Monte Carlo
simulations. Section 6 concludes the article.

2. Theoretical Framework

In this section we lay out the theoretical framework and discuss
some simple properties for conditional inference to the sample
average treatment effect. The derivations of the results are avail-
able in the supplementary materials.

Consider an RCT with n units in the sample, indexed by i,
with n1 to be assigned to treatment and n0 to be assigned to
control. Let Wi = 1 or Wi = 0 if unit i is assigned treatment
or control, respectively, and define the assignment vector W =[

W1 . . . Wn
]′ . The set W = {W1, . . . , WnA} contains all

possible assignment vectors and has cardinality |W| = ( n
n1

) =
nA.

Let Yi(w) denote the potential outcome for unit i given the
treatment (w = 1) and control (w = 0). We assume no
interference between individuals and the same treatment (i.e.,
SUTVA) which means that the observed outcome is Yi ≡
Y(Wi). The estimand of interest is the sample average treatment
effect defined as

τ = 1
n

n∑
i=1

(Yi(1) − Yi(0)).

The difference-in-means estimator is

τ̂DM = Y1 − Y0,

where Y1 and Y0 denote the sample means of the outcome in
the treatment and control group, respectively.

Let Z be the n×K matrix of fixed covariates in the sample. We
consider the case of homogeneous treatment effects and turn to
heterogeneous effects in Section 5. Define the linear projection
in the sample

Yi(0) = α + z′
iβ + εi,

where εi is a fixed residual. Note that, the linear projection is the
projection of the potential outcome under the control treatment
onto the covariates. Thus, this is not a traditional regression

model as not all potential outcomes under the control treatment
are observed. We can, however, estimate β using the observed
outcome of the units assigned to the control group.

The difference-in-means estimator can be written as

τ̂DM = Y1 − Y0 = τ + (z1 − z0)
′β + ε1 − ε0,

where zw and εw (for w = 0, 1) denote the sample means of z
and ε in the two groups. As W is random, both zw and εw are
random even though Z and ε are fixed.

Let ES(·) and VS(·) denote expectation and variance over
randomizations in a set S ⊆ W . Naturally, the difference-
in-means estimator is an unbiased estimator under complete
randomization (the randomization when an assignment vector
is randomly chosen from W): EW (̂τDM) = τ .

We are interested in the stochastic properties of the
difference-in-means estimator when z1−z0 is held at some
fixed value. Let W� ⊆ W be the set of assignments for which
z1−z0 = �. EW�

(·) and VW�
(·) hence, denote expectation

and variance over randomizations in this set. We have

EW�
(̂τDM) = τ + �′β + EW�

(ε1 − ε0), (1)

and

VW�
(̂τDM) = VW�

(ε1 − ε0). (2)

Note that we cannot in general say that EW�
(ε1−ε0) = 0, and it

is also the case that VW�
(ε1 − ε0) is not a constant, but depend

on �. In the supplementary materials, we derive the explicit
formula for EW�

(ε1 − ε0) and VW�
(ε1 − ε0) when Z consists

of a single dummy variable. We there show that, in a balanced
experiment, the variance is at its maximum when � = 0 and
decreases symmetrically as the magnitude of � increases (a
result which is consistent with the finding in Miratrix, Sekhon,
and Yu 2013).

Turning to the OLS estimator of the treatment effect with Z as
control variables, let M� := n0n1

n �′�−1
ZZ� be the Mahalanobis

distance between treatment and control in Z (with �ZZ being
the covariance matrix of Z). The OLS estimator of the treatment
effect is shown in the supplementary materials to equal

τ̂z = τ + ε1 − ε0
1 − M�/(n − 1)

.

Over all assignment vectors in W , it is the case that
EW (ε1 − ε0) = 0, and so the regression estimator is also
unbiased under complete randomization, EW (̂τz) = τ , when
treatment effects are homogeneous. The conditional expectation
becomes

EW�
(̂τz) = τ + EW�

(ε1 − ε0)

1 − M�/(n − 1)
,

with the variance being

VW�
(̂τz) = VW�

(ε1 − ε0)

(1 − M�/(n − 1))2 . (3)

Comparing Equations (2) and (3), we can see that when � = 0,
the variance of the two estimators are identical. As the Maha-
lanobis distance increases, the variance of the difference-in-
means estimator gets relatively smaller compared to the vari-
ance of the OLS estimator. However, the conditional variance is
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perhaps not that important given that the estimators are condi-
tionally biased. More relevant is the conditional mean squared
error (MSE). It is straightforward to show (see supplementary
materials) that the conditional MSE of the difference-in-means
estimator is greater than the conditional MSE of the OLS esti-
mator if

β ′��′β + 2�′βEW�
(ε1 − ε0)

> EW�

(
(ε1 − ε0)

2) (
1

(1 − M�/(n − 1))2 − 1
)

. (4)

For � = 0, the MSE for the difference-in-means and OLS
estimators are identical. For � �= 0, as the sample size increases,
M�/(n − 1) = r2 (the R-squared from the regression of W on
Z) will tend to zero and the OLS estimator will always be more
efficient as long as the covariates are relevant (β �= 0).

At this point, it is helpful to compare the expression in Equa-
tion (4) with Theorem 1 in Mutz, Pemantle, and Pham (2019).
They consider a population model with a single covariate, Z,
and show that when imbalance increases in that covariate, the
MSE of the difference-in-means estimator is smaller than the
MSE of the OLS estimator if the covariate does not explain much
of the variation in the outcome. A similar pattern is present
in Equation (4): When β ≈ 0, the left-hand side is close to
zero whereas the right-hand side increases in the Mahalanobis
distance (or r2). This bias-variance tradeoff between including
and not including covariates is also present in Miratrix, Sekhon,
and Yu (2013) for the case where Z is categorical and form
mutually exclusive and exhaustive groups.

Mutz, Pemantle, and Pham (2019) use this result to argue
that one should not control for covariates just because they are
imbalanced, as that could increase the MSE. It is important to
stress that this is only true when the covariates are relatively
uninformative; with covariates that are strong predictors of the
outcome (β far from zero), the reverse pattern is present where
the MSE of the difference-in-means estimator will increase more
than the OLS estimator when covariates are imbalanced. There-
fore, without a priori knowledge on how strong predictors the
covariates are, a reasonable approach would, therefore, be to be
somewhat conservative in how many covariates to condition on.
In Section 4 we propose to use the idea of randomization infer-
ence together with principal components to solve the problem
of which covariates to condition on.

As noted by Mutz, Pemantle, and Pham (2019), conditional
on r2, the difference-in-means estimator is conditionally unbi-
ased. This results hold exactly for any given sample. The rea-
son is that the set containing all treatment assignments with
a given r2, Wr2 , must necessarily contain the mirrors of all
assignments in the set (i.e., if W is included, then 1 − W is also
included). However, as shown in Equation (1), this is not the
case when conditioning on �, the observed imbalance, which is
what is typically shown in a table of balance tests. For instance,
suppose one is interested in analyzing the effect of a vaccine
in a randomized controlled trial, and there is a suspicion that
the vaccine will be less effective among older individuals. If an
imbalance is observed, such that the treatment group contains
individuals that are on average one year older than the control
group, it is not very helpful to note that the difference-in-
means estimator is unbiased conditional on the treatment group

containing individuals that are either one year older or one year
younger than the control group. Instead, it makes sense to say
that the difference-in-means estimator is biased conditional on
the treatment group being one year older than the control group.

3. Illustration

To illustrate the results in the previous section, we perform a
very simple simulation study for a single sample where data is
generated as Yi(0) = Zi + ui and τ = 0. To make it possible to
go through all nA = ( n

n1

)
treatment assignments, we let n = 20

and n1 = 10. Both Z and u are drawn from a standard normal
distribution. We go through all nA = (20

10
) = 184,756 possible

assignment vectors and calculate both τ̂DM and τ̂z for each of
these vectors. In addition, we calculate the size of the statistical
tests (conditional on �) as well as the conditional variance and
MSE.

Figure 1 illustrates the results where �, the mean difference
between treatment and control in Z, is on the x-axis. The point
estimates, statistical significance, variance and MSE are aggre-
gated into 100 equal-sized groups based on �.

Focusing on the point estimates, we see that the OLS estima-
tor is approximately conditionally unbiased. That is, regardless
of value of �, the average point estimate is close to zero. The
difference-in-means estimator on the other hand is condition-
ally biased, with point estimates being negatively biased for neg-
ative � and positively biased for positive �. As we know should
be the case, the unconditional expectations of the estimators are
both exactly zero for each sample.

Turning to the size of the tests, we first note that the uncondi-
tional size is correct for both estimators. The conditional test is
wildly off for the difference-in-means estimator (a simple t-test).
The more � deviates from zero, the higher the rejection rate
of the null hypothesis. Importantly, because the test has correct
size on average, the size of the test conditional on � being close
to zero is smaller than 0.05, meaning the test in that range is
conservative. It is also noteworthy that for no value of � is
the difference-in-means estimator conditionally unbiased with
correct size of the hypothesis test. For the conditional test for the
OLS estimator, we also see that it is a little bit off from correct
size, but less so than for the difference-in-means estimator. As
we show in the supplementary material, this is the case for this
specific sample, but over random sampling, the test size for the
OLS is conditionally correct regardless of value of �.

The final two graphs show the conditional variance and MSE.
Because the OLS estimator—but not the difference-in-means
estimator—is approximately conditionally unbiased, these are
approximately the same for the former but not the latter. The
theoretical variances are given in Equations (2) and (3). The
figure shows that VW�

(ε1 − ε0) is decreasing as the magnitude
of � increases. The reason is that as � increases, the assignment
vectors become more similar to each other, and so ε1 − ε0
become more similar. This result is in line with the theoretical
result when the covariate is a dummy variable derived in the
supplementary material. For the OLS estimator, on the other
hand, the term (1 − M�/(n − 1))−2 counteracts the effect of
ε1 − ε0 becoming more similar and the conditional variance,
if anything, is increasing in the magnitude of �. Consistent
with the theoretical analysis, the conditional variance is iden-
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Figure 1. Simulation results conditional on �. The x-axis shows the average values of � for each percentile of �, whereas the y-axis indicate point estimate, statistical
significance, variance and MSE for both the difference-in-means estimator and the OLS estimator. The unconditional values (i.e., not conditional on �) are shown in the
bottom left corner of the figure. For the (two-sided) tests, the significance level is set at 5%. For the OLS estimators, the standard OLS covariance matrix is used. πDM and
πz are the p-values from the respective tests.

tical between the two estimators when � = 0. The MSE is
consistently greater for the difference-in-means estimator than
the OLS estimator.

Since we showed the result for a single sample of n = 20, it is
natural to ask whether Figure 1 shows a general pattern or some-
thing specific to this particular sample. In the supplementary
materials, we show that the same pattern emerges if we average
the results over 1000 random samples.

4. Selection of Covariates

In situations when the number of observations are much larger
than the number of relevant covariates (n � K), the preceding
analysis suggests that it is always better to condition on the
covariates than not condition on them as it will lead to a lower
mean squared error and correct conditional inference. Even if
a covariate is not relevant (β = 0), little is lost with a large
sample size. However, if K is not order of magnitudes smaller
than n, Equation (4) implies that there is a tradeoff between
adding more covariates as the bias term (�′β) decreases while
the variance increases due to an increase in the Mahalanobis
distance, M�. In the extreme case, with K > n, it is not even
possible to condition on all covariates in a regression. So what
should one do in such a case?

A common practice is to condition only on covariates which
show large imbalances, but as Mutz, Pemantle, and Pham (2019)
show, such an approach will lead to incorrect inference. Another
possibility would be to choose covariates based on perceived
importance in explaining the outcome. However, unless such an

approach is specified in a pre-analysis plan, it opens up the pos-
sibility for the researcher to select covariates in a large number of
ways, potentially leading to issues such as data snooping and p-
hacking. Even when the researcher is completely honest, such an
approach lack transparency, making it difficult for the research
community at large to ascertain the credibility of the results.

It is therefore useful to have a rule-based system of covariate
selection which limits the degrees of freedom of the researcher.
We propose such a rule of covariate selection which builds on
the idea of randomization inference. Randomization inference
after covariate adjustments is conditional on a set of assignment
vectors, W�, for which � = c. If this set is too small, then
randomization-based justification for inference collapses (Cox
2009) and inference can only be justified under the assumption
of random sampling from some population. The smallest p-
value which can be attained from Fisher’s exact test is 1/|W�|,
so, for example, if it should be possible to achieve a p-value
of 0.01 or smaller, it must be the case that there are at least
100 assignment vectors which has the same value of �. If
there are a few discrete covariates, then this would generally be
true. However, if the covariates are continuous, then it would
typically be the case that |W�| = 1 and, strictly speaking, infer-
ence based on the OLS estimator cannot be justified based on
randomization.

Instead, we suggest basing inference on the set W�̃ where
all elements in the set yield a distance which is approximately
equal to �. Note that, asymptotically, it is the case that M� ∼
χ2(K). Let �j := �(Wj) − �(W), where W is the assignment
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vector actually chosen and Wj ∈ W . It is the case that M�j :=
n0n1

n �′
j�ZZ

−1�j follows a noncentral chi-square distribution
with K degrees of freedom and noncentrality parameter of M�.
We can now define the set W�̃ as W�̃ = {W ∈ W : M�j ≤ δ̄},
where δ̄ is a small threshold value which should be set close to
zero. For δ̄ = 0, it is the case that W�̃ = W�.

Let H = |W�̃| be the number of assignment vectors with
small enough distance from the original treatment assignment
to approximately justify randomization-based inference. In
practice, for moderately sized n it is not possible to go through
all the nA = ( n

n1

)
assignment vectors to find H. However,

by using the fact that M�j follows a noncentral chi-square
distribution, we can calculate the approximate size of the set
as

nδ̄ = FK,M�
(δ̄) · nA,

where FK,M�
(·) is the cdf of the noncentral chi-square distribu-

tion with K degrees of freedom and noncentrality parameter of
M�. If it is the case that nδ̄ ≥ H, then the OLS estimator of
the treatment effect, controlling for Z, can be justified from a
randomization inference perspective. In practice, if δ̄ is small
and K is reasonably large, it will be the case that nδ̄ < H.
It is therefore necessary to somehow restrict the number of
covariates that will be conditioned on.

We propose to condition on the principal components of
Z. There are two reasons for this proposal: First, if covariates
are correlated, it is a natural way of reducing the dimension-
ality of the covariate space. Second, principal components
are naturally ordered in descending variances. Let Zpc

p =[
zpc

1 zpc
2 · · · zpc

p

]
be a matrix of the first p principal

components of Z and �ZZ
pc
p be the corresponding covariance

matrix; it is the case that Mpc
� = n0n1

n �pc′�ZZ
pc
p

−1
�pc ∼ χ2(p),

resulting in Mpc
�j

following a noncentral chi-square distribution
with p degrees of freedom and noncentrality parameter of Mpc

� .
With the natural ordering of the principal components, we

suggest a simple algorithm (Algorithm 1) which yield the num-
ber of principal components to condition on in a regression
estimation of the treatment effect. After the components have
been selected, we get the treatment effect estimator from a
regression of Y on the treatment indicator, controlling for the
p principal components.

Algorithm 1 Component selection
1: Set δ̄ and H
2: p ← 0
3: nδ̄ ← nA
4: while nδ̄ ≥ H do
5: Select first p+1 principal components and calculate the

Mahalanobis distance
6: Calculate nδ̄

7: if nδ̄ ≥ H then p ← p + 1
8: end if
9: end while

10: return p

4.1. Simulation Results

To study how our algorithm compares to other estimators, we
perform a simple simulation study. Specifically, we generate data
as

Yi(0) = Yi(1) = zib + ui,

where Z ∼ N(0, I), b =
[

1√
K

1√
K

. . . 1√
K

]′
and u ∼

N(0, 1). With this setup, we have var(zib) = var(ui), which
means the R2 from a regression of Y(0) on Z should be around
0.5. For a randomly selected sample, we draw 10,000 random
treatment assignment vectors and estimate the treatment effect.
We then repeat this process for 1000 different samples and
calculate the average MSE. For our algorithm, we let δ̄ = 0.01
and the sample size is set to n = 50 with n0 = n1 = 25. We vary
K (the number of covariates) from 2 to 40 in steps of 2.

With this setup, the covariates are orthogonal to each other
in the population, and so we should not expect the PCA to
effectively reduce the dimensionality of the data. Hence, this
setup can be considered a “worst case” for our method. To
study what happens when covariates are correlated, we use the
method suggested by Lewandowski, Kurowicka, and Joe (2009)
to generate correlated covariates with the parameter η being set
to one.

We contrast our estimator with three other estimators: (a) the
difference-in-means estimator, (b) the OLS estimator when all
covariates are used as controls and (c) the cross-estimation esti-
mator suggested by Wager, Taylor, and Tibshirani (2016). The
latter estimator uses high-dimensional regression adjustments
with an elastic net to select important covariates when there are
many covariates relative to the number of observations.

Figure 2(a) shows the result from the simulations. Beginning
with the left graph—which shows the results from orthogonal
covariates—we see that with few covariates, the MSE of the
difference-in-means estimator is around double that of the OLS
estimator, which is what we should expect for n � K as the
covariates account for 50% of the variation in Y(0) (see, for
instance, Morgan and Rubin 2012). Notably, the OLS estimator
and our PCA-based estimator is identical in that case. The
reason is simply that with so few covariates, all principal com-
ponents are selected, and conditioning on all principal compo-
nents is equivalent to conditioning on all covariates. The cross-
estimation estimator lies somewhere between the difference-in-
means estimator and the other estimators.

As K increases, the MSE of the difference-in-means estimator
is naturally unchanged, while the MSE of the three other esti-
mators increases. For an interval with K between 10 and 20,
the OLS estimator marginally outperforms our estimator, but
once the number of covariates increases further, the MSE of the
OLS estimator skyrockets. For our estimator, the MSE increases
slowly and stays consistently lower than that of the difference-
in-means estimator. The cross-estimation estimator is clearly
better than the OLS estimator for large K, but performs worse
than our estimator.

The left graph shows the results from the worst-case for our
estimator. In the right graph, we show results when covariates
are correlated. The difference-in-means and OLS estimators are
very similar to the previous case, but now our estimator outper-
forms both of them for all values of K (except for small K when
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Figure 2. MSE with homogeneous treatment effect. For each value of K , 1000 samples are drawn with 10,000 assignment vectors selected for each sample. For the cross-
estimation estimator, for computational time purposes, only 100 assignment vectors are selected for each sample. The sample size is set to 50 with an equal number of
treated and control units and τ = 0.

the OLS estimator and our estimator are equivalent). The cross-
estimation estimator also outperforms the other estimators for
large K, but still performs worse than our estimator.

The results in Figure 2(a) shows the average of the MSE
for each value of K. However, as we discussed previously, the
MSE will depend on �. Because � is K-dimensional, it is not
possible to illustrate the results as we did in Figure 1. Instead,

for each sample, we take the average MSE of each percentile of
the Mahalanobis distance, M�, and then take the average for
each percentile over all 1000 samples. We show the results for
K = 10, 20, 30.

Results are shown in Figure 2(b) for uncorrelated covariates
and Figure 2(c) for the correlated covariates. In Figure 1, the
MSE displayed a U-shaped pattern with minimum when � =
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Table 1. Size, homogeneous effects.

Quintiles All First Second Third Fourth Fifth

Uncorrelated covariates

K = 10
Difference-in-means 0.05 0.023 0.036 0.047 0.06 0.085
Cross-estimation 0.08 0.053 0.067 0.073 0.09 0.116
Regression 0.05 0.05 0.05 0.05 0.05 0.05
PCA alg 0.051 0.044 0.047 0.05 0.053 0.064

K = 20
Difference-in-means 0.05 0.032 0.042 0.049 0.057 0.07
Cross-estimation 0.082 0.058 0.072 0.079 0.089 0.111
Regression 0.05 0.05 0.05 0.05 0.05 0.05
PCA alg 0.051 0.038 0.045 0.05 0.056 0.066

K = 30
Difference-in-means 0.05 0.038 0.045 0.05 0.055 0.062
Cross-estimation 0.08 0.064 0.072 0.08 0.085 0.1
Regression 0.05 0.05 0.05 0.05 0.05 0.05
PCA alg 0.051 0.041 0.047 0.051 0.055 0.061

Correlated covariates

K = 10
Difference-in-means 0.05 0.025 0.036 0.047 0.059 0.083
Cross-estimation 0.076 0.056 0.064 0.073 0.084 0.101
Regression 0.05 0.05 0.05 0.05 0.05 0.05
PCA alg 0.051 0.049 0.05 0.05 0.051 0.053

K = 20
Difference-in-means 0.05 0.032 0.042 0.049 0.057 0.07
Cross-estimation 0.079 0.061 0.071 0.079 0.086 0.101
Regression 0.05 0.05 0.05 0.05 0.05 0.05
PCA alg 0.051 0.044 0.048 0.051 0.054 0.06
K = 30
Difference-in-means 0.05 0.038 0.045 0.05 0.055 0.062
Cross-estimation 0.082 0.068 0.079 0.081 0.084 0.097
Regression 0.05 0.05 0.05 0.05 0.05 0.05
PCA alg 0.051 0.044 0.048 0.051 0.054 0.058

NOTE: The table shows the size of a two-sided test of τ = 0 at 5% significance
level. The first column shows the unconditional size, whereas the next five shows
the size for each quintile of the Mahalanobis distance, M� . For each value of
K , 1000 samples are drawn with 10,000 assignment vectors selected for each
sample. For the cross-estimation estimator, for computational time purposes, only
100 assignment vectors are selected for each sample. The sample size is set to
50 with an equal number of treated and control units. For the regression-based
estimators, the standard OLS covariance matrix is used.

0. Because the Mahalanobis distance is a (weighted) square of
�, the MSE is now increasing in the Mahalanobis distance for
all four estimators. We see that the MSE of the difference-in-
means estimator, our PCA estimator and the cross-estimation
estimator all increase at roughly the same pace, while the OLS
estimator has an MSE that increases sharply for large distances
once K is large. Note that the cross-estimation estimator is more
variable because, for computational time purposes, we only
selected 100 instead of 10,000 random assignment vectors per
random sample. Also, note that this estimator works best when
it can be believed that most of the covariates are uninformative,
a case we do not consider here.

In Table 1 we show the size of a two-sided test of τ = 0
for each of the four estimators (5% significance level) for K =
10, 20, 30. The first column shows the average size (independent
of the Mahalanobis distance). As can be seen, the difference-in-
means estimator, the OLS estimator and our PCA estimator all
have approximately correct size, whereas the cross-estimation
estimator overrejects the null, with a rejection rate of around
8% instead of 5%.

The following columns show the results separately for each
quintile of the Mahalanobis distance, M�. We now see that only

Table 2. Power, homogeneous effects.

Quintiles All First Second Third Fourth Fifth

Uncorrelated covariates

K = 10
Difference-in-means 0.686 0.709 0.695 0.686 0.677 0.664
Cross-estimation 0.792 0.815 0.802 0.797 0.781 0.768
Regression 0.858 0.899 0.881 0.865 0.845 0.801
PCA alg 0.839 0.882 0.862 0.843 0.823 0.785

K = 20
Difference-in-means 0.686 0.701 0.691 0.686 0.68 0.673
Cross-estimation 0.74 0.759 0.744 0.741 0.737 0.72
Regression 0.744 0.831 0.788 0.753 0.713 0.635
PCA alg 0.759 0.797 0.773 0.758 0.743 0.72

K = 30
Difference-in-means 0.689 0.699 0.692 0.688 0.685 0.681
Cross-estimation 0.734 0.745 0.743 0.732 0.728 0.72
Regression 0.545 0.682 0.604 0.55 0.493 0.398
PCA alg 0.724 0.75 0.733 0.723 0.714 0.7

Correlated covariates

K = 10
Difference-in-means 0.698 0.717 0.705 0.698 0.69 0.678
Cross-estimation 0.838 0.854 0.84 0.839 0.837 0.818
Regression 0.865 0.905 0.888 0.872 0.852 0.808
PCA alg 0.882 0.91 0.896 0.885 0.872 0.846

K = 20
Difference-in-means 0.691 0.703 0.695 0.691 0.686 0.679
Cross-estimation 0.801 0.816 0.807 0.797 0.797 0.788
Regression 0.732 0.82 0.776 0.742 0.701 0.622
PCA alg 0.82 0.85 0.832 0.821 0.808 0.787

K = 30
Difference-in-means 0.684 0.692 0.687 0.684 0.68 0.676
Cross-estimation 0.769 0.781 0.774 0.766 0.766 0.757
Regression 0.526 0.661 0.584 0.53 0.473 0.381
PCA alg 0.779 0.802 0.787 0.778 0.769 0.757

NOTE: The table shows the power from of a two-sided test of τ = 0 at 5% signifi-
cance level, with τ = 1. The first column shows the unconditional power, whereas
the next five shows the power for each quintile of the Mahalanobis distance, M� .
For each value of K , 1000 samples are drawn with 10,000 assignment vectors
selected for each sample. For the cross-estimation estimator, for computational
time purposes, only 100 assignment vectors are selected for each sample. The
sample size is set to 50 with an equal number of treated and control units. For the
regression-based estimators, the standard OLS covariance matrix is used.

the OLS estimator maintains correct size regardless of the value
of the Mahalanobis distance, whereas the difference-in-means
estimator clearly underrejects for small values of the Maha-
lanobis distance and overrejects for large values. This pattern
is expected, as the difference-in-means estimator does not take
the covariate imbalance into account. A similar pattern is found
for the cross-estimation estimator, but with a higher rejection
rate. Finally, for our PCA estimator, the rejection rate is also
increasing with the Mahalanobis distance, but at a slower pace,
as the covariate imbalance is partially taken into account by the
selected principal components.

Finally, Table 2 shows the power of the different estimators
with τ set to one (from a two-sided test of τ = 0). The results
are very similar to the result for the MSE: with K = 10, the OLS
estimator is the most powerful estimator, closely followed by our
PCA estimator. For larger K, the OLS estimator performs much
worse, while the PCA estimator continuous to perform well. The
cross-estimation estimator also performs comparatively well for
K = 30, but it should be noted that the power is not size-
adjusted.

Overall, we conclude that our PCA-based estimator generally
outperforms the other three estimator in terms of MSE. While



8 P. JOHANSSON AND M. NORDIN

the size is not always correct conditional on observed differences
in covariates, the issue is smaller than for the difference-in-
means estimator or cross-estimation estimator. It is also impor-
tant to note that when n � K, our estimator essentially collapses
to the OLS estimator.

4.2. Variations of Algorithm 1

The algorithm that we suggest using is agnostic in terms of the
importance of the different covariates and we therefore pro-
pose to condition on the principal components rather than the
original covariates. However, in some settings the experimenter
may have a priori knowledge which suggests that one or several
covariates are likely to affect the outcome. In that case, it is
inefficient to balance only on the principal components, and
since there is no guarantee that the relevant covariate(s) are
balanced with the algorithm, there can be conditional bias.

In such cases, we suggest augmenting Algorithm 1 in the
following way: First the experimenter decides on the G covari-
ates they believe are important in predicting the outcome. These
covariates are in turn ranked in descending order according to
their perceived importance. Then principal component analysis
is performed on the remaining K − G covariates and the princi-
pal components are, just as before, ranked in descending order
in terms of variance. Algorithm 1 is then performed in order of
perceived importance of the covariates. If the algorithm has not
terminated after the G important covariates have been selected,
then the algorithm continuous with the principal components.

This augmented algorithm shares some similarities with the
idea of rerandomization in tiers proposed by Morgan and Rubin
(2015). The difference is that just as with regular rerandom-
ization (Morgan and Rubin 2012), rerandomization in tiers is
performed in the design phase and requires access to covariates
at that time. Our algorithm is instead used after the experiment
is carried out in the analysis phase.

This fact means that our algorithm could be used for data
snooping and p-hacking if the experimenter decides which
covariates are important only after looking at the result and,
potentially, choosing to use the covariates that lead to statis-
tically significant results of the treatment effects. Obviously,
such behavior would lead to incorrect inference. Without a pre-
analysis plan, researchers conducting experiments will have to
argue for the particular choices they made in the analysis phase
and it is up to the research community at large to decide whether
these choices are justified.

With a pre-analysis plan, these concerns can be mitigated.
If covariates are observed in the design phase, different reran-
domization strategies are attractive options. However, in many
cases, covariates may not be available in the design phase and are
instead collected during the experiments (of course, by covari-
ates in this context, we do not mean variables that can be affected
by the experiment). Furthermore, in sequential experiments
(such as in many clinical trials), it is not straightforward to
use rerandomization. In such cases, a transparent and efficient
option would be to write in the pre-analysis plan that our
algorithm will be used and specify the variables that will be
included, as well as the values of δ̄ and H that will be used. In
such cases, the issues with p-hacking will be handled with, while
at the same time, data will be used efficiently.

Algorithm 1 builds on the idea that the Mahalanobis dis-
tance follows a chi-square distribution (in the left-tail for values
smaller than δ̄). Asymptotically, this is true, but it might not
hold for small samples, especially with data that are far from
being normal (e.g., skewed data containing outliers) and when
δ̄ is very close to zero. Note that for very small samples (such
as n < 30), no distributional approximation is needed as it
would be possible to go through all treatment assignments to
find all assignment vectors who fulfill the criterium in Algo-
rithm 1. For larger samples sizes, this is not possible. However,
an experimenter who, because of the sample size and data,
believes that the Mahalanobis distance is unlikely to follow a
chi-square distribution can simply randomly choose a large
(but computationally feasible) number of assignment vectors,
nv (such as nv = 1,000,000,000). nδ̄ can then be estimated in
step 6 in the algorithm. This is done by taking the number of
assignment vectors out of the nv which fulfill the criteria of the
Mahalanobis distance being smaller than δ̄ and multiply with
nA/nv. For nA � nv the algorithm will then likely lead to a
conservative number of components.

5. Heterogeneous Treatment Effects

We now turn to the study of heterogeneous treatment effects. To
do so, we consider the following two linear projections:

Yi(0) = α0 + z′
iβ0 + ε0i

Yi(1) = α1 + z′
iβ1 + ε1i,

with the estimand of interest—the sample average treatment
effect—being

τ = 1
n

n∑
i=1

(Yi(1) − Yi(0)) = α1 − α0 + z′(β1 − β0),

as ε0 = ε1 = 0 by construction. By demeaning the linear
projections and interacting with the treatment indicator, Wi, we
can write the observed outcome as

Yi = α∗
0 + (zi − z)′β0 + Wiτ + Wi(zi − z)′ρ + ηi, (5)

where α∗
0 = α0 + z′β0, ηi = ε0i + Wi(ε1i − ε0i) and ρ =

(β1 − β0). The difference-in-means estimator can be written as

τ̂DM = Y1 − Y0 = τ + �′ζ + ε11 − ε00,

where ζ = n1
n β0 + n0

n β1 and ε11 and ε00 are the respective
averages of ε1 and ε0 in the treatment and control groups.
Analogous to the case with homogeneous treatment effects, we
have

EW�
(̂τDM) = τ + �′ζ + EW�

(ε11 − ε00).

Once again, we have conditional bias in the difference-in-
means estimator for � �= 0. Naturally, the conditional variance
of the difference-in-means estimator is

VW�
(̂τDM) = VW�

(ε11 − ε00)

When it comes to the OLS estimator, Equation (5) suggests
that to properly deal with the case of heterogeneous treatment
effects, all covariates should be demeaned and included both by
themselves as well as interacted with the treatment indicator.



THE AMERICAN STATISTICIAN 9

The coefficient in front of the treatment indicator by itself is
then an estimator for τ . We can include all the control variables,
including interactions in a n × 2K matrix X = [

Z̃ Q
]

with the ith row equaling xi = [
zi − z (zi − z)Wi

]
. In the

supplementary materials we show that the OLS estimator of τ ,
τ̂x, can then be written as

τ̂x = τ + ε11 − ε00 − 1
n−1�′f (Z′η, �XX)

1 − M̃�/(n − 1)
,

where M̃� is a weighted Mahalanobis distance of � (techni-
cally, it is the Mahalanobis distance of x1 − x0) and �XX is
the covariance matrix of X. The difference from the case with
homogeneous treatment effects is that the conditional bias of the
OLS estimator no longer depends solely on ε11 − ε00, but also
on �′f (Z′η, �XX); in the homogeneous case, Z′ε = 0, whereas
in the heterogeneous case, Z′η �= 0. The only time this second
term disappears is when � = 0.

The conditional bias of the OLS estimator depends on both
ε11 −ε00 and Z′η. The difference in bias between the difference-
in-means estimator and the OLS estimator is that the former
has the extra bias term �′ζ , whereas the latter has the extra
bias term that is a function of Z′η. For reasonably large sample
sizes, it will in general be the case that the latter term is quite
small and the difference-in-means estimator will have a greater
conditional bias than the OLS estimator.

When it comes to comparing the MSE of the two estima-
tors, the explicit expression for the OLS estimator is more
complicated due to the covariance between ε11 − ε00 and Z′η.
However, the general lesson from the case with homogeneous
treatment effects still apply: if the covariates are informative,
the conditional MSE of the OLS estimator will tend to be
lower compared to the difference-in-means estimator. However,
because covariates are also interacted with the treatment indi-
cator, relatively fewer covariates can be included before the MSE
of the OLS estimator gets larger than the difference-in-means
estimator, something that is shown in the simulation results
below.

The analysis here complements the findings in Freedman
(2008), who discusses the extent to which randomization jus-
tifies regression adjustment in the Neyman model (Splawa-
Neyman, Dabrowska, and Speed 1990). He studies the asymp-
totic properties when the number of units in the experiment
goes to infinity and shows (a) that the OLS covariate adjustment
estimator is, in general, (unconditionally) biased (of order 1/n),
(b) that the conventional OLS estimated standard errors estima-
tor are inconsistent, and (c) that, with unbalanced designs, the
OLS estimator also could be (unconditionally) less efficient than
the difference-in-means estimator asymptotically. However, Lin
(2013) shows (a) that the Eicker-Huber-White standard error
estimator (Eicker 1967; Huber 1967; White 1980) is consistent or
asymptotically conservative and (c) that the OLS estimator from
Equation (5) is, asymptotically, at least as (unconditionally)
efficient as the difference-in-means estimator.

To study the conditional inference in the presence of hetero-
geneous treatment effects, we next show results from a simula-
tion study.

5.1. Simulation Results with Heterogeneous Treatment
Effects

To study the properties of the estimators with heterogeneous
treatment effects in a simulation study, we generate data as

Yi(0) = zib + u0i,
Yi(1) = zib + γ + u1i.

where Z ∼ N(0, I), b =
[

1√
K

1√
K

. . . 1√
K

]
and both

u0 and u1 following standard normal distributions. In these
simulations, the heterogeneity therefore comes solely from the
differing errors. As before, for our algorithm, we let δ̄ = 0.01
and the sample size is set to n = 50 with n0 = n1 = 25.
Because we can use up to 2K covariates in a regression (because
of the interactions), we vary K from 2 to 20 in steps of 1. nδ̄ in
Algorithm 1 is now initiated at nA/2.

The Eicker-Huber-White estimator can be severely down-
ward biased in small samples. A large number of estimators
adjusting for this small sample bias for the inference to the
population has been suggested in the literature (MacKinnon
2013). The so-called HC2 and HC3 covariance estimators are
in general considered better estimators in small samples when
the data suffers from a high degrees of heteroscedasticity. In
our setting, heteroscedasticity is limited. Thus, we follow the
procedure suggested in Lin (2013) and use the Eicker-Huber-
White estimator.

Overall, with heterogeneous treatment effects, the MSE of the
different estimators exhibits similar patterns to those shown in
Figure 2 for homogeneous treatment effects, with the difference
that our PCA estimator always perform as good or better than
the OLS estimator. The results corresponding to Figure 2 are
shown in the supplementary materials.

Table 3 shows the size of a test where the null is set to the
sample average treatment effect at 5% significance level. We now
see that no estimator gives correct size, with the difference-in-
means, OLS and PCA estimators all typically being conservative,
while the cross-estimation estimator continuous to overreject.
However, the average size-distortion is in general quite small.
Conditional on the Mahalanobis distance, the same pattern as
before is present: as the Mahalanobis distance increases, the
rejection rate for all estimators increase. Different from the case
with homogeneous treatment effects, this is true also for the OLS
estimator.

Finally, Table 4 shows the result corresponding to Table 2 in
the homogeneous case. Because we are interested in studying
power, the null is now set to zero instead of the sample average
treatment effect. The PCA estimator generally outperforms the
other three estimators on average, as well as conditionally for
small Mahalanobis distances. The cross-estimation estimator is
generally slightly more powerful for large distances and roughly
equally powerful for K = 15. However, this can partly be
attributed to the fact that the test rejects the null slightly too
often.

Overall, the conclusions from the simulations on homoge-
neous treatment effects carry over to the heterogeneous case.
We find that the PCA estimator generally performs the best by
having the smallest MSE and highest power, while being slightly
conservative in terms of test size.
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Table 3. Size, heterogeneous effects.

Quintiles All First Second Third Fourth Fifth

Uncorrelated covariates

K = 5
Difference-in-means 0.039 0.014 0.023 0.033 0.047 0.08
Cross-estimation 0.058 0.038 0.046 0.053 0.063 0.088
Regression 0.038 0.035 0.036 0.037 0.039 0.042
PCA alg 0.038 0.035 0.036 0.037 0.039 0.042

K = 10
Difference-in-means 0.04 0.02 0.029 0.037 0.046 0.066
Cross-estimation 0.063 0.044 0.051 0.06 0.068 0.091
Regression 0.044 0.04 0.042 0.044 0.046 0.05
PCA alg 0.043 0.036 0.039 0.041 0.045 0.053

K = 15
Difference-in-means 0.039 0.023 0.032 0.038 0.045 0.059
Cross-estimation 0.068 0.047 0.059 0.066 0.076 0.093
Regression 0.052 0.047 0.05 0.052 0.054 0.058
PCA alg 0.044 0.034 0.039 0.043 0.047 0.057

Correlated covariates

K = 5
Difference-in-means 0.039 0.016 0.023 0.033 0.046 0.077
Cross-estimation 0.054 0.039 0.044 0.051 0.061 0.075
Regression 0.038 0.035 0.036 0.037 0.039 0.042
PCA alg 0.037 0.034 0.036 0.037 0.039 0.041

K = 10
Difference-in-means 0.039 0.02 0.029 0.036 0.046 0.065
Cross-estimation 0.059 0.044 0.051 0.053 0.065 0.08
Regression 0.044 0.039 0.042 0.044 0.046 0.05
PCA alg 0.041 0.037 0.04 0.041 0.042 0.046

K = 15
Difference-in-means 0.039 0.024 0.031 0.038 0.045 0.058
Cross-estimation 0.066 0.047 0.057 0.063 0.073 0.088
Regression 0.052 0.046 0.049 0.052 0.054 0.057
PCA alg 0.042 0.037 0.04 0.041 0.044 0.049

NOTE: The table shows the size of a test where the null is the sample average
treatment effect at 5% significance level. The first column shows the uncondi-
tional size, whereas the next five shows the size for each quintile of the Maha-
lanobis distance, M� . For each value of K , 1000 samples are drawn with 10,000
assignment vectors selected for each sample. For the cross-estimation estimator,
for computational time purposes, only 100 assignment vectors are selected for
each sample. The sample size is set to 50 with an equal number of treated and
control units. For the regression-based estimators, the Eicker-Huber-White robust
covariance matrix is used.

6. Concluding Discussion

Randomized controlled trials are considered the gold standard
for causal inferences as randomization of treatment guarantees
that the difference-in-means estimator is an unbiased estimator
of the average treatment effect under no model assumption.
However, this unbiasedness only holds under randomization
over all possible assignment vectors.

Indeed, in this article we show that conditional on observed
imbalances in covariates, the difference-in-means estimator is
in general biased, with associated statistical tests having incor-
rect size. As researchers are generally encouraged to investigate
whether covariates are balanced, this fact puts the practitioner in
an awkward position: on the one hand, the estimator is unbiased
over all possible randomizations; on the other hand, conditional
on the differences actually observed, the estimator is most likely
biased.

A solution to this problem is to condition on observed covari-
ates in a regression model, and we show that the OLS esti-
mator is approximately conditionally unbiased. On the other
hand, Athey and Imbens (2017) cautions against the use of
the OLS estimator in analyzing randomized experiments as the

Table 4. Power, heterogeneous effects.

Quintiles All First Second Third Fourth Fifth

Correlated covariates

K = 5
Difference-in-means 0.588 0.599 0.594 0.589 0.583 0.575
Cross-estimation 0.711 0.722 0.718 0.716 0.707 0.695
Regression 0.748 0.782 0.768 0.754 0.737 0.698
PCA alg 0.748 0.782 0.768 0.754 0.737 0.698

K = 10
Difference-in-means 0.589 0.597 0.592 0.589 0.585 0.58
Cross-estimation 0.674 0.683 0.681 0.68 0.666 0.659
Regression 0.667 0.733 0.7 0.674 0.644 0.587
PCA alg 0.68 0.729 0.702 0.682 0.661 0.625

K = 15
Difference-in-means 0.588 0.594 0.59 0.588 0.585 0.582
Cross-estimation 0.65 0.66 0.652 0.647 0.65 0.639
Regression 0.537 0.631 0.577 0.541 0.501 0.435
PCA alg 0.64 0.678 0.655 0.64 0.624 0.601

Correlated covariates

K = 5
Difference-in-means 0.592 0.6 0.596 0.593 0.589 0.583
Cross-estimation 0.742 0.755 0.75 0.745 0.738 0.723
Regression 0.753 0.787 0.772 0.76 0.742 0.703
PCA alg 0.757 0.788 0.774 0.763 0.747 0.712

K = 10
Difference-in-means 0.601 0.608 0.604 0.602 0.599 0.594
Cross-estimation 0.703 0.716 0.708 0.705 0.698 0.688
Regression 0.673 0.737 0.706 0.68 0.65 0.593
PCA alg 0.716 0.754 0.734 0.719 0.702 0.672

K = 15
Difference-in-means 0.597 0.603 0.6 0.597 0.595 0.591
Cross-estimation 0.683 0.691 0.69 0.68 0.677 0.675
Regression 0.537 0.632 0.578 0.541 0.501 0.434
PCA alg 0.691 0.726 0.706 0.692 0.678 0.654

NOTE: The table shows the power from of a test of τ = 0 at 5% significance
level, with γ = 1. The first column shows the unconditional power, whereas the
next five shows the power for each quintile of the Mahalanobis distance, M� .
For each value of K , 1000 samples are drawn with 10,000 assignment vectors
selected for each sample. For the cross-estimation estimator, for computational
time purposes, only 100 assignment vectors are selected for each sample. The
sample size is set to 50 with an equal number of treated and control units. For the
regression-based estimators, the Eicker-Huber-White robust covariance matrix is
used.

OLS estimator was not developed with randomization inference
in mind, resulting in a disconnect between the assumptions
needed for regression and for randomized controlled trials.
Specifically, they write that “it is easy for the researcher using
regression methods to go beyond analyses that are justified by
randomization, and end up with analyses that rely on a difficult-
to-assess mix of randomization assumptions, modeling assump-
tions, and large sample approximations.” Similarly, Freedman
(2008) writes that “Regression adjustments are often made to
experimental data. Since randomization does not justify the
models, almost anything can happen.”

Furthermore—and as discussed in Mutz, Pemantle, and
Pham (2019)—if practitioners adjust for covariates only when
they are imbalanced between treatment and control groups,
the inference will be compromised. A further problem also
discussed in Mutz, Pemantle, and Pham (2019) is that with many
covariates, many different regression estimators are possible
raising the concern of p-hacking. With these objections in
mind—and with the need to avoid adding all covariates in
the regression model to avoid a high MSE—we develop an
algorithm based on the principal components of the covariates
and select only so many principal components that can be
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justified based on randomization inference, thereby alleviating
the concerns raised by Athey and Imbens (2017), Freedman
(2008), and Mutz, Pemantle, and Pham (2019).

To be fair, also this algorithm can be used for data snooping,
by for example, adding or removing covariates making up the
principal components or by choosing different thresholds used
in the algorithm in determining the number of assignment
vectors. The bottom line is that without a pre-analysis plan,
there is always an open door for data snooping by fraudulent
researchers.

A better strategy is instead to use efficient experimental
designs together with a pre-analysis plan. With continuous
covariates the Mahalanobis-based rerandomization strategies
of Morgan and Rubin (2012) and Morgan and Rubin (2015)
are options in reducing the conditional bias ex-ante. If the
experimental design is published in a pre-analysis plan, this
will prevent p-hacking and data snooping. However, data on
covariates may not be available in the design phase, making it
impossible to use rerandomization strategies. In such a case, an
attractive option would be to commit to using the algorithm
developed in this article already in the pre-analysis plan. The
algorithm can either be used completely agnostically (i.e., with-
out using any information about importance of covariates) or, as
discussed in Section 4.2, it can be used together with prior infor-
mation about covariate importance. By committing to using the
algorithm, data can be used efficiently, while at the same time
the transparency and credibility of the RCT can be maintained.

Supplementary Materials

The supplementary materials contain mathematical derivations and some
additional simulation results. Replication code for all simulation results
is available at https://github.com/mattiasnordin/Conditional-inference-in-
experiments.
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