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Abstract
Blocking is commonly used in randomized experiments 
to increase efficiency of estimation. A generalization of 
blocking removes allocations with imbalance in covari-
ate distributions between treated and control units, and 
then randomizes within the remaining set of allocations 
with balance. This idea of rerandomization was formal-
ized by Morgan and Rubin (Annals of Statistics, 2012, 40, 
1263–1282), who suggested using Mahalanobis distance 
between treated and control covariate means as the crite-
rion for removing unbalanced allocations. Kallus (Journal 
of the Royal Statistical Society, Series B: Statistical 
Methodology, 2018, 80, 85–112) proposed reducing the set 
of balanced allocations to the minimum. Here we discuss 
the implication of such an ‘optimal’ rerandomization de-
sign for inferences to the units in the sample and to the 
population from which the units in the sample were ran-
domly drawn. We argue that, in general, it is a bad idea to 
seek the optimal design for an inference because that infer-
ence typically only reflects uncertainty from the random 
sampling of units, which is usually hypothetical, and not 
the randomization of units to treatment versus control.
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1  |   INTRODUCTION

Randomized controlled trials (RCTs) are traditionally seen as the gold standard for causal inference. 
Even though the estimators from well-conducted experiments are unbiased in expectation, the esti-
mates from any single experiment may still be far from any ‘truth’ due to an unlucky, albeit random, 
allocation. Traditionally, blocking has been used to eliminate some bad allocations. Blocking (i.e. 
stratification) partitions experimental units into groups (strata) based on their similarity on covari-
ates, and then randomization is performed within each stratum, thereby ensuring that units within 
each stratum will be ‘fairly’ represented in both the treatment and control groups; see for example 
Imbens and Rubin (2015) for a recent overview. An alternative, or complement, to blocking that has 
received attention lately is to utilize modern computational capabilities by using rerandomization (see 
e.g. Kallus, 2018; Kapelner et al., 2018; Krieger et al., 2019; Lauretto et al., 2017; Morgan & Rubin, 
2012).

More specifically, the idea of rerandomization is to remove from consideration allocations with 
imbalance in observed covariates between treated and control units and then randomize within the 
set of allocations with balance on these covariates; call the set of all allocations  and the set of ac-
ceptable allocations a. Such a procedure is a rerandomization design with a prespecified imbalance 
criterion, →a, where different criteria give rise to different rerandomization designs. The idea of 
rerandomization, which, although previously mentioned in the literature, apparently was first formal-
ized by Morgan and Rubin (2012), who used the Mahalanobis distance as the criterion for defining a 
with the aim to make inference about the sample average treatment effect (SATE), typically estimated 
by the difference in sample means between treated and control units.

Kallus (2018) suggested finding the allocation that minimizes the estimated sampling variance of 
the SATE estimator; call the set of allocations that achieve this minimum Opt. The primary focus of 
this paper is to discuss the implication of using such ‘optimal’ rerandomization designs for inferences 
to the population average treatment effect (PATE) and the SATE. We focus on Mahalanobis-based re-
randomization to clarify the original rerandomization idea in Morgan and Rubin (2012), and because 
it has well-established properties discussed below.

Section 2 reviews the background for Mahalanobis-based rerandomization. Section 3 discusses 
inference to the sample and to the population, as well as how to conduct inference given an optimal 
design. The paper concludes with a discussion in Section 4.

2  |   BASIC RESULT FROM MORGAN AND RUBIN (2012)  ON 
MAHALANOBIS-BASED RERANDOMIZATION

Following the notation in Morgan and Rubin (2012), consider a RCT with n units in the sample, indexed 
by i, with n1 to be assigned to treatment and n0 to be assigned to control; for simplicity, n1 = n0. Let 
Wi = 1 or Wi = 0 if unit i is assigned treatment or control, respectively, and define W = (W1, …, Wn ) � . 
Furthermore, let X be the n × K matrix of fixed covariates in the sample (xi, i = 1, …, n) , with ob-
served sample covariance cov(X).

Because n1 = n0, there are 
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where 

Morgan and Rubin (2012) proposed accepting the jth allocation when its treatment assignment vector Wj 
satisfies 

where a is a positive constant.
By the central limit theorem, and supported by experience with real examples for moderate n, the 

sample means of the covariates will be approximately normally distributed across random samples, so 
that Mj ∼ �2

K
 (Morgan & Rubin, 2012). Letting 

we see that a is determined from the choice of pa. Because the number of rerandomizations is geometrically 
distributed, the expected number of randomizations needed to obtain an acceptable allocation is 1∕pa, which 
means that, for instance, with pa = 0.001, the average number of randomizations before drawing an allocation 
that fulfils the criterion is 1000.

Morgan and Rubin (2012) show that when Mj ∼ �2
K

, then, due to the spherical symmetry of the 
multivariate normal distribution, 

with 

This result implies that the variance of the covariate mean differences across allocations in a is reduced 
relative to its variance across the allocations in  by the factor �a, and the percent reduction in variance of 
each of the covariates in X (or of any linear combination of them) is equal to 100(1 − �a ) .

Let Yi (w ) be the potential outcome under treatment w for unit i. Under the stable unit treatment 
value assumption (SUTVA, Rubin, 1980), the observed outcome when i is assigned Wi is equal to 
Yi = (1 − Wi )Yi (0) + WiY(1) . The mean difference estimator is defined as 

where Y1 =
1

n1

∑
n
i=1

WiYi (1) and Y0 =
1

n0

∑
n
i=1

(1 − Wi )Yi (0).
Let �̂CR and �̂RR be the estimators defined in Equation (4) under complete randomization (i.e. when 

the Wi are randomly drawn from ) and Mahalanobis-based rerandomization (i.e. when the Wi are 
randomly drawn from a), respectively. These estimators are unbiased for SATE and also for PATE 
under random sampling of the n units from the population. For convenience, we also define the corre-
sponding estimators for a specific sample s: �̂CR

s
 and �̂RR

s
, respectively.

Let Y (w) = (Y1 (w ) , Y2 (w ) , …, Yn (w ) ) � , w = 0, 1, and let R2 be the squared multiple correla-
tion between Y(0) and X. Under the assumption that (i) the residual in the linear projection of Y(0) 
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on X is normally distributed and that (ii) treatment effects are additive (so that R2 is also the squared 
multiple correlation between Y(1) and X), the percentage reduction in variance (PRIV) of �̂RR

s
 and �̂RR 

versus the corresponding estimators under complete randomization is 

where Vn ( . ) denotes the variance of the estimators (Morgan & Rubin, 2012). From this expression to-
gether with Equations (1) and (3), it becomes clear that the variance reduction from Mahalanobis-based 
rerandomization relative to complete randomization is decreasing in pa, the strictness of the rerandom-
ization criterion, and non-increasing in K, the dimension of X. For additional properties of Mahalanobis-
based rerandomization, see Morgan and Rubin (2012) and Li et al. (2018).

3  |   THE SPECIAL CASE OF MINIMIZING THE VARIANCE

The mean difference estimate for sample s and allocation j is 

where Yj

1s
=

1
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∑ n1

i=1:i∈ s
W
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i
Yi (1) and Y0s =
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i
)Yi (0). The SATE for sample s is 

where Aa = card(a ), and thus estimators �̂CR

s
 and �̂RR

s
 are unbiased for SATEs (Imbens & Rubin, 2015; 

Morgan & Rubin, 2012). For sample s, the variance of the estimators, Vn ( �̂
CR

s
) and Vn ( �̂

RR

s
) , only depend 

on the treatment assignment mechanisms that is the experimental designs.
For the super population, as assumed in Kallus (2018), 

where the expectation is over all random samples with fixed sample sizes. The variance of the estimators 
for inference to PATE are 

and 

respectively. The first term of the variance decomposition (7) is the expected variance of the estimator, 
and the second term is simply the variance of SATE across random samples. Clearly, only the first term 
differs between the two designs. From these results it follows that, in line with Kallus (2018), an opti-
mal rerandomization design for the inferences to PATE should minimize the first term in Equation (7). 
Optimal designs are obtained by minimizing the maximum conditional variance of the mean difference 
estimator under the assumption that conditional means of the outcomes under treatment and control can 
be estimated (Kallus, 2018). Under this assumption, the pure strategy optimal design (PSOD) finds a 
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single optimal allocation, that is, the allocation in the second stage is deterministic unless there are many 
allocations achieving the minimum.

Inspired by Cochran and Cox (1957), section 4.36 and Kallus (2018) constructed example 1, to 
illustrate theorem 1 in Wu (1981), or theorem 1 in Kallus (2018), which are the basis for his optimal 
design. These theorems show that complete randomization is minimax if the covariates X are indepen-
dent of the outcome. In this example, X and Y are deterministically generated according to 

where i = 1, …, n.† Note that with this data generating process, X has a different distribution for each n, 
that is larger n not only give a larger sample but the larger sample arises from a distribution with larger 
variance.

Let �̂B and �̂P be the mean difference estimators under blocking and pairwise-matched allocations 
(see Kallus, 2018, p. 97, for details), respectively. Under this data generating process, Kallus (2018) 
shows that Vn ( �̂

CR
) = 4∕ (n − 1), Vn ( �̂

B
) = 4∕ (n − 8) and Vn ( �̂

B
) = 4∕ (n − 8) and Vn ( �̂

P
) = 8∕n, 

results that are in agreement with Cochran and Cox (1957), Equation (4.3).
Using Mahalanobis-based rerandomization, the optimal design is obtained by minimizing the vari-

ance in the observed covariates X (Equation 2), which is obtained by letting a ≡ minM (W
j, X) , 

which, in large samples, implies �a ≃ 0. With an additive treatment effect, this criterion implies that 
the PRIV of �̂RR is equal to 100 × R2.

Including only X (i.e. not any transformation) in the Mahalanobis distance criterion Kallus (2018) 
implies that Vn ( �̂

RR |pa = 0) ≡ 4, where pa = 0 is the minimal limiting acceptance criterion—
that is the variance when restricting the allocations to those with Mj = 0 only. The statement that 
Vn ( �̂

RR |pa = 0) ≡ 4 for all n is not correct as will be shown below. This mistake, however, exposes a 
useful basis for discussing the foundation for inference to the experiment’s sample under randomiza-
tion inference and the implication this has for an optimal design for the inference to the population.

3.1  |  Inference to sample in the experiment

The mistake of Kallus (2018) stems from the incorrect assumption that the allocation 
W = (0, 1, 0, 1, …, 0, 1) � uniquely minimizes the Mahalanobis distance for all n, and therefore the 
variance calculations are, incorrectly, based solely on this allocation. In fact, an experiment with 
n1 = n0, using the Mahalanobis distance balance measure, card(Opt ) ≥ 2, that is there exist at 
least two allocations, not a unique smallest Mahalanobis distance. This follows because, using the 
Mahalanobis distance, every allocation has a mirror allocation with 1’s and 0’s exchanged but with 
the same imbalance. Thus, the minimum number of allocations with the smallest imbalance is two 
(a pair of mirror allocations). For any balance measure that fulfils the mirror property (Johansson & 
Schultzberg, 2019; Kapelner et al., 2019), there is no single unique best allocation.

As is shown in the online Appendix, with n = 2 the only pair of allocations in this example have 
M1 = M2 = 4, and therefore V2 ( �̂

RR |pa = 0) is not defined for n = 2. With n = 4 there exists one pair 
of allocations with Mj = 0, for which V4 ( �̂

RR |pa = 0) = 4. For n > 4 there is more than one pair of 

X = (20, 21, 22,…, 2n∕2−1,−(20),−(21),−(22),…,−(2n∕2−1))

Y
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(0) = (−1)X
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Y
i
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i
(0)+�

 †The notation on the data generation is ambiguous in Kallus (2018). The data generating process presented here is chosen to 
reproduce the results in Kallus (2018).
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allocations that have Mahalanobis distances equal to zero, and the variance decreases in n. With n = 8 
and n = 16, V8 ( �̂

RR |pa = 0) = 4∕3 and V16 ( �̂
RR |pa = 0) = 4∕7, respectively. The convergence rate is, 

thus, slower than for Vn ( �̂
CR

) but it is in contrast to the claim Vn ( �̂
RR |pa = 0) ≡ 4 for all n.

In this special case, the only source of randomness is the randomization mechanism for assigning 
treatments. Under the sharp null hypothesis, for example the treatment effect is zero for all units, the 
value of any test-statistic is known for all possible random allocations. The exact p-value associated 
with any test statistic is a simple function of the percentile of the observed test-statistic in the histo-
gram of the statistics’ value across all possible allocations. This implies that theoretical asymptotic 
variances are helpful tools only for comparing efficiency in designs where treatment assignment is 
randomized within a set of allocations sufficiently large for such an asymptotic argument to be ap-
propriate. In this case, for inference with level α = 0.05, comparisons of variances is only useful with 
n ≥ 8. With n = 8, it follows that card( ) =

(
8

4

)
= 70, which implies that the smallest possible p-value in 

a two-sided test is less than 0.05. A variance comparison between, for example rerandomization and 
complete randomization should be performed for a rerandomization design where a is chosen such 
that 2∕card(a ) ≤ �, where α is the desired level of the inference. This is the reason why Morgan and 
Rubin (2012) states that one should not use too small a value of pa.

Kallus (2018, p. 94) refers to the rerandomization design proposed by Morgan and Rubin (2012) 
as the ‘historically haphazard practice of rerandomization’. To the best of our understanding, the 
argument for this statement seems to be based on the belief that the Mahalanobis-based rerandom-
ization minimizes the linear projection of Y on X due to a structural assumption of a linear relation 
between Y on X. However, as pointed out in Morgan and Rubin (2012), by including interactions 
and non-linear functions of covariates in the Mahalanobis distance, non-linear dependencies also 
can be considered in Mahalanobis-based rerandomization. To exemplify the potential importance of 
including transformations, we introduce both X and X2 into the Mahalanobis distance criterion in the 
example above.

With both X and X2 in the Mahalanobis distance criterion, there are no allocations with Mj = 0 
for n ≤ 16, and the optimal criterion is instead p∗ ≡ minpa: card(Opt ) > 0. With pa = p∗ as the 
criterion, card (AOpt ) = 2 for n ≤ 16, and for these single pairs of allocations, V2 ( �̂

RR |pa = p∗ ) = 4,

V4 ( �̂
RR |pa = p∗ ) = V8 ( �̂

RR |pa = p∗ ) = V16 ( �̂
RR |pa = p∗ ) = 0. Thus, these ‘optimal’ designs have smaller 

variance than all the other designs. However, restricting randomization to one single pair, implies that 
randomization inference has essentially no power. To enable inference, the rerandomization criterion 
must be increased, thereby allowing for ‘non-optimal’ allocations. For example, when the inclusion cri-
terion is set to pa = 0.1, we obtain the number of allowed allocations equal 2,8, and 1,288 for n = 4, 8,  
and 16 respectively. For these values of n,, we get V4 ( �̂

RR |pa = 0.1) = 0,V8 ( �̂
RR |pa = 0.1) = 0.5, and 

V16 ( �̂
RR |pa = 0.1) = 0.216. Because V8 ( �̂

CR
) = 0.571 and V16 ( �̂

CR
) = 0.267, the PRIV for n = 8 and 

16 is 12% and 19%, respectively. For n = 16, there is a sufficient number of allocations (1,288) for 
meaningful inferences to SATE and PATE with pa = 0.1.

3.2  |  Inference to the population

Li et  al. (2018) show that the asymptotic distribution of the mean difference estimator after 
Mahalanobis-based rerandomization is generally non-normal, but rather, the asymptotic distribution 
is a linear combination of a normal distributed variable and a truncated normal variable. Furthermore, 
the asymptotic sampling variances and quantile ranges of the mean difference estimator are reduced 
relative to when the estimation is based on complete randomization. The result in Li et al. (2018) has 
the important implication that using standard asymptotic inference results with a rerandomization 
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design leads to sometimes highly conservative inference, with possible gains in power when using 
appropriate asymptotic results.

To illustrate these points in a finite sample setting, a small simulation was conducted (see the on-
line Appendix for details). Data are generated as 

where xij, j = 1, 2, 3 and i  =  1,  …,  n are independent, identically and either normally distributed 
with mean 0 and variance 1 (i.e. xij ∼ N (0, 1) , ∀ j, i) or exponentially distributed with rate 1 (i.e. 
xij ∼ exp(1) , ∀ j, i). The sampling error, �i, i = 1, …, n, is iid and  (0, �2 ) , where �2 is chosen to 
obtain R2 = 0.2 and 0.5 in the data generating process (8). The sample size is varied; n = 50, 100, 200 
and 400.

Based on the mean difference estimator, the power and size (nominal level 5%) of the Fisher 
exact test (FRT) and the asymptotic test derived in Li et al. (2018) (denoted the LDR below) under 
Mahalanobis-based rerandomization (with pa = 0.01) are compared to the t -test, both under complete 
randomization and under rerandomization. Here � = 0.3

√
50√
n

�
Var ( Y ( 0 ) )

n
 under the alternative.

The results are similar across distributions of the covariates. As expected, the t-test under reran-
domization is highly conservative whereas the LDR test has too large size for all n < 400. Using the 
FRT and the LDR (when n = 400), we can see that with R2 = 0.5, there is roughly 50% increase in 
power for both type of covariates. With R2 = 0.2 there is 20% improvement in power.

Using both simulated and real data, Kallus (2018) compares the empirical variances of the mean 
difference estimator under different designs. Given that the asymptotic sampling distribution of the 
estimator is only known under the Mahalanobis criterion, it is not obvious that these comparisons of 
empirical variances are valid procedures for evaluating the relative efficiency of the different designs. 
Furthermore, for the Mahalanobis distance metric, Kallus (2018) only allows the raw covariates in the 
Mahalanobis criterion. It is likely that by including interactions and non-linear terms of the covariates, 
the variances under the Mahalanobis-based rerandomization would have been reduced as was the case 
in the previous example.

Schultzberg and Johansson (2020) shows that when the experimental units are randomly sampled 
from a super population, it is possible to draw inference to the units in this super population when 
choosing the best pair of allocations despite no possibility of drawing meaningful inference to the 
units in the sample (as illustrated in the previous example). Moreover, if the Mahalanobis criterion 
is used to find the best allocations, the asymptotic sampling distribution is known. However, in ex-
periments on people, they usually choose whether or not to participate or they are selectively chosen, 
which means that when valid inference is the goal, it is a bad idea to choose the best pair of allocations 
because the inference only reflects uncertainty from random sampling. In other words, the ability 
to introduce a fully known stochastic mechanism in the design, from which exact inference can be 
based, should not be sacrificed for the usually small, often negligible, gain in efficiency achieved by 
choosing the best pair of allocations, rather than choosing randomly from a small set of the nearly best 
allocations.

4  |   DISCUSSION

We discuss the implication of an ‘optimal’ rerandomization design for inferences to the SATE or 
the PATE. Rerandomization removes, from consideration, allocations with imbalance in observed 
covariates between treated and control units, and then randomizes within the set of allocations with 

(8)Yi (0) = xi1 + xi2 + xi3 + �i
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acceptable balance on these covariates. Morgan and Rubin (2012) were first to formalize a procedure 
for rerandomization by suggesting the Mahalanobis distance as the criterion. Kallus (2018) suggests 
finding the ‘optimal’ design for the inferences to the PATE.

The Kallus (2018) optimal designs are obtained by minimizing the maximum conditional variance 
of the mean difference estimator under the assumption that conditional means of the outcomes under 
treatment and control can be estimated. Under this assumption the PSOD aims to find a single optimal 
allocation from which the mean difference estimate is obtained.

For inference to SATE, the cardinality of a, should be large enough to allow the exact Fisher 
randomization test (FRT) to have non-trivial power. A variance comparison between, for example 
rerandomization and complete randomization, is only meaningful when 2∕card(a ) ≤ �, where α is 
the desired level of the inference.

With random sampling in the experiment asymptotic inferences to the PATE is in theory possible 
when card(a ) = 1. However, the only criterion for which the sampling distribution of the mean 
difference estimator is known is the Mahalanobis criterion. Also, it is in general a bad idea to use 
rerandomization designs with a minimum rerandomization criterion and/or select the final assign-
ment deterministically, as suggested in Kallus (2018), as such designs only reflect uncertainty from 
potential random sampling. Instead, designs ‘optimal’ for the inference to SATE should also be used 
for inferences to the units of the population. In other words, the ability to introduce a fully known 
stochastic mechanism in the design, under which exact inference can always be based, should not 
be sacrificed for the, often negligible, gain in efficiency achieved by choosing the best allocation(s), 
rather than choosing randomly from a smaller set of the nearly best allocations, as implied by a well-
chosen rerandomization criterion.

As an illustration of the problem with standard asymptotic theory with rerandomization designs 
and the potential with the Fisher randomization test and correct asymptotics (Li et al., 2018), a small 
Monte Carlo study is conducted. We find that given correct inferential methods substantial gains in 
power can be made using rerandomization in comparison to complete randomization
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