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a b s t r a c t

Rerandomization is a strategy for improving balance on observed covariates in random-
ized controlled trials. It has been both advocated and advised against by renowned
scholars of experimental design. However, the relationship and differences between
stratification, rerandomization, and the combination of the two have not been previously
investigated. In this paper, we show that stratified designs can be recreated by reran-
domization and explain why, in most cases, stratification on binary covariates followed
by rerandomization on continuous covariates is more efficient than rerandomization on
all covariates at the same time.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The most common design used to improve balance in a randomized control trials is stratified randomization, or blocked
andomization. The idea to divide units into strata (i.e. groups/blocks) based on similarity on a set of covariates, and then
o randomize the treatments within each stratum.

Another design is rerandomization. As the name suggests, rerandomization consists of redoing the randomization until
ome pre-specified balance criterion on the observed covariates (discrete or continuous) is met. That is, the randomization
s restricted to a subset of allocations that fulfill a rerandomization covariate balance criterion. Rerandomization is
omputationally demanding compared to stratification. However, with modern computers this is no longer a real
imitation.

Morgan and Rubin (2012) do not propose rerandomization as a substitute for stratification. Instead, the motivation
or rerandomization is based on an understanding of that, also after blocking, randomization within strata can result in
mbalances in other covariates. In this situation, Fisher is alleged to have recommended rerandomization (Morgan and
ubin, 2012). Athey and Imbens (2016) recommended researchers to first and foremost take care in the ‘original design’
o rule out unbalanced assignments instead of relying on rerandomization. This recommendation by the authors may
e interpreted that they view rerandomization as a substitute for stratification which may be unfortunate if relevant
ontinuous covariates are available. It is, however, arguably not obvious how or when to combine these strategies. This
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paper contributes to the literature by comparing the properties and clarifying the relationship between stratification,
rerandomization and the combination of both stratification and rerandomization.

Throughout the rest of this paper, we will use stratified rerandomization to mean to first stratify on a set of binary
ovariates and then rerandomize on remaining covariates, and rerandomization to mean to rerandomize on available
covariates at the same time. The rerandomization makes use of the Mahalanobis distance between the means of the
covariates of ‘treated’ and ‘controls’, together with an inclusion criterion for an allocation to be accepted. We give
conditions for when the stratified design can be recreated by rerandomizing on the binary covariates used to form
the strata. Utilizing this equivalence, we compare the relative efficiency of stratified rerandomization as compared to
rerandomization. Given that the two criterions are minimized as a function of the sample size, N , the two designs are
asymptotically equivalent with respect to efficiency. However, for moderate large N , stratified rerandomization is in general
more efficient than rerandomization. With small N , the relationship may be reversed.

The efficiency comparison is studied using exact inference to units of the experiment. The main reason for this is clarity.
The aim is to explain the relationship between stratification and rerandomization, and this is more clearly achieved for
inference to the units of the experiments. Most of the theoretical results discussed in this paper extend to inferences to a
population under random sampling. In addition, as will be shown, the choice of design is more complex in small sample
settings where exact inference may be desirable for its lack of distributional assumptions.

The rest of this paper is structured as follows. Section 2 establishes the considered experimental designs. Section 3
compares the stratified design with the Mahalanobis-based rerandomization design and discusses the asymptotic effi-
ciency of the designs under the Fisher null. Section 4 focuses on the relative efficiency of stratified rerandomization
and rerandomization for inference to the units in the experiment. Section 5 presents a Monte Carlo study confirming
the theoretical findings in Sections 3 and 4. Section 6 makes use of electricity consumption data as an illustration and
Section 7 contains a discussion and concluding remarks.

2. Complete randomization, stratification and rerandomization

Let Yi(w) denote the potential outcome for unit i given the ‘treatments’ (w = 0, 1), e.g., treatment and control. For a
sample of N experimental units, the sample average treatment effect is defined as

SATE =
1
N

N∑
i=1

(Yi(1) − Yi(0)) .

An experiment will have N1 units assigned the treatment for which we observe Wi = 1, and N0 units assigned the
ontrol for which Wi = 0 is observed. Under the Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980) the
bserved Yi is equal to Y (Wi).
The differences-in-mean (DM) estimator is defined

τ̂ = Y 1 − Y 0, (1)

where Yw =
1
Nw

∑N
i=1 WiYi.

In order to provide an intuition for the idea with experimental designs, let W be the N × NA matrix of all
( N
N1

)
=

NA possible allocation vectors under complete randomization. Furthermore let τ̂ j be the estimate for allocation j with
assignment vector W j

∈ W . The variance of the DM estimator can then be formulated as

VW (̂τ ) =
1
NA

NA∑
j=1

(̂τj − SATE)2.

The idea of stratification and rerandomization is to remove allocations with potential large differences in (̂τj −

SATE)2, j = 1, . . . ,NA. We let W S
⊂ W , be the set of allocations under stratification and let W ϕ

⊂ W be the set of
allocations under rerandomiziation. The cardinality of the two sets are denoted NS and NR.

In the stratified design we form s = 1, . . . , S stratum, where each stratum is based on similarity on observed covariates.
he stratified estimator is defined

τ̂ str
=

S∑
s=1

ns

N
× τ̂s, (2)

here τ̂s is the mean differences estimator (1) in stratum s and ns is the number of units in stratum s.
Rerandomization is more general than stratification in the sense that it can easily incorporate different types of

ovariates. The main difference is the exclusion criterion. With rerandomization the researcher first decide on a covariate
alance measure, and then a criterion to exclude allocations that are not sufficiently balanced on the covariates. Given a
andom assignment that is sufficiently balanced, the analysis is in general based on the DM estimator (1).
44
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2.1. Mahalanobis-based rerandomization

Due to the well known properties of the Mahalanobis distance, we restrict the analyses to Mahalanobis-based
erandomization designs and discuss the most important results from Morgan and Rubin (2012).1

Let X be the N ×K0 matrix of fixed covariates, and, for simplicity, let N1 = N0. For a given allocation j the Mahalanobis
distance between the covariate mean vectors of the units assigned to treatment and control, respectively, is defined as

M(X,W j) =
N
4
(X

j
1 − X

j
0)

′cov(X)−1(X
j
1 − X

j
0), j = 1, . . . ,NA, (3)

here X
j
1 − X

j
0 is the difference in mean vectors of treated (X

j
1) and controls (X

j
0), which is a K0 × 1 stochastic vector as

t depends on the random allocation.
Morgan and Rubin (2012) suggested accepting the treatment assignment vector W j only when

M(X,W j) ≤ a0,

here a0 is a positive constant called the rerandomization criterion. This means that the set W ϕ is implicitly defined as
W j

∃M(X,W j) ≤ a0
If the covariate means are normally distributed, M(X,W j) ∼ χ2(K0). This implies that a0 can be indirectly determined

y setting

pa0 = Pr(χ2(K0) ≤ a0),

nd that allocations can be sampled from any desired percentile of allocations with the Mahalanobis distances smaller
r equal to a0. As the number of randomizations needed to draw an allocation that fulfills the criterion is geometrically
istributed with expected value 1/pa0 , the expected number of randomizations before drawing an allocation fulfilling the
riterion with, e.g., pa0 = 0.001, is 1000.
Morgan and Rubin (2015) extend this idea by proposing the rerandomization to be done in tiers of covariates. The most

mportant covariates should be placed in the first tier, often using a strict rerandomization criterion, and the second most
mportant covariates in tier two with a slightly less restrictive criterion, etc. All allocations with large imbalances in the
ovariates of the first tier are excluded. In the second tier only the admissible allocations in the first tier are considered
tc. This means that the number of possible allocations decreases for each tier, until only allocations fulfilling the overall
alance criteria remain in the final tier.
By placing all categorical covariates in the first tier and all continuous covariates in the second tier, rerandomization in

iers can be seen as special case of stratified rerandomization. The main difference is that rerandomization in tiers allows
or any type of covariate in the first tier and has an explicit rerandomization criterion for this tier, making it possible to
ut covariates in tiers based on their believed relative importance rather than variable type.

. A comparison of stratification with rerandomization

To facilitate the understanding of the relative efficiency of the different designs, we restrict the comparison to an
dditive treatment effect, or the Fisher null, i.e., HFisher

0 : Yi(1) − Yi(0) = 0 ∀ i = 1, . . . ,N . The variance reduction of the
reatment effect will be larger if the effect is heterogeneous with respect to the included covariates for both stratification
see e.g. Imbens and Rubin, 2015) and with rerandomization (see Li, Ding and Rubin 2018). For this reason, we do not
iew this restriction as important for the comparison of the relative efficiency also under asymptotic inferences under
he Neyman null.

Let X1 be a N ×K1 matrix of binary covariates and let X be the N ×K0 matrix containing the K1 binary covariates in X1
nd all their interactions, implying K0 =

∑K1
i=1

(K1
i

)
. Now, consider the linear projection of the outcome on the covariates,

hat is,

Y = Xγ + ε, (4)

here Y = (Y1, . . . , YN ).

heorem 3.1. Let W o be the set of allocations minimizing the conditional variance of the outcome under the sharp null. Then
his set can be obtained as

W o
= min

W j∈W
M(X,W j)

roof. As X contains only binary covariates including all interactions, the linear projection of Y on X (cf. Eq. (4)) is fully
aturated and is therefore equal to the conditional expectation of Y under the sharp null. This, together with the fact that
he Mahalanobis distance is affinely invariant, implies that minimizing the variance in X will directly minimize Var(Y |X)
or all γ in Eq. (4). □

1 See Johansson and Schultzberg (2020) for an alternative rerandomization design.
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Theorem 3.1 implies that rerandomizing on binary covariates and all their interactions, using the strictest possible
ahalanobis criterion, always randomizes within the set of allocations with the minimum variance in the outcome under

he sharp null.
Consider now the Mahalanobis-based randomization based on the N × S matrix D = (D1, . . . ,DS) where Ds ∀ s =

, . . . , S, are N×1 vectors with one for units belonging to stratum s and zero otherwise. Thus N S
= D′1N = (n1, n2, . . . , nS)′

s the S × 1 vector of the number of units in each stratum. Define

W ϕ
= min

W j∈W
M(D,W j)

Given that N1 = N0 the mean-difference vector of treated and control group for allocation j is

D
j
1 − D

j
0 =

N S
1j

N1
−

N S
0j

N0
=

2N S
1j − N S

N/2
,

where N S
1j = (n1

1j, n
2
1j, . . . , n

S
1j)

′ and N S
0j = (n1

0j, n
2
0j, . . . , n

S
0j)

′ are the vectors of number of treated and controls in each
tratum for allocation j, respectively. This means that minW j∈W M(D,W j) := 0 for all j where 2N S

1j = N S . As nS
=

−
∑S−1

s=1 ns this means that we can drop the last column and let X = (1N ,D1, . . . ,DS−1), where 1N is a column vector
ith ones.

orollary 3.1. If ns mod 2 = 0 ∀ s = 1, . . . , S, it follows that

W o
= W S

= W ϕ
: M(X,W j) := 0.

roof. Since the Mahalanobis distance is affinely invariant, it holds that

M(D,W j) := M(X,W j),

nd the proof follows directly from Theorem 3.1. □

Corollary 3.1 shows that, in the case when all strata are of even sample size, stratification gives exactly the same
esign as rerandomization with the rerandomization criterion zero.2 In other words, letting a0 = 0 the Mahalanobis-based
andomization will by design try to find a design that are balanced within each strata. This is however only possible if all
trata are of even sample size, that is, ns mod 2 = 0, for all s.
When ns′ mod 2 ̸= 0 for s′ ∈ (1, . . . , S), and with the aim of letting N1 = N0, the researcher would randomly assign

s′/2 −
1
2 or ns′

1 /2 +
1
2 to be treated. In the first case ns′

1 − ns′
0 = −1 and in the second ns′

1 − ns′
0 = 1. In this situation W S

annot be shown to be equal to W o.
Restricting randomization to W S removes imbalances within each stratum but does not guarantee that the covariates

re balanced over the full sample. This is not a problem for the DM estimator (cf Eq. (2)) as the within strata estimators
re all unbiased. With the set W o we are guaranteed to obtain an estimator with an overall minimum variance, under
he null, which one is more efficient will depend on the context.

.1. Relative efficiency

Before consider the efficiency and computational time with a fixed N it is useful to consider the asymptotic efficiency
nder the Fisher null. Let R2 is the squared multiple correlation between Y and X , or the coefficient of determination in

(4).

3.1.1. Stratification
Imbens and Rubin (2015, p. 206) show that the OLS estimator of (4) converges to τw =

∑S
s=1 ωsτs/

∑S
s=1 ωs, where τs

s the treatment effect in stratum s. In our setting this means that ωs =
ns
N × ( n

s
1

ns (1 −
ns1
ns )).

In a balanced design within each stratum, i.e. ns
1 = ns/2 ∀s, ωs =

ns
N × 0.25. This means that the OLS estimator is

asymptotically equivalent to the stratified estimator in this specific situation.3
Let τ̂ cr be the DM estimator under complete randomization. Given that ns

1 = ns/2∀s, and that the covariates by design
is independent of the error term, we get Var (̂τ str ) = (1 − R2)Var (̂τ cr ). Here, Var (̂τ cr ) = σ 2

Y (1/N1 + 1/N0), where σ 2
Y is

either, the within sample variance of Y , or the population variance. The percent reduction in sampling variance (PRIV) of
the treatment effect under stratification against complete randomization is then

PRIVS = 100 ×
Var (̂τ cr ) − Var (̂τ str )

Var (̂τ cr )
= 100 × R2. (5)

2 Note that this equivalence is also true with heterogeneous treatment effects, thus the fact that we restrict the comparison to the situation
with an additive effect is no restriction when all strata are of even size.
3 Imbens and Rubin (2015, p. 206) also show that with an augmented regression model, including interaction terms with treatment and stratum,

the OLS estimator is asymptotically equivalent to the stratified estimator also in unbalanced designs.
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3.1.2. Mahalanobis-based rerandomization
Here X is a 1×K0 vector of covariates. Under the assumption that errors terms in the regression model (4) are normally

distributed,4 Morgan and Rubin (2012) show that PRIV of the treatment effect under Mahalanobis-based rerandomization
against complete randomization is equal to

PRIV1 = 100 ×
Var (̂τ cr ) − Var (̂τ rr )

Var (̂τ cr )
= 100 × R2(1 − ν0 ), 0 ≤ ν0 ≤ 1 (6)

where

ν0 =
Pr(χ2(K0 + 2) ≤ a0)
Pr(χ2(K0) ≤ a0)

, (7)

and τ̂ rr is the DM estimator (1) under Mahalanobis-based rerandomization.
As the probability of a Chi-square distributed variable to be less than a0 is decreasing with the degrees of freedom,

ν0 → 0 as a0 → 0. The implication is, thus, that with a rerandomization criterion a0 close to zero, such that ν0 ≃ 0,
stratification and rerandomization should give similar improvements in efficiency.

With T tiers with covariates X t , for t = 1, . . . , T , such that X = (X1,X2, . . . ,X T ) and X t an N × Kt matrix, Morgan
and Rubin (2015) show that

PRIVT = (1 − ν1)R2
1:1,y +

T∑
t=2

(1 − νt )(R1:t,y − R1:(t−1),y), (8)

where R2
1:t,y is squared multiple correlation between Y and X1:t = (X1,X2, . . . ,X t ) and at , is the rerandomization criterion

for tier t , implying

νt =
Pr(χ2(Kt + 2) ≤ at )
Pr(χ2(Kt ) ≤ at )

, t = 1, . . . , T . (9)

4. Stratified rerandomization and rerandomization

Since Mahalanobis-based rerandomization on categorical covariates with interactions can be made equivalent to strat-
ification, it follows that the relative performance of stratified rerandomization and rerandomization can be investigated
using the framework of rerandomization in tiers. As strict equivalence is possible only under Corollary 3.1; we restrict
the comparison to the completely balanced experiment accordingly.

Let X1 = (1N ,D1, . . . ,DS−1), X2 be the set of K2 continuous covariates, and X = (X1,X2) be the set of K0 covariates.
The PRIV for the DM estimator under rerandomization and rerandomization in tiers (used for stratified rerandomization)
are given in Eqs. (6) and (8). In this setting we get for t = 1 and 2

PRIV1 = 100 × (1 − ν0 )R
2

and

PRIV2 = (1 − ν1)R2
1 + (1 − ν2)(R2

− R2
1),

respectively. Here R2
1 is squared multiple correlation between Y and X1.

Due to the balanced strata, rerandomizing on X1 with the zero criteria (stratifying) implies a1 = pa1 = ν1 = 0. That
s, for stratified rerandomization, all the variance in τ̂ from X1 is controlled for and the number of remaining allocations
s NS .

As a tool for comparing the two designs, we use the ratio of the PRIV’s of the two designs

RPRIV =
PRIV2

PRIV1

=
(1 − ν2)R2

+ ν2R2
1

(1 − ν0)R2

=
1 − ν2

1 − ν0
+

ν2

1 − ν0

R2
1

R2 . (10)

t is reasonable to let a0 and a2 tend to zero with N . Then for any R2
1, R

2 > 0

1 − ν2

1 − ν0
+

ν2

1 − ν0

R2
1

R2

p
−→ 1 as N → ∞. (11)

4 The errors are by definition uncorrelated with X . The assumption is needed as the proof requires independence. When X consists of a set of
inary covariates and all their interactions the normality assumption can be relaxed as then Eq. (4) is the conditional mean.
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This follows from the fact that both ν0 and ν2 converge to zero with N as a0 and a2 tend to zero with N . Thus, the two
designs are given equal variance reductions asymptotically.

To get an understanding of the behavior and limitations of the two designs, we evaluate the relative efficiency of the
two procedures, for the more realistic situation with N fixed in the next sub-section.

4.1. Efficiency and computational time with fixed n

Restricting the focus of inference to the units of the sample, all stochastic variation in an experiment stems from the
randomization, which means that the lowest level of risk in a FRT is determined by the number of possible treatment
allocations in the randomized experiment. This means that if the lowest risk of making a false decision is chosen to be
5%, the number of possible allocations in a two-sided test needs to be at least 40. For 1%, the corresponding number of
allocations is 200. That is, the lowest possible risk in a double sided exact test can be viewed as the resolution, r , of the
exact p-value in the FRT. With e.g. NR possible allocations in a rerandomization design, r = 2/NR.

For most sample sizes, NR is large for any rerandomization criteria. Therefore, a too large r is not usually an issue. A
too large number of allocations, is on the other hand, a problem as it makes it intractable to calculate the exact p-value.
This issue was pointed out by Athey and Imbens (2016), and used as an argument for recommending researchers to not
use rerandomization. The rapid growth of combinations is, however, a potential problem for using exact tests under any
randomized design, not only rerandomization. For example, in pairwise stratification (each stratum is of size two), which
implies

NS =
(2
1

)N/2
.

Already for N = 60, there are 1.073 7 × 109 possible allocations which is impossible to manage with a typical
computer. One common solution is to approximate the exact p-value by Monte Carlo simulation. An alternative, suggested
in Johansson and Schultzberg (2020), is to do an exact test on a limited set of allocations of ‘optimal’ allocations found
by rerandomization.

Before discussing this procedure, it is useful to first provide the intuition for the unbiasedness of the estimators in
the sets W ,W S or W ϕ . For a given random allocation W j with an estimate τ̂ j the estimate of the ‘mirror allocation’
W j′

= 1 − W j is simply −τ̂ j. Thus, any set W ϕ with cardinality two or larger containing only mirror allocations will
be unbiased. As the Mahalanobis distance is affinely invariant it is also the case that M(X,W j) ≡ M(X, 1 − W j). This
ymmetry, thus, provides an intuition for why the DM estimator is unbiased under Mahalanobis-based rerandomization.
he implication for any algorithm with an aim of finding a set of allocations with cardinality H is that, by only sampling
llocations from the first half of the lexicographically ordered allocations, only H/2 allocations fulfilling the criterion must
e found after which the corresponding mirror allocations are added to the set.
The implied smallest number of allocations needed for inference is then H = 2/r . The set W ϕ∗ is the optimal set

f allocations, conditional on the Mahalanobis distance balance measure, if it contains the allocations with the H/2 first
nique order statistics of the Mahalanobis distance across all NA allocations as we include also the mirror allocations.
o be clear, the optimal set of allocations is obtained in (M [1], . . . ,M [H/2]), where M [j], j = 1, . . . ,NA/2 denotes the

order statistics of the Mahalanobis distance statistics. For normally distributed covariates or large sample settings, this
corresponds to using the rerandomization criterion a0 = M [H] in pa0 = Pr(χ2(K0) ≤ a0), which implies that H = NApa0 .

When N is large, the Mahalanobis distance cannot within a reasonable time limits be calculated over all of the NA/2
allocations due to the rapid growth of

( N
N1

)
. In this situation, the algorithm suggested in Johansson and Schultzberg

(2020) sequentially keeps the H/2 allocations with the smallest Mahalanobis distance over subsets until a total number
of I allocations from the original NA/2 has been drawn. When the algorithm is finished, the mirror allocations are
included to give H in total. The final H allocations with the smallest Mahalanobis distances are then used as W ϕ∗. This
procedure differs from the procedure suggested in Morgan and Rubin (2012) in the sense that pa0 is not set before the
rerandomization. Instead pa0 is a function of I and H. The only restriction is computational time and the implied a0 can be
probabilistically bounded by setting I accordingly (Johansson and Schultzberg, 2020). Within each set I, the Mahalanobis
distances are Chi square-distributed, with the implication that the probability for an allocation to be accepted will depend
on I, that is pIa0 = Pr(χ2(K0) ≤ a0|I) where limI→NA p

I
a0 = pa0 . In expectation pIa0 = H/I.

4.1.1. The relative efficiency for fixed N
Given a level of resolution r in the exact p-value of a two-sided hypothesis test, the minimum number of allocations

that must remain after stratification is H = 2/r . Under the assumption

M(X2,W j) ∼ χ2(K2),

it follows thatH = NSpa2 , which implies that rerandomization criterion in the second tier of the stratified rerandomization
is bounded

H
≤ pa2 ≤ 1. (12)
NS
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Thus, when NS ≃ H, pa2 = νt2 ≃ 1. Putting it differently, if only a few allocations can be discarded under the
rerandomization based on the second tier, one cannot expect substantial variance reductions in the covariates in the
second tier. This suggests that, if NS is close to H, and X2 is believed to explain a lot of variation in the outcome, it might
be a bad idea to first stratify.

In order for the stratified rerandomization to have larger percentage reduction in variance than rerandomization, it
must hold that

1 − ν2

1 − ν0
+

(R2
1/R

2)ν2

1 − ν0
> 1, 0 ≤ ν0, ν2 ≤ 1.

⇐⇒

(1 −
R2
1

R2 ) <
ν0

ν2
, 0 ≤ ν0, ν2 ≤ 1. (13)

s 0 ≤ R2
1/R

2
≤ 1, this means that whenever ν0

ν2
> 1, stratified rerandomization is more efficient than rerandomization

n expectation.
Let Q (r, K ) be the quantile function of the Chi-square distribution such that Q (pat , Kt ) = at , for t = 0, 1, 2. For a

iven r , the optimal criteria for the stratified rerandomization and rerandomization are a2 = Q (r, K2) and a0 = Q (r, K0),
espectively. With r = H/NS and H/NA for stratified rerandomization and rerandomization, respectively, we get

ν0/ν2 =

Pr
(
χ2(K0 + 2) ≤ Q ( H

NA
, K0)

)
Pr

(
χ2(K0) ≤ Q ( H

NA
, K0)

) /Pr
(
χ2(K2 + 2) ≤ Q ( H

NS
, K2)

)
Pr

(
χ2(K2) ≤ Q ( H

NS
, K2)

) . (14)

From this expression it becomes clear that the relative efficiency of the DM estimator under stratified rerandomization
and rerandomization depends on the degrees of freedom in the Chi-square distribution of the Mahalanobis distances and
the number of possible allocations in the rerandomization step of the two designs (i.e. NA and NS). The efficiency of
erandomization is decreasing in the degrees of freedom and increasing in the number of allocations. The stratification
educes both the degrees of freedom (from K0 to K2) and the number of allocations (from NA to NS) in the second tier
erandomization.

ariance-reduction evaluation for pairwise stratification. To illustrate how the relative efficiency of stratified rerandom-
zation compared to rerandomization depends on R2

1/R
2, we consider the case with N/2 strata of size 2 for N =

2, 14, 16, 18, 20, 22, 24, and one continuous covariate. With K1 = N/2−1 binary and one continuous covariate the total
umber of covariates is K0 = N/2. We vary the lowest level of risk to be 5%,1% and 0.1%, which means that H = 40,200
nd 2000.
From Fig. 1 we can see that with a 5% level of risk, rerandomization is preferable to stratified rerandomization, i.e. has

arger expected PRIV, only when R2
1/R

2
≤ 0.20 and N = 12. When the level of risk is set to 1%, NS < H for N ≤ 14,

hich implies that stratified rerandomization is not an option. For N = 16, rerandomization is preferable to stratified
erandomization when R2

1/R
2

≤ 0.53. For larger experiments, stratified rerandomization is preferable for all R2
1/R

2. With
he level of risk set to 0.1%, NS < H for N ≤ 20, which means that stratified rerandomization is not an option in these
ases. For N = 22, rerandomization is preferable to stratified rerandomization when R2

1/R
2

≤ 0.78, and for N = 24,
tratified rerandomization is preferable for all R2

1/R
2.

Fig. 1 clearly shows the trade off between the number of remaining allocations after stratification and the ‘cost’ of
ncreasing the degrees of freedom in the Chi-square distribution of the Mahalanobis distance for the rerandomization.
y first stratifying, the number of degrees of freedom in the Chi-square distribution of the Mahalanobis distances in
he remaining rerandomization is reduced from N/2 to one. Lower degrees of freedom means less diffused Mahalanobis
istances which provides better precision in the rerandomization in the second tier. On the other hand, if there are few
llocations left after the stratification, the rerandomization on the remaining covariates becomes restricted, as H allocation
ust be kept for inference based on the choice of the maximum level of risk. It is important to understand that the
airwise stratification is a ‘worst case’ scenario for rerandomization as the difference between K0 and K2 is maximized for
ach N in this design. If the number of binary covariates is fixed over N , stratified rerandomization and rerandomization
ould give more similar PRIV in accordance with Eq. (11).
If there is no a priori information on the relative importance of X1 and X2 in explaining the outcome, it is reasonable

o assume that X1 explains as much as X2, i.e., R2
1
/R2

= 0.5. With R2
1
/R2

= 0.5 the stratified rerandomization is in
xpectation more efficient than Mahalanobis-based rerandomization on X whenever ν0/ν2 > 0.5 (see Eq. (13)). For
= 16 we saw that exact inference is possible under both stratified rerandomization and rerandomization with α = 1%.
s rerandomization was more efficient for all R2

1
/R2

≤ 0.53, this implies that rerandomization is preferable with an
gnostic assumption on the importance of the two types of covariates dependence with the outcome in this case. However,
s these results build on asymptotic properties they should be interpreted with caution. Finite sample properties in this
ase will be presented in Section 5.
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Fig. 1. Comparison of expected PRIV under optimal stratified rerandomization (SR) and rerandomization (R) designs for sample sizes between 12
nd 22, for a test of level 5%, 1% and 0.1%.

.1.2. Computational time as a function of the number of covariates
In the previous sub-section it was shown that, for sample sizes smaller than 24, the number of remaining allocations

fter stratification on X1 restricts the subsequent rerandomizations on X2 so much that rerandomization on X may
e preferable. However, this restriction is only a concern for these small experiments. Even with moderately large
xperiments, it is intractable to go through all allocations (also after stratification) wherefore it is important to take the
omputational time it takes to find H acceptable allocations into account when comparing designs using rerandomization.
Here we study the computational time for cases where the sample size is too large for exhaustive rerandomization

nd the distribution of the mahalanobis distance is well approximated by a Chi-square distribution to understand how
tratified randomization can improve the design as compared to rerandomization, given a fixed time budget for the design.
The expected number of considered allocations needed to find one acceptable allocation for any given criterion at in

ier t using rerandomization is 1/pat . This means that, on average, H/pat allocations need to be sampled to obtain H
cceptable allocations. For H = 40, with pat = 0.00001, 4 million allocations needs to be sampled to obtain 40 allocations
hat fulfills the criterion on average. However, it is νt and not pat that determines the efficiency gain from the design as,
or a given R2, the PRIV is only a function of νt . As νt increases with Kt , the variance reduction from the rerandomization
ecreases in Kt for a fixed pat . This means that in order to achieve the same variance reduction from a large set as for a
mall set of covariates, the criterion pat needs to be reduced, and, therefore the number of sampled allocations needs to
e increased. An alternative to searching for the H optimal allocations among all N allocations we used the algorithm
A
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Fig. 2. Expected percentage variance reduction in the rerandomization covariates for various numbers of considered allocations as a function of
degrees of freedom in the rerandomization. Values above the solid line imply that more than 99% of the variation in the covariates is removed by
the rerandomization.

Table 1
Estimated time consumption (years) for calculating the Mahalanobis distance for all

( N
N/2

)
allocations,

assuming that 1,000,000 allocations can be considered each second.
N 50 60 70 80 90 100

Expected time (years) 4 3750 3.56 × 106 3.41 × 109 3.29 × 1012 3.20 × 1015

suggested in Johansson and Schultzberg (2020). Thus, we let pIat = Pr(χ2(Kt ) ≤ at |I), where I is the number of allocations
n a randomly drawn subset of W , W s or W ϕ .

We study the computational time for a fixed H in an experiment where I is varied between 20 thousand and 40 billions
or K0 = 1, . . . , 32, in other words, at different levels of pIa0 . Here N is fixed an assumed large enough for the Mahalanobis
distance to be well approximated by a Chi-square distribution and too large for going through all allocations. The results
of this exercise are displayed in Fig. 2.

Fig. 2 shows the expected PRIV from rerandomization. It is apparent from the figure that the relation between the
expected variance reduction and the number of sampled allocations, I, is non-linear in K0. For K0 ≤ 3 the number of
considered allocations that remove all of the variation is small. For K0 larger than five, the number of considered allocations
eeded to reduce all the variations becomes implausibly large. For K0 ≥ 11, not even 40 billion allocations is enough to
et 99% reduction in PRIV. This illustrates the potential benefits of reducing the number of degrees of freedom in the
econd tier by using stratified rerandomization, and why rerandomizing in tiers is a good idea in general.
These results are of importance for the comparison of stratified rerandomization and rerandomization. That is, since

2 < K0 by construction, the computational time of the rerandomization step in stratified rerandomization may be
ubstantially smaller than in rerandomization, especially if K1 is large.

perspective on computational time. The seemingly large numbers of considered allocations in Fig. 2 are in fact a very
mall part of the total number of allocations for moderately large samples. For example, if the sample size is 50, 4× 1010

onstitutes 100(4 × 1010/
(50
25

)
) = 0.03% of all possible allocations.

The implication of the growth of combinations is difficult to comprehend but to give a perspective, we exemplify
y predicting the computational time for finding the globally best allocation for N = 50, 60, 70, 80, 90, 100. A decently

fast software implementation can go through around 1,000,000 allocations per second5 depending on the sample size
nd the number of covariates. Table 1 displays the estimated computational time for calculating all the Mahalanobis
istances. Already for N = 50 it takes 4 years, and for N = 60 the computational time is more than 3000 years, indicating
he complexity of finding the allocations with the H globally smallest Mahalanobis distances. This problem can be fully
arallelized, and there are likely software implementation that can speed up the calculations by some factor. However,
iven the rapid increase, going through all allocations for samples sizes such as N = 100 is still completely intractable
ith current hardware and software.

5 The figure 1,000,000 comes from timing an implementation in the programming language Julia v1.1.0., with one covariate rounding up the
number of consider allocations. The corresponding figure for an implementation in base R v3.5.3 is around 30,000.
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5. Monte Carlo simulations

Three Monte Carlo (MC) simulations are conducted to study the power of the DM estimator in an exact FRT under
tratification (S), stratified rerandomization (SR), Mahalanobis-based rerandomization (MR0), and complete randomization
(C).

Data are generated as

Yi(0) = x1iβ1 + β2x2i + ϵi (15)

where x1i is the K1 × 1 vector of binary covariates including their interactions, and x2i and ϵi are both i.i.d. exponentially
distributed variables: x2i ∼ exp(λ1) and ϵi ∼ exp(λ2). The alternative for which the power is studied is set to Yi(1) =

Yi(0) + 0.6. The parameters are chosen such that in expectation R2
= 50% in all settings. The number of replications in

each cell is 5000 and the exact p-value is defined as

πmj =
1
H

H∑
r=1

1(|̂τ (W ∗

r ,Y j)| ≥ |̂τ j
|), j = 1, . . . ,H, m = 1, . . . , 5, 000, (16)

where τ̂ (W ∗

r ,Y j) is the distribution of estimates over all allocations r given allocation j (for any of the setsW ∗
= W ,W ∗

=

W S or W ∗
= W ϕ∗) in replication m. The power in replicate m is calculated as

Pm =
1
H

H∑
j=1

1(πmj ≤ 0.05). (17)

The designs of the first two Monte Carlo simulations are stimulated by the theoretical results in Sections 4.1.1 and
4.1.2 where K1 = N/2 − 1. The first case (Section 5.1) studies if the stratification on X1 in the stratified rerandomization
may prohibit more efficient inference that could be achieved by rerandomization on X for N = 16. The second simulation
(Section 5.2) considers the situation when N = 64 and β2 = 0. Because of the large number of degrees of freedom in
the Chi-square distribution and because x2 does not contribute to this design, it can be seen as a ‘worst case’ scenario for
the rerandomization design. Finally, the third simulation (Section 5.3) compares the designs in a moderately large sample
size, N = 28, with K1 = K2 = 1 and shows how the power is affected by increasing I, or decreasing pIa0 .

We have also conducted the same MC simulations with x2 ∼ N(0, 0.25), ϵi ∼ N(0, 0.5) and with heterogeneous effects
with a mean of 0.6. The results from these Monte Carlo simulations are very similar to the ones discussed below and can
be obtained upon request.

5.1. MC simulation 1

The study aims at examining the power of the FRT when H approaches NS for N = 16 and K1 = 7. Here λ1 = λ2 = 2,
β1 = (

√
ρζ1, . . . ,

√
ρζ1)′ and β2 =

√
(1 − ρ)ζ2, where ζ1 and ζ2 are chosen such that β′

1cov(X1)β1 = ζ 2
2 Var(x2) =

0.5 × Var(ϵ). We let ρ = R2
1/R

2 take the values 0, 0.5, and 1, which correspond to the binary covariates having no
effect on the outcome, the binary and continuous covariates having equal effect on the outcome, and, the continuous
covariate having no effect on the outcome. H is varied as 200, 240, and 256. Note that when H = NS = 256, the stratified
rerandomization is equal to stratification as no allocations can be excluded in the rerandomization step.

The performance under the experimental designs MR0 and SR is considered. We denoted the Mahalanobis-based
rerandomization using X = (X1, X2) MR0 as we in this simulation also consider an additional one-step rerandomization
design based on only the three main covariates (i.e., the interactions among the binary covariates are excluded) which
we denote MR1. MR1 is considered to illustrate the flexibility with rerandomization as opposed to stratification; the
interactions can conveniently be included or excluded based on prior beliefs of their importance. MR1 is a reasonable
design if no a priori information about the covariates relative importance is available. That is, it can be argued that it is
not reasonable to include all interactions of a set of covariates solely because they are binary. Note that the interaction
terms are in fact informative when ρ > 0 since their coefficients are non-zero, implying that this setting does not favor
MR1 by construction. For each sample, the globally best H allocations according to each design are chosen.

Let Pm(SR), Pm(MR0) and Pm(MR1) be the estimated power in replicate m (defined in (17)) of the three designs. Fig. 3
displays the distributions, as box plots, of the relative difference in power of rerandomization compared to stratified
rerandomization, defined as

RDm(MR0) =
Pm(MR0) − Pm(SR)

Pm(SR)
and RDm(MR1) =

Pm( MR1) − Pm(SR)
Pm(SR)

.

It is clear that in the settings where the binary covariates affect the outcome (panel 2 and 3), the power of MR0 is
xactly the same as SR for H = 200, and larger when H comes close to NS . MR1 has higher power both when ρ = 0
nd, perhaps more surprisingly, when ρ = 0.5. When the continuous covariate has no effect on the outcome, MR0 gives

the same power as SR on average. Surprisingly, MR1 perform slightly better than SR on average, also in this setting.
Clearly, the information about Y sacrificed when excluding the interaction terms to lower the degrees of freedom in the
rerandomization step, increases efficiency in this special case.
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Fig. 3. The distribution, over 5000 replicates, of the relative difference in power for rerandomization as compared to stratified rerandomization with
the full set of covariates and a restricted set (MR0 and MR1), as H approaches NS = 28

= 256. The panels display, from left to right, ρ = 0, ρ = 0.5,
nd ρ = 1, respectively.

This small simulation study shows that the theoretical results of Section 4.1.1 translate quite well to small samples and
ndicates that the theoretical results are robust to violations of the normality assumptions. If the sample size is small, the
tratification reduces the number of allocations to a small set. It is then important to think about the covariates’ relative
mportance before deciding on a design.

.2. MC simulation 2

Here N = 64, β2 = 0 and xi1 is a set of independent binary covariates and their interactions which imply 32 strata of
ize 2. λ1 and λ2 is chosen to obtain var(x2) = 0.4 and var(ϵ) = 0.8, respectively. Here β1 = (

√
ζ1, . . . ,

√
ζ1)′ where ζ1

is chosen such that β′

1cov(X1)β1 = Var(ϵ). We set H = 40, and vary I = 300, 1, 000, 10, 000, 20, 000, which means that
pIa0 is in the range 0.133 (= 40/300) to 0.002 (= 40/20000) . For CR and S, H allocations are randomly drawn from W and
W S , respectively. For SR, I allocations are randomly drawn from W S and the H allocations with the smallest Mahalanobis
distance on x2 within this set are chosen. For MR0, I allocations are randomly drawn from W and the H allocations with
the smallest Mahalanobis distance on X are chosen.

The maximum number of considered allocations in each replication, I = 20,000, is very far from NS = 232
=

4.295×109. This means that there is no restriction on N S in the rerandomization on x2 in the second stage as was the case
in Section 4.1.1. Instead, due to the large degrees of freedom in the Chi-square distribution in the rerandomization, and by
the fact that β1 = 0, this Monte Carlo simulation illustrates the potential problems with rerandomization in comparison to
stratification and stratified rerandomization when X1 contains a large number of covariates. The degrees of freedom in the
MR0 design is 32 (31 binary, 1 continuous). This implies that, even though SR and MR0 should give approximately equal
designs asymptotically (see Eq. (11) ) p30,000a0 = Pr(χ2(K0) ≤ a0|30, 000) is far from limI→NA p

I
a0 = pa0 . Fig. 4 displays the

distribution (box plots) of the estimated power across replications in the FRT for the four designs; Pm( C), Pm(S), Pm(SR) and
Pm(MR0). As expected, stratification and stratified randomization achieves the full efficiency gain already with I = 300,
and the stratified randomization does not improve by rerandomizing on x2 but is not distorted either. The rerandomization
design do improves slowly with I. However, as expected, the improvement is hardly visible across the span of I presented
here. Table 2 displays the empirical variance of DM estimator for each design over I, averaged over the replications. As
expected, the only design for which the variance decreases with I is MR0. That is, for S, and SR the full maximum variance
reduction of the DM estimator, in this case 100 × R2

= 50%, is as expected achieved for all I, whereas MR0 only achieve
25% for I = 20,000. This is in line with Fig. 2, from which we expect that with K0 = 32 and I = 20,000 we should have on
average 60% variance reduction in X , i.e., ν = 0.6, implying PRIV = 20%, i.e. PRIV = 100×R2(1−ν ) = 100×0.5×0.4.
0 1 1 0
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Fig. 4. The distribution, over 5000 replicates, of the power of complete randomization (C), stratification (S), rerandomization (MR0) and stratified
erandomization (SR) as functions of number of considered allocations, I.

Table 2
Empirical variance of the DM estimator averaged over replications for complete random-
ization (C), rerandomization (MR0), stratification (S), and stratified rerandomization (SR)
as a functions of number of considered allocations, I.
I C S MR0 SR

300 0.099 0.050 0.086 0.050
1000 0.099 0.050 0.081 0.050

10,000 0.098 0.050 0.074 0.050
20,000 0.099 0.049 0.074 0.050

5.3. MC simulation 3

Here β1 =
√

ρ2 and β2 =
√
(1 − ρ)2, where ρ is varied as 1/3, 1/2 and 2/3. This means that the binary covariate is

half, equally and twice as important in explaining the outcome as the continuous. Furthermore, we let λ1 = 2, λ2 =
√
2,

N ≡ 28, and H ≡ 40. We vary I by letting I = 60, 100, 500 and 800, which means that pIa0 varies in the range 0.67
(= 40/60) to 0.05 (= 40/800). The sampling of the I allocations is performed as in Section 5.2.

Fig. 5 displays the distribution (box plots) of Pm(C), Pm(S), Pm(SR) and Pm(MR0) across I. As expected, the stratified
esign does not improve by increasing I. All gain in efficiency from stratification is immediate since only allocations
llowed under stratification are allowed. The stratified rerandomization is always better or equally good as rerandomiza-
ion. This is expected as in the stratified rerandomization only allocations allowed under stratification on x1 are allowed,
nd therefore it immediately starts balancing on x2. When I becomes larger there is no difference between the stratified
erandomization and the rerandomization as is expected from the theoretical results derived above. The small I needed
o obtain good power improvements in SR and MR0 is because the number of covariates in the rerandomization is only
and 2, respectively.

.4. Summary of the Monte Carlo study

The Monte Carlo simulations show that the theoretical findings apply in finite sample settings and indicate that
hey are robust to violations of the normality assumption of the covariate means and error term (needed to derive
RIVt ), t = 0, 1, 2 for the rerandomization. If the sample size is small, stratified designs can be suboptimal. If the sample
ize is moderately large, around 30, rerandomization without stratification run into problems when the number of strata
s large. In such situations, stratified rerandomization is a good strategy for reducing the number of degrees of freedom in
he Chi-square distribution of the Mahalanobis distance. This enables the Mahalanobis-based rerandomization design to
enefit from informative continuous covariates. If the total number of covariates is small, say less than 5, rerandomization
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Fig. 5. The distribution, over 5000 replicates, of the power of complete randomization (C), stratification (S), rerandomization (MR0) and stratified
erandomization (SR) as a function of the number of considered allocations I. The panels display, from left to right, ρ = 1/3, ρ = 1/2, and ρ = 2/3,
espectively.

nd stratified rerandomization gives very similar efficiency gains in comparison to complete randomization also for small
and number of considered allocations I ′s that are manageable for ordinary computers.

. Empirical example

In this section we make use of an electricity consumption data set, explored in Lundgren and Schultzberg (2019). Within
he field of electricity-use research, there is an increasing focus on how to change users’ electricity consumption to reduce
eak load as well as total load to enable further integration of weather-dependent electricity production as well as to cope
ith an increase in demand. Several types of interventions have been proposed and evaluated, such as financial incentives

n the form of dynamic price signals (Öhrlund et al., 2019; Faruqui et al., 2017) and non-financial incentives in the form of
nformation campaigns or energy feedback (Darby, 2006; Karlin et al., 2015). To help plan future experiments, Lundgren
nd Schultzberg (2019) present an exploratory study aimed at evaluating the prospects of interventions targeting the
ttitudes towards electricity use, and savings in particular. Due to the large natural variation in households’ electricity
onsumption, it is crucial to employ rigorous experimental designs to achieve acceptable power, which makes this data
et suitable for illustrating the designs discussed in this paper.
Electricity consumption data were collected at the monthly level for several years for 510 households of which we

sed the 102 with no missing data. We extracted the two last time periods, November and December for 2017 where
he November measurements are being used in the experimental design. The electricity consumption in December 2017,
Dec , is the outcome. As there were no experiments in December, this electricity consumption is what is observed under
he Fisher sharp null. This fact enables us to study the relative performance of the different experimental designs under
he alternative and calculate the power for hypothetical treatment effects as described in Section in 5, Eqs. (16) and (17).

The November data contains the electricity consumption, YNov , and the number of residents in each household,
esidents. Out of the 102 households, there were 43 with 1 resident, 30 with 2 residents, 11 with 3 residents, 16 with 4
esidents, 1 with 5 residents, and 1 with 6 residents.

The following six designs were considered: (i) Stratification (S) on Residents,6 (ii) Stratification (S1) on the quantiles of
Nov (YQ

Nov) and Residents,7 (iii) Stratified rerandomization (SR) where we stratify on Residents and then using Mahalanobis-
ased rerandomization on YNov , (iv) Rerandomization (MR0) on YNov and the incidence matrix implied by Residents, (v)

Rerandomizing (MR1 ) on YNov and Residents and (vi), finally, Complete randomization (C) was performed as a benchmark.

6 Since only one household each has 5 and 6 residents, respectively, only 5 strata were created merging 5 and 6 for all designs using stratification
7 This design implies a maximum of 16 strata, in this case a few strata had zero units resulting in 13 strata.
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Table 3
Expected variance reduction in the covariates under stratified rerandomization (SR) and
Mahalanobis-based rerandomization (MR0 and MR1).

Expected PRIV

pa1 = pa0 0.15 0.015 0.0015 0.00015
Covariate

Stratified rerandomization (SR)

Residents (factor) 100 100 100 100
YQ
Nov 98.81 99.99 100 100

Rerandomization (MR0)

Residents (factor) and YNov 73.45 90.75 96.48 98.62

Rerandomization (MR1)

Residents and YNov 92.09 99.25 99.92 99.99

In this example, the strata are not all evenly sized which means that Corollary 3.1 does not apply. To adjust for this, the
Fisher test in (i) and (ii) could be based on the stratified estimator (2). For this simulation, the analyses for the stratified
designs (S, S1, and SR) were performed with the both the stratified estimator and the DM. As expected, there are small
power gains from using the stratified estimator for the stratified designs in this case as compared to the DM estimator.
However, here only the DM-based results are shown to be aligned with the theoretical results in this paper. Code for
reproducing the simulations, including results using the stratified estimator, is available on request.

In this special case, where the outcome under no treatment is observed, the power under hypothetical treatment effects
can be studied. In a real experiment, however, only covariates are observed. However, Morgan and Rubin (2012) show
that with Mahalanobis-based rerandomization the variance reduction on the observed outcome is R2 times the variance
eduction in the covariates. Since, R2 is unknown but fixed, this gives a valid relative comparison between the design as
long as R2 > 0.

Table 3 displays the expected PRIV in the covariates under the different designs. It is clear that if only a small set of
ll allocations is considered, there are large differences in the variance reduction in the covariates across the designs. For
= 105 (pIa1 = 0.15) the variance reduction in the SR design (iii) is 100% and 98.8% for Residents and YNov , respectively.

As the same variance reduction is obtained for all covariates by definition with the Mahalanobis distance measure, the
corresponding variance reduction for MR0 and MR1 is 73.45% and 92.09%, respectively. When the number of allocations
I = 108 (i.e. pIa1 = pIa0 = 0.00015) we get almost 100% variance reductions on all covariates for these three designs.

Returning to simulating the power under hypothetical effects, we let

Yi(0) = Yi,Dec

Yi(1) = Yi(0) − τ ,

where τ is varied as 0, 10, 20, and 30 (kWh), which correspond almost exactly to 0, 0.1, 0.2, and 0.3 standard deviation of
Y Dec (sYDec = 102.2). The negative sign of the effect is motivated by the intervention aiming at decreasing consumption.

We follow the procedure in Section 5 but let H = 15,000 (= 2/r) which implies that r = 0.00013. For the Mahalanobis
distances rerandomization we randomize among the H allocations with smallest Mahalanobis distances in a random set
of sizes I = 105, 106, 107 and 108. This means that pIa0 and pIa1 vary in the range 0.15 to 0.00015. For the C, S and S1
designs, 15,000 allocations were randomly drawn from W . For the SR design the randomization is conducted in the H
allocations with the smallest Mahalanobis in the random set from W S of sizes I = 105, 106, 107 and 108.8

Fig. 6 displays the power of the five designs and complete randomization for increasing number of considered
allocations, I. For I = 105 (pIa0 = pIa1 = 0.15) there are large differences between the different rerandomization
designs and complete randomization. Among the designs using rerandomization, the price of the degrees of freedom
in the rerandomization designs, discussed in Section 4.1.2, is clearly seen as MR0 has the lowest power, MR1 is in the
middle, and SR has the highest power. When I = 108 (pIa0 = 0.00015) these differences are negligible. Stratification on
YQ
Nov and Residents gives substantial power improvements as compared to CR. For I = 105, S1 has higher power than MR0,

however, as S1 does not improve with I, this does not hold when I increases. The difference between SR and S1 clearly
illustrates the (unnecessary) information loss associated with discretizing YNov . S also gives higher power than C, but as
expected, the importance of balancing the pre-treatment outcome is far more rewarding than perfect balance on number
of residents.

8 Note that an alternative is to conduct a Monte Carlo approximations from the set W . The number of Monte Carlo draws needs to be large in
order for the FRT to have the right level. In a single analysis this is not a problem, however, in a Monte Carlo simulation this procedure would be
very time consuming.
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Fig. 6. Power of FRT’s under hypothetical homogeneous treatment effects for the five designs (Stratification (S) on Residents, Stratification (S1)
on YQ

Nov and Residents, Stratified rerandomization (SR) where we stratify on Residents and then using Mahalanobis-based rerandomization on YNov ,
Mahalanobis-based rerandomization on YNov and the incidence matrix implied by Residents (MR0), Mahalanobis-based rerandomizing on YNov and
Residents (MR1) and complete randomization (C).

7. Discussion

Stratification, or blocked randomization, is the most common design used to improve balance in experiments. An
alternative, or complement, to blocking that has received attention lately is to utilize modern computational capabilities
in finding allocations with balance in observed covariates (see e.g., Morgan and Rubin, 2012, 2015; Bertsimas et al., 2015;
Kallus, 2018; Lauretto et al., 2017; Krieger et al., 2019; Kapelner et al., 2020; Johansson and Schultzberg, 2020).

Several scholars, including R A. Fisher (via Cochran and Rubin), and more recently Morgan and Rubin (2012, 2015),
recommend rerandomization as a complement to stratification. Athey and Imbens (2016) on the other hand seem to view
rerandomization as an alternative rather than a complement, and do not recommend rerandomization.

It is, however, not obvious how or when to combine these strategies. The paper has investigated the properties and
limitations of stratification, rerandomization, and the combinations of stratification and rerandomization, denoted stratified
rerandomization, with the aim of clarifying their pros and cons in practice. The comparison is focused on the efficiency
of the differences-in-mean estimator under homogeneous treatment effects and inference to the experiment, that is for
a fixed N . We show that when all strata are of even sample size the stratified design give the same design as with
Mahalanobis-based rerandomization with a criterion set to zero. By using the results in Morgan and Rubin (2015), who
uses the Mahalanobis distance between the means of the covariates of ‘treated’ and ‘controls’ in the rerandomization, this
enables us to study computational aspects and the relative efficiency of stratified rerandomization and rerandomization.

The main conclusion is that there are three aspects to consider when choosing between these two designs: (i) the
number of available binary (on which it is easy to stratify) and continuous covariates, (ii) the relative importance on the
outcome of these two types of covariates , and (iii) the number of allocations remaining after stratification. If the number of
allocations remaining after a stratification is large, say 10,000 or larger, it is a good idea to use stratified rerandomization.
If the number of allocations remaining after stratification is small, it is possible that rerandomization on all covariates
at once, or only the continuous covariates, is more efficient. If the sample size is moderately large, say 20 or larger,
and the total number of covariates is small, say 5 or less, the efficiency gain of rerandomization compared to stratified
rerandomization is negligible.

The results are of direct interest for researchers that are restricted to conduct small experiment. The results are however
also of interest for researchers conducting large experiment. With large experiment it is always advisable to stratify and
then to further increase efficiency by rerandomizing on essential covariates within each stratum. The Fisher exact test
can then be based on the stratified estimator (2).
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How asymptotic inference should be conducted is something that we leave to future research. However, it seems quite
traight forward by extending the results in Li et al. (2018) or Li and Ding (2020). With the Li et al. (2018) approach the
nference would be based on the stratified estimator and with the Li and Ding (2020) approach inference would be based
n the regression adjustment estimator suggested in Imbens and Rubin (2015, p. 206).
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