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In this article, we propose two numerical methods, the Gaussian Process (GP) method and 
the Fourier Features (FF) algorithm, to solve mean field games (MFGs). The GP algorithm 
approximates the solution of a MFG with maximum a posteriori probability estimators of 
GPs conditioned on the partial differential equation (PDE) system of the MFG at a finite 
number of sample points. The main bottleneck of the GP method is to compute the inverse 
of a square gram matrix, whose size is proportional to the number of sample points. To 
improve the performance, we introduce the FF method, whose insight comes from the 
recent trend of approximating positive definite kernels with random Fourier features. The 
FF algorithm seeks approximated solutions in the space generated by sampled Fourier 
features. In the FF method, the size of the matrix to be inverted depends only on the 
number of Fourier features selected, which is much less than the size of sample points. 
Hence, the FF method reduces the precomputation time, saves the memory, and achieves 
comparable accuracy to the GP method. We give the existence and the convergence proofs 
for both algorithms. The convergence argument of the GP method does not depend on 
any monotonicity condition, which suggests the potential applications of the GP method 
to solve MFGs with non-monotone couplings in future work. We show the efficacy of our 
algorithms through experiments on a stationary MFG with a non-local coupling and on a 
time-dependent planning problem. We believe that the FF method can also serve as an 
alternative algorithm to solve general PDEs.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Mean field games (MFGs) [25–31] study the behavior of a large population of rational and indistinguishable agents as 
the number of agents goes to infinity. The Nash equilibrium of a typical MFG is formulated by a coupled system of two 
partial differential equations (PDEs), a Hamilton–Jacobi–Bellman (HJB) equation and a Fokker–Plank (FP) equation. The HJB 
equation gives the value function of agents and the FP equation determines agents’ distribution. Recently, MFG models have 
found widespread applications, see [18–21,24,33,34]. Up to now, the well-posedness of MFGs is well understood in various 
settings and the first results date back to the original works of Lasry and Lions and have been given in the course of Lions 
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at Collège de France (see [36]). However, very few MFG models admit explicit solutions. Hence, numerical computations of 
MFGs play an essential role in obtaining quantitative descriptions of underlying models.

Here, we propose two new algorithms to solve MFGs. The first one, called the Gaussian Process (GP) method, applies the 
algorithm in [16] to solve MFGs. The authors in [16] give a GP regression framework to solve nonlinear PDEs. The solution 
to a PDE is found by solving an optimal recovery problem, whose minimizer is viewed as a maximum a posteriori probability 
(MAP) estimator of a GP conditioned on the PDE evaluated at sample points. The main bottleneck of the GP method lies 
in the computation of the inverse of a square gram matrix, whose size is proportional to the product of the size of sample 
points times the number of linear operators in the PDE. To improve the performance, we propose the Fourier Features (FF) 
method, where the optimal recovery problem seeks minimizers in the space generated by sampled trigonometric functions. 
The FF method is based on the recent trend of approximating positive definite kernels with randomized trigonometric 
functions in Gaussian regressions, see [43,46,48]. Using the technique we propose in Remark 2.10, the dimension of the 
matrix needed to be inverted in the FF algorithm depends only on the number of sampled Fourier features, which is less 
than the size of sample points. The numerical experiments show that the FF algorithm reduces the precomputation time 
and the amount of storage with comparable accuracy compared to the GP method.

Meanwhile, we also prove the convergence of our algorithms. The proofs for the GP method are based on the compact-
ness arguments in [16] and do not depend on any monotonicity condition that guarantees stability and uniqueness of the 
solution to a typical MFG. This feature implies the potential applications of the GP method to MFGs with non-monotone 
couplings. On the other hand, since the Fourier features space the FF method uses lacks compactness, the same arguments 
of the GP method cannot be adapted to the setting of the FF method. Instead, the Lasry–Lions monotonicity arguments 
provide the uniform bounds for the errors of numerical solutions and lead to the convergence of the FF algorithm. In future 
work, we plan to investigate the convergence of the FF method under the setting of MFGs without monotone couplings.

1.1. Related works

By now, there have been various numerical methods for MFGs. Here, we briefly summarize the numerical algorithms 
solving MFGs that are closely related to the methods proposed in this paper. For clarification, we group them into different 
categories. The first group consists of mesh-based algorithms:

• Finite difference methods. As far as we know, the first finite difference method for MFGs is introduced in [2] for 
both stationary and time-dependent MFGs. The Lax-Friedrichs or Godunov type schemes are introduced to approximate 
Hamiltonians. The Fokker–Plank equation is discretized in such a way that it preserves the adjoint structure in the MFG. 
The authors proved the existence and uniqueness of the discretized algebraic systems. One can solve the discretized 
equations using iterative methods [5]. To know more about details and applications of the finite difference method, we 
refer readers to [1,3,4,32].

• Optimization algorithms. In the seminal paper [31], Lasry and Lions explain the concept of a variational MFG, which 
can be interpreted as the optimality condition of a PDE-driven optimization problem. From this point of view, several 
techniques from Optimization have been introduced to solve the PDE constrained minimization problem. In [7], the 
authors propose augmented Lagrangian methods. Later, the performances of different algorithms are compared in [9,10], 
and the Chambolle-Pock algorithm outperforms other methods.

• Monotone flows. In [6], the authors have proposed the monotone flow method to solve stationary MFGs. Later, in [22], 
the authors apply the monotone flow to solve stationary and time-dependent MFGs with finite states. The insight is that 
solving a MFG with monotonicity is equivalent to computing a zero of a monotone operator, which is the stationary 
point of the monotone flow. However, the monotone flow may not guarantee the non-negativity of the probability 
density in the flow. In [23], the authors design the Hessian Riemannian flow method to preserve positivity.

Despite the rigorous theories behind the algorithms mentioned above, they are meshed-based methods and prone to the 
curse of dimensionality. The following methods are mesh-free methods developed recently to keep pace with growing 
problem sizes:

• Lagrangian Methods. As far as we know, the first Lagrangian method for MFGs appears in [40]. The authors use Fourier 
expansions of the non-local coupling term in the HJB equation and parameterize the MFG. The parameterized MFG 
is reformulated as the optimality condition of a convex optimization problem over a finite-dimensional subspace of 
continuous curves, which is independent of the dimension. Based on this work, the authors in [37,38] further develop 
this idea to solve non-potential MFGs with mixed non-local couplings. Even though the methods proposed in our paper 
use kernels and Fourier features, we work in a different way and approximate the solution of a MFG in reproducing 
kernel Hilbert spaces (RKHSs) or Fourier feature spaces.

• Neural Networks. Since neural networks are compositions of nonlinear maps and have the power to represent sufficient 
complicated functions, the authors in [12,13] use neural networks to approximate unknowns in PDEs and solve ergodic 
MFGs and time-dependent MFGs. At the same time, in [45], the authors use the Lagrangian Method in [40] to refor-
mulate variational MFGs and solve the resulting system using methods from neural networks. For more applications of 
neural networks in MFGs, see [14,35].
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We refer readers to the recent comprehensive surveys [4,32] for more details and applications of numerical methods for 
MFGs.

Compared to the above-mentioned algorithms, our methods for MFGs admit the following features:

1. The GP and the FF algorithms are meshfree and flexible to the shape of domains, compared to algorithms in the first 
group mentioned above. Especially, when we solve MFGs in the whole Euclidean space, to approximate derivatives, 
mesh-based algorithms have to impose artificial conditions on the boundary of the domain we choose to work on. Our 
methods parameterize the values of derivatives evaluated at sample points and solve reformulated finite-dimensional 
minimization problems as in (2.9) and (2.32). Hence, we do not impose extra conditions to deal with derivatives near 
the boundary.

2. Compared to the neural network methods, our algorithms base on theories of RKHSs and Fourier series, for which 
the math backgrounds are well understood. On the other hand, our algorithms are equivalent to the neural network 
methods in the following perspective: a neural network with a single inner layer, with the activation functions being 
feature maps parameterized at sample points or being random sampled trigonometric functions, and with a linear 
output layer can be viewed as a function in RKHSs or the Fourier features space, and vice versa.

3. The choice of the kernel for the GP method and the selection of Fourier features have a profound impact on the 
convergence and the accuracy of our approximations. We leave the study of hyperparameter learning (see [17,42]) to 
future work.

4. The convergence of the GP method does not depend on the Lasry–Lions monotonicity condition of the coupling terms 
in MFGs, which is required by the monotone flow [6,22,23] and the Lagrangian methods [37,38,40]. Hence, we plan to 
study the application of the GP method to solve MFGs with displacement monotonicity [39] or non-monotone couplings 
in future work.

5. In general, it is less costly to compute a linear map of a Fourier feature than to calculate the same linear transformation 
of a kernel function. For instance, in Subsection 4.1, we need to parametrize the linear operator L = (1 −�)−1(1 −�)−1

at sample points, where � is a Laplacian operator. In the GP method, the representer theorem gives expressions involv-
ing the computation of LK2(x, ·) for x ∈ T 2, where K2 is the kernel of the RKHS we choose to find an approximation 
for the probability density. Since LK2(x, ·) does not admit an explicit formula, one can use the fast Fourier transform 
to compute it numerically. On the other hand, for any ω ∈N2, we observe that L sin(ωT x) = sin(w T x)/(1 + |ω|2)2 and 
L cos(ωT x) = cos(w T x)/(1 +|ω|2)2 for x ∈T 2. Hence, if we choose trigonometric functions as features in the FF method, 
the action of L on a Fourier feature admits an explicit formula and is easier to compute.

6. The main bottleneck of the GP method is to compute the Cholesky decomposition of the gram matrix, whose size 
increases as the number of sample points grows. The FF method relieves the pressure by approximating functions in 
the FF space and by using the technique in Remark 2.10. However, as the dimension of the problem at hand increases, 
we should also enlarge the FF space in the absence of information about the solution. Hence, a clever selection of 
features is required to apply the FF method in large dimensions. In this paper, we choose the Fourier series in the 
periodic settings and use random Fourier features for the non-periodic cases. We leave the study of other selections to 
future work.

1.2. Outline

This article is organized as follows. In Section 2, we present our algorithms by solving a one-dimensional MFG which 
admits an explicit smooth solution. We also give the existence and convergence analysis of our methods. A simple numerical 
experiment follows and verifies the efficacy of our methods. Section 3 presents the general frameworks of the GP method 
and the FF algorithm. We also show the existence and convergence for the GP and the FF methods in general settings. The 
proofs related to the GP method are shown in Section 3 and those of the FF method are presented in Appendix A. Numerical 
experiments follow in Section 4. Conclusions and future work appear in Section 5.

Notations. For a vector v with real values, we denote by |v| the Euclidean norm of v and by v T the transpose of v . We 
represent the inner product of two real valued vectors u and v by 〈u, v〉 or uT v . Let Zd be the space of d-dimensional 
vectors with integer elements. Given N ∈ N , we define Zd

N as the set {i|i ∈ Zd, 0 < |i| � N}. Let � be a subset of Rd , let 
int � be the interior of �, and let ∂� be the boundary of �. We denote by L2(�) the space of square-integrable functions 
on � ⊂ Rd . Meanwhile, let H1(�) be the space such that ∀ f ∈ H1(�), f ∈ L2(�) and ∇ f ∈ (L2(�))d . Furthermore, we 
represent the space of functions with finite sup norm by L∞(�). For a normed vector space V , we denote by ‖ · ‖V the 
norm of V . Let U be a Banach Space endowed with a quadratic norm ‖ · ‖U . We denote by U∗ the dual of U and by [·, ·]
the duality pairing. We assume that there exists a covariance operator KU : U∗ �→ U , which is linear, bijective, symmetric 
([KUφ, ψ] = [KUψ, φ]), and positive ([KUφ, φ] > 0 for φ = 0), such that

‖u‖2
U = [K−1u, u],∀u ∈ U .

Let φ1, . . . , φP be P ∈ N elements of U∗ and let φ := (φ1, . . . , φP ) be an element of the product space (U∗)
⊗

P . Then, for 
u ∈ U , the pairing [φ, u] is denoted by
3



C. Mou, X. Yang and C. Zhou Journal of Computational Physics 460 (2022) 111188
[φ, u] := ([φ1, u], . . . , [φP , u]).
Furthermore, for u := (u1, . . . , uS) ∈ U

⊗
S , S ∈ N , we represent by [φ, u] ∈ RP×S the matrix with entries [φi, u j]. Finally, 

we denote by C a positive real number whose value may change line by line.

2. An appetizer: solving a stationary MFG with an explicit solution

To show our algorithms, we apply our methods to solve the one-dimensional stationary MFG in [6], which admits an 
explicit solution. Let T be the one-dimensional torus and be characterized by [0, 1). Given smooth functions V : T �→ R
and b :T �→R, we find (u, m, H) ∈ C∞(T ) × C∞(T ) ×R solving⎧⎪⎨

⎪⎩
u2

x
2 + V (x) + b(x)ux = ln m + H, on T ,

−(m(ux + b(x)))x = 0, on T ,∫
T m dx = 1,

∫
T u dx = 0,

(2.1)

where u is the value function, m presents the probability density of the population, and H is a real number. According to 
[6], when 

∫
T b(x) dx = 0, (2.1) admits a unique smooth solution, which has the following explicit formulas⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x) = − ∫ y
0 b(y)dy + ∫

T

∫ x
0 b(y)dy dx,

m(x) = eV (x)− b2(x)
2∫

T eV (y)− b2(y)
2 dy

,

H = ln

(∫
T eV (y)− b2(y)

2 dy

)
.

(2.2)

For ease of presentation, we denote

H(x, p) := V (x) + p2

2
+ b(x)p,∀x ∈T , p ∈R. (2.3)

2.1. The Gaussian process method

Here, we use the GP method in [16] to solve (2.1). First, we sample a collection of M points {xi}M
i=1 in [0, 1). Let U and 

V be the RKHSs associated with positive definite kernels K1 and K2, respectively. We denote by ‖ · ‖U the norm of U and 
represent the norm of V by ‖ · ‖V . Following [16], we approximate the solution (u∗, m∗, H∗

) of (2.1) by a minimizer of the 
following optimal recovery problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min

(u,m,H)∈U×V×R
‖u‖2

U + ‖m‖2
V + |H|2 + β

∣∣∣∣ 1
M

M∑
i=1

m(xi) − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1
M

M∑
i=1

u(xi)

∣∣∣∣
2

s.t. H(xi, ux(xi)) = lnm(xi) + H,∀i = 1, . . . , M,

mx(xi)(ux(xi) + b(xi)) + m(xi)(uxx(xi) + bx(xi)) = 0,∀i = 1, . . . , M,

(2.4)

where β > 0 is a penalization parameter. We assume that the kernels K1 and K2 are properly chosen such that U ⊂ C2(T )

and V ⊂ C1(T ). Hence, the constraints of (2.4) are well-defined. Let (u†, m†, H†
) be a minimizer to (2.4), whose existence 

is given by Theorem 2.3 later. Then, u† and m† can be viewed as MAP estimators of two GPs conditioned on the MFG at the 
sample points {xi}M

i=1 [16]. We note that the conditioned GPs are not Gaussian since the constraints in (2.4) are nonlinear.
The key idea of the GP method is to characterize the minimizer of (2.4) via a finite-dimensional representation formula 

using the representer theorem [41, Sec. 17.8]. Following [16], we rewrite (2.4) as a two-level optimization problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
z∈R3M ,ρ∈R2M ,λ∈R

⎧⎪⎪⎨
⎪⎪⎩

min
(u,m,H)∈U×V×R

‖u‖2
U + ‖m‖2

V + |H|2

s.t. u(xi) = z(1)
i , ux(xi) = z(2)

i , uxx(xi) = z(3)
i ,∀i = 1, . . . , M,

m(xi) = ρ
(1)
i ,mx(xi) = ρ

(2)
i , H = λ,∀i = 1, . . . , M,

+β

∣∣∣∣ 1
M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1
M

M∑
i=1

z(1)
i

∣∣∣∣
2

s.t. H(x, z(2)
i ) = lnρ

(1)
i + λ,∀i = 1, . . . , M,

ρ
(2)
i (z(2)

i + b(xi)) + ρ
(1)
i (z(3)

i + bx(xi)) = 0,∀i = 1, . . . , M,

(2.5)

where
4
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z = (z(1)
1 , . . . , z(1)

M , z(2)
1 , . . . , z(2)

M , z(3)
1 , . . . , z(3)

M ) (2.6)

and

ρ = (ρ
(1)
1 , . . . , ρ

(1)
M ,ρ

(2)
1 , . . . , ρ

(2)
M ). (2.7)

Let δx be the Dirac delta function concentrated at x. We define φ(1)
i = δxi , φ

(2)
i = δxi ◦ ∂x , and φ(3)

i = δxi ◦ ∂xx for i = 1, . . . , M . 
Let φ(1) , φ(2) , and φ(3) be the M-dimensional vectors with entries φ(1)

i , φ(2)
i , and φ(3)

i , separately, and let φ be the (3M)-
dimensional vector obtained by concatenating φ(1) , φ(2) , and φ(3) . Denote by ψ the (2M)-dimensional vector obtained by 
concatenating φ(1) and φ(2) . For ease of presentation, we also write φi and ψi as the ith components of φ and ψ , separately.

For k = 1, 2, let Kk(x, φ) be the vector with entries 
∫
T Kk(x, x′)φi(x′) dx′ and let Kk(φ, φ), called the gram matrix, be 

with entries 
∫
T

∫
T Kk(x, x)φi(x′)φ j(x′) dx dx′ . Similarly, we define Kk(x, ψ) and Kk(ψ, ψ). By the representer theorem (see 

[41, Sec. 17.8]), the first level optimization problem in (2.5) yields⎧⎪⎨
⎪⎩

u(x) = 〈K1(x,φ), K1(φ,φ)−1z〉,
m(x) = 〈K2(x,ψ), K2(ψ,ψ)−1ρ〉,
H = λ.

(2.8)

Thus, we have{
‖u‖2

U = zT K1(φ,φ)−1z,

‖m‖2
V = ρT K2(ψ,ψ)−1ρ.

Hence, we can formulate (2.5) as a finite-dimensional optimization problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
z∈R3M ,ρ∈R2M ,λ∈R

zT K1(φ,φ)−1z + ρT K2(ψ,ψ)−1ρ + |λ|2 + β

∣∣∣∣ 1
M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1
M

M∑
i=1

z(1)
i

∣∣∣∣
2

s.t. H(x, z(2)
i ) = lnρ

(1)
i + λ,∀i = 1, . . . , M

ρ
(2)
i (z(2)

i + b(xi)) + ρ
(1)
i (z(3)

i + bx(xi)) = 0,∀i = 1, . . . , M.

(2.9)

To deal with the nonlinear constraints in (2.9), we introduce a prescribed penalization parameter γ > 0 and consider the 
following relaxation

min
z∈R3M ,ρ∈R3M ,λ∈R

zT K1(φ,φ)−1z + ρT K2(ψ,ψ)−1ρ + |λ|2 + β

∣∣∣∣ 1

M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M

M∑
i=1

z(1)
i

∣∣∣∣
2

+γ

M∑
i=1

|eH(x,z(2)
i )−λ − ρ

(1)
i |2 + γ

M∑
i=1

|ρ(2)
i (z(2)

i + b(xi)) + ρ
(1)
i (z(3)

i + bx(xi))|2.
(2.10)

The problem (2.10) is the foundation of the GP method for solving (2.1). We use the Gauss–Newton method to solve (2.10), 
which is detailed in Section 3 of [16].

Remark 2.1. In (2.10), we use the exponential form for the constraints from the HJB equation to avoid possible numerical 
issues when evaluating the logarithm function.

Remark 2.2. The matrices K1(φ, φ) and K2(ψ, ψ) are ill-conditioned in general. To compute K1(φ, φ)−1 and K2(ψ, ψ)−1, 
we perform the Cholesky decomposition on K1(φ, φ) + η1 R1 and K2(ψ, ψ) + η2 R2, where η1 > 0, η2 > 0 are chosen reg-
ularization constants, and R1, R2 are block diagonal nuggets constructed using the approach introduced in [16]. In the 
numerical experiments, we precompute the Cholesky decomposition of K1(φ, φ) + η1 R1 and K2(ψ, ψ) + η2 R2, and store 
Cholesky factors for further uses.

Following the arguments in [16], the next theorem shows that there exists a solution to (2.4).

Theorem 2.3. The minimization problem in (2.4) admits a minimizer (u†, m†, H†
) such that⎧⎪⎨

⎪⎩
u†(x) = 〈K1(x,φ), K1(φ,φ)−1z†〉,
m†(x) = 〈K2(x,ψ), K2(ψ,ψ)−1ρ†〉,
H

† = λ†,

(2.11)

where (z†, ρ†, λ†) is a minimizer of (2.9).
5
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Proof. By the above arguments, (2.4) is equivalent to (2.9). Hence, the key is to prove the existence of a minimizer to (2.9). 
The argument here is similar to the proof of Theorem 1.1 in [16], which proves the existence of a minimizer for the problem 
of the following form{

min
z

zT �−1z

s.t. G(z) = 0.
(2.12)

Here, � is assumed to be an invertible gram matrix and G is continuous. The arguments of [16] proceed by constructing a 
vector z∗ from the solution to the corresponding PDE such that G(z∗) = 0. Then, (2.12) is equivalent to{

min
z

zT �−1z

s.t. C = {z|G(z) = 0} ∩ {z|zT �−1z � zT∗ �−1z∗}.
Since C is compact (by the continuity of G) and nonempty (C contains z∗), the objective function zT �−1z admits a mini-
mum in C .

The above arguments can be extended to our MFG setting. Let (u∗, m∗, H∗
) be the solution to (2.1). We define the tuple 

(z∗, ρ∗, λ∗) such that z∗ is the vector with entries z(1)
∗,i = u∗(xi), z(2)

∗,i = u∗
x(xi), and z(3)

∗,i = u∗
xx(xi), ρ∗ consists of elements 

ρ
(1)
∗,i = m∗(xi) and ρ(2)

∗,i = m∗
x(xi), and λ∗ = H

∗
for i = 1, . . . , M . Then, (z∗, ρ∗, λ∗) satisfies the constraints in (2.9). For a little 

abuse of notations, we denote by G(z, ρ, λ) = 0 the constraints in (2.9) and define

C1 =
{
(z,ρ, λ)|zT K1(φ,φ)−1z + ρT K2(ψ,ψ)−1ρ + |λ|2 + β

∣∣∣∣ 1

M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M

M∑
i=1

z(1)
i

∣∣∣∣
2

� zT∗ K1(φ,φ)−1z∗ + ρT∗ K2(ψ,ψ)−1ρ∗ + |λ∗|2 + β

∣∣∣∣ 1

M

M∑
i=1

ρ
(1)
∗,i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M

M∑
i=1

z(1)
∗,i

∣∣∣∣
2}

.

Then, (2.9) is equivalent to⎧⎪⎪⎨
⎪⎪⎩

min
z,ρ,λ

zT K1(φ,φ)−1z + ρT K2(ψ,ψ)−1ρ + |λ|2 + β

∣∣∣∣ 1
M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1
M

M∑
i=1

z(1)
i

∣∣∣∣
2

s.t. (z,ρ, λ) ∈ C :=
{
(z,ρ, λ)|G(z,ρ, λ) = 0

}
∩ C1.

(2.13)

By the continuity of G in (z, ρ, λ) and the fact that (z∗, ρ∗, λ∗) ∈ C , C is compact and non-empty. Hence, the objective 
function (2.13) achieves a minimum on C . Thus, (2.9) admits a minimizer. We conclude (2.11) by (2.8). �

Using a similar argument as in [16], we obtain the following convergence theory.

Theorem 2.4. Assume that the kernels K1 and K2 are chosen such that U ⊂⊂ Hs1 (T ) and V ⊂⊂ Hs2 (T ) for some s1 > 3 and s2 > 2. 
Let (u∗, m∗, H∗

) be the solution to (2.1). Denote by (u†
M,β , m†

M,β , H†
M,β ) a minimizer of (2.4) with M different sample points {xi}M

i=1
and the penalization parameter β . Suppose further that as M → ∞,

sup
x∈T

min
1�i�M

|x − xi | → 0. (2.14)

Then, as β and M go to infinity, up to a subsequence, (u†
M,β, m†

M,β , H†
M,β ) converges to (u∗, m∗, H∗

) pointwisely in T and in Ht1 (T ) ×
Ht2 (T ) ×R for any t1 ∈ (3, s1) and any t2 ∈ (2, s2).

Proof. The argument is a direct adaptation of the proof of Theorem 1.2 in [16]. Let (u∗, m∗, H∗
) be the solution of 

(2.1). Clearly, (u∗, m∗, H∗
) satisfies the constraints in (2.4). According to (2.2), u∗ and m∗ are smooth. Thus, a minimizer 

(u†
M,β , m†

M,β , H†
M,β ) to (2.4) with M different sample points and the penalization constant β satisfies

‖u†
M,β‖2

U + ‖m†
M,β‖2

V + |H†
M,β |2 + β

∣∣∣∣ 1

M

M∑
i=1

m†
M,β(xi) − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M

M∑
i=1

u†
M,β (xi)

∣∣∣∣
2

�‖u∗‖2
U + ‖m∗‖2

V + |H∗|2 + β

∣∣∣∣ 1

M

M∑
i=1

m∗(xi) − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M

M∑
i=1

u∗(xi)

∣∣∣∣
2

.

(2.15)

By 
∫

u∗ dx = 0, 
∫

m∗ dx = 1 and (2.14), there exist a sequence {(βp, Mp)}∞ and a constant C such that
T T p=1

6
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βp

∣∣∣∣ 1

Mp

Mp∑
i=1

m∗(xi) − 1

∣∣∣∣
2

+ βp

∣∣∣∣ 1

Mp

Mp∑
i=1

u∗(xi)

∣∣∣∣
2

� C, for p � 1. (2.16)

Thus, using (2.15) and (2.16), we get

‖u†
M,β‖2

U + ‖m†
M,β‖2

V + |H†
M,β |2 � C . (2.17)

Meanwhile, by U ⊂⊂ Hs1 and V ⊂⊂ Hs2 , s1 > 3 and s2 > 2, there exists a constant C such that

‖u†
M,β‖Hs1 (T ) � C‖u†

M,β‖U and ‖m†
M,β‖Hs2 (T ) � C‖m†

M,β‖V . (2.18)

For any t1 ∈ (3, s1) and any t2 ∈ (2, s2), we have Hs1(T ) ⊂⊂ Ht1 (T ) and Hs2 (T ) ⊂⊂ Ht2 (T ). Thus, according to (2.17) and 
(2.18), there exits a limit (u†∞, m†∞, H†

∞) ∈ Ht1 (T ) × Ht2 (T ) ×R such that, up to a subsequence,

u†
Mp ,βp

→ u†∞ in Ht1(T ),

m†
Mp ,βp

→ m†∞ in Ht2(T ),

and

H
†
Mp ,βp

→ H
†
∞ in R,

as p → ∞. Since Ht1 (T ) ⊂⊂ C2(T ) and Ht2 (T ) ⊂⊂ C1(T ), the limit (u†∞, m†∞, H†
∞) satisfies the constraints in (2.4). By 

(2.14), the collection of points {xi}Mp

i=1 forms a dense subset of T as Mp → ∞. Thus, dividing both sides of (2.15) by 
β and passing M and β to infinity, we get 

∫
T m†∞ dx = 1 and 

∫
T u†∞ dx = 0. Hence, by the regularity of u†∞ and m†∞ , 

(u†∞, m†∞, H†
∞) is a classical solution to (2.9) and by the uniqueness of the solution to (2.1), (u†∞, m†∞, H†

∞) = (u∗, m∗, H∗
). 

The limit (u†∞, m†∞, H†
∞) is independent of the choice of the samples and the convergent subsequence. Therefore, we con-

clude that (u†
M,β , m†

M,β , H†
M,β ) converges to (u∗, m∗, H∗

) pointwisely in T and in Ht1 (T ) × Ht2 (T ) ×R. �
2.2. The Fourier features method

The main bottleneck of solving (2.9) is to compute the inverses of K1(φ, φ) and K2(ψ, ψ), whose dimensions increase 
with the product of the size of samples and the number of linear operators in the MFG. Hence, the computational cost of 
the GP method grows dramatically as the number of samples increases. We propose the FF method based on the idea of 
approximating kernels with randomized trigonometric functions (see [43,46,48]), which reduces the precomputation time 
and the amount of storage significantly.

The idea of our Fourier Features method comes from the following observations. According to (2.11), the function u† in 
the minimizer of (2.4) has the following form

u†(x) =
M∑

i=1

ai K1(x, xi) +
M∑

i=1

bi∂y K1(x, xi) +
M∑

i=1

ci∂
2
y K1(x, xi), (2.19)

where ai, bi, ci ∈ R are coefficients determined by K1(φ, φ)−1z†. We assume that K1 is shift-invariant and properly scaled. 
According to the Bochner theorem [43,44], the Fourier transform p of K1 is a probability distribution and

K1(x − y) = E w [cos(ω(x − y))],∀x, y ∈R, (2.20)

where w is a random variable following p. Combining (2.19) and (2.20), we get

u†(x) =
M∑

i=1

ai E w [cos(w(x − xi))] +
M∑

i=1

bi E w [w sin(w(x − xi))] −
M∑

i=1

ci E w [w2 cos(w(x − xi))].

Thus, drawing N/2 samples {w j}N/2
j=1 from p, using trigonometric identities, and by the law of large numbers, we obtain

u†(x) ≈
N/2∑
j=1

M∑
i=1

(ai cos(w jxi) − bi w j sin(w jxi) − ci w2
j cos(w jxi)) cos(w jx)

+
N/2∑
j=1

M∑
i=1

(−ai sin(w jxi) + bi w j cos(w jxi) + ci w2
j sin(w jxi)) sin(w jx).

(2.21)
7
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From (2.21), we observe that u† can be approximated by a linear combination of randomized trigonometric functions. The 
same conclusion holds for m† in (2.11). Hence, (2.21) motivates us to approximate solutions of MFGs in the space generated 
by sampled trigonometric functions.

Next, we present the FF method by solving (2.1). To deal with the periodic boundary condition in (2.1), inspired by [46], 
we approximate u and m by functions in the space generated by the Fourier series. Non-periodic settings are discussed in 
Section 3, where we present a general framework of the FF method.

Given N ∈N , we define the set

GN =
{
φ

∣∣∣∣φ(x) = c +
N∑

i=1

αi sin(2π ix) +
N∑

i=1

βi cos(2π ix), c,αi, βi ∈R

}
. (2.22)

We call GN the Fourier features space. Meanwhile, we consider functions sin(2π ix) and cos(2π ix) for i = 1, . . . , N as 
features in GN . Given γ > 0, we define the functional

Jγ (u,m, H) =
∫
T

|u|2 dx +
∫
T

|m|2 dx + H
2 + γQ(u,m, H), (2.23)

where

Q(u,m, H) =
∫
T

|eH(x,ux)−H − m|2 dx +
∣∣∣∣
∫
T

u dx

∣∣∣∣
2

+
∣∣∣∣
∫
T

m dx − 1

∣∣∣∣
2

+
∫
T

|m(uxx + bx(x)) + mx(ux + b(x))|2 dx.

(2.24)

Then, we approximate the solution of (2.1) by a minimizer of the following problem

min
uN ∈GN ,mN ∈GN ,H

N ∈R
Jγ (uN ,mN , H

N
). (2.25)

The following theorem gives the existence of a solution to (2.25).

Theorem 2.5. The minimization problem (2.25) admits a minimizer.

Proof. Let N ∈N . We define

ζ (x) = [1, sin(2πx), . . . , sin(2π Nx), cos(2πx), . . . , cos(2π Nx)]T . (2.26)

Then, for any (uN , mN) ∈ GN × GN , there exits α ∈R2N+1 and β ∈R2N+1 such that

uN = αT ζ and mN = βT ζ .

Therefore, (2.25) is equivalent to

min
α∈R2N+1,β∈R2N+1,H

N ∈R
Jγ (αT ζ ,βT ζ , H

N
). (2.27)

We observe that the objective function in (2.27) is co-coercive and continuous. Thus, (2.27) admits a solution. Therefore, 
there is a minimizer to (2.25). �

Then, we prove the convergence of the minimizer of (2.25) to the solution of (2.1) as γ and N go to infinity. First, we 
give a bound for the minimum of Jγ in the following theorem.

Theorem 2.6. Let (u∗, m∗, H∗
) be the solution to (2.1), let GN be as in (2.22), and let Jγ be as in (2.23) for γ > 0. Then, for any 

sufficiently small ε > 0, there exist a constant C > 0, and functions (uN , mN) ∈ GN × GN such that

Jγ (uN ,mN , H
∗
) � 2‖u∗‖2

L2(T )
+ 2‖m∗‖2

L2(T )
+ |H∗|2 + C(1 + γ )ε2. (2.28)

We refer readers to Appendix A for the proof of Theorem 2.6, which directly yields the following corollary.

Corollary 2.7. Let GN be as in (2.22) and let Q be given in (2.24). For any sufficient small ε > 0, there exist a constant C > 0, a 
sufficiently large γ > 0, and N > 0 such that any minimizer (uN,γ , mN,γ , H N,γ

) ∈ GN × GN × R of (2.25) corresponding to γ
satisfies

Q(uN,γ ,mN,γ , H
N,γ

)� Cε. (2.29)
8
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See Appendix A for the proof of the above corollary. The following theorem shows that any minimizer of (2.25) converges 
to the solution of (2.1) as N and γ increase.

Theorem 2.8. There exists a sequence {(Ni, γi)}∞i=1 such that any minimizer (ui, mi, Hi
) of (2.25) corresponding to (Ni, γi) satisfies 

ui → u∗ in H1(T ), mi → m∗ in L1(T ), and Hi → H
∗

in R as i goes to infinity.

The proof is given in Appendix A. Next, we propose a numerical method to solve (2.27), since (2.25) and (2.27) are 
equivalent. Let N ∈N and take M samples {xi}M

i=1. Let ζ be given in (2.26). Introducing penalization parameters γ > 0 and 
β > 0, we reformulate (2.27) as an equivalent two-level optimization problem

min
z∈R3M ,ρ∈R2M ,λ∈R

⎧⎪⎪⎨
⎪⎪⎩

min
α∈R2N+1,β∈R2N+1,H∈R

‖α‖2 + ‖β‖2 + |H|2

s.t. αT ζ (xi) = z(1)
i ,αT ζ x(xi) = z(2)

i ,αT ζ xx(xi) = z(3)
i ,

βT ζ (xi) = ρ
(1)
i ,βT ζ x(xi) = ρ

(2)
i , H = λ,

+β

∣∣∣∣ 1

M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+β

∣∣∣∣ 1

M

M∑
i=1

z(1)
i

∣∣∣∣
2

+γ

M∑
i=1

|eH(xi ,z
(2)
i )−λ − ρ

(1)
i |2

+γ

M∑
i=1

|ρ(2)
i (z(2)

i + b(xi)) + ρ
(1)
i (z(3)

i + bx(xi))|2,

(2.30)

where z and ρ have forms in (2.6) and (2.7). In (2.30), we use two penalization parameters to take into account different 
variability of the constraints. Let φ , ψ be defined as in Subsection 2.1. Denote by U∗ the dual of the Banach space U and 
by [·, ·] the duality pairing. Let [φ, ζ ] and [ψ, ζ ] be the matrices with entries [φi, ζ j] and [ψi, ζ j], separately. Then, the first 
level optimization problem of (2.30) yields

α = [φ, ζ ]T ([φ, ζ ][φ, ζ ]T )−1z,β = [ψ, ζ ]T ([ψ, ζ ][ψ, ζ ]T )−1ρ, H = λ. (2.31)

From (2.31), we get

‖α‖2 = zT ([φ, ζ ][φ, ζ ]T )−1z,‖β‖2 = ρT ([ψ, ζ ][ψ, ζ ]T )−1ρ.

Hence, (2.30) is equivalent to

min
z∈R3M ,ρ∈R2M ,λ∈R

zT ([φ, ζ ][φ, ζ ]T )−1z + ρT ([ψ, ζ ][ψ, ζ ]T )−1ρ + |λ|2

+ γ

M∑
i=1

|eH(xi ,z
(2)
i )−λ − ρ

(1)
i |2 + γ

M∑
i=1

|ρ(2)
i (z(2)

i + b(xi)) + ρ
(1)
i (z(3)

i + bx(xi))|2,

+ β

∣∣∣∣ 1

M

M∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+β

∣∣∣∣ 1

M

M∑
i=1

z(1)
i

∣∣∣∣
2

.

(2.32)

Then, we apply the Gauss–Newton method to solve (2.32).

Remark 2.9. In general, [φ, ζ ][φ, ζ ]T and [ψ, ζ ][ψ, ζ ]T are ill-conditioned. Hence, we introduce two regularization parame-
ters μ1 > 0 and μ2 > 0, and consider the inverses of [φ, ζ ][φ, ζ ]T + μ1 I and [ψ, ζ ][ψ, ζ ]T + μ2 I .

Remark 2.10. We propose an alternative method other than the Cholesky factorization to compute [φ, ζ N ][φ, ζ N ]T + μ1 I
for μ1 > 0, which is the cornerstone for the FF method to save the precomputation time and the memory. For simplicity, 
denote A := [φ, ζ N ][φ, ζ N ]T . To solve (A AT + μ1 I)−1, we first perform QR decomposition on A. We get

A = Q R = [
Q 1 Q 2

][
R1
0

]
= Q 1 R1,

where Q ∈ R3M×3M is orthonormal, R ∈ R3M×(2N+1) , Q 1 ∈ R3M×(2N+1) , Q 2 ∈ R3M×(3M−2N−1) , and R1 ∈ R(2N+1)×(2N+1) . 
Then, we have

A AT + μ1 I = Q R RT Q T + μ1 I = Q R RT Q T + μ1 Q Q T .

Thus, we get
9
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Table 1
L∞ errors of numerical approximations for the so-
lution of (2.1), given the number of sample points 
M = 256.

GP FF

Errors of u 3.08 × 10−6 9.09 × 10−5

Errors of m 3.70 × 10−2 1.68 × 10−2

Errors of H 7.83 × 10−4 9.87 × 10−4

(A AT + μ1 I)−1 =Q (R RT + μ1 I)−1 Q T = Q

[
R1 RT

1 + μ1 I 0
0 μ1 I

]−1

Q T

=Q 1(R1 RT
1 + μ1 I)−1 Q T

1 + 1

μ1
Q 2 Q T

2 .

Using

I = Q Q T = Q 1 Q T
1 + Q 2 Q T

2 ,

we have

(A AT + μ1 I)−1 = Q 1(R1 RT
1 + μ1 I)−1 Q T

1 + 1

μ1
(I − Q 1 Q T

1 ). (2.33)

Since R1 RT
1 + μ1 I ∈ R(2N+1)×(2N+1) , computing the right-hand side of (2.33) consumes less CPU time than calculating 

the left-hand side of (2.33) if N << M . In the FF method, we precompute the QR decomposition of A and the Cholesky 
decomposition of R1 RT

1 + μ1 I , and store the results for further uses. We apply the same technique to compute the inverse 
of [ψ, ζ ][ψ, ζ ]T + μ2 I .

Remark 2.11. The Woodbury matrix identity admits the same advantage as what we stated for (2.33) in Remark 2.10. 
However, the Woodbury formula is numerically unstable in our experiments, especially for small values of μ1 and μ2.

2.3. Numerical results

To demonstrate the efficacy of our algorithms, we show here a simple numerical experiment by solving (2.1). We perform 
the calculation using MacBook Air 2015 (4 GB RAM, Intel Core i5 CPU). Let V (x) = sin(πx) and b(x) = cos(2πx) for x ∈ T . 
For the GP method, we choose the periodic kernel used in [46] for both K1 and K2, i.e.,

K1(x, y) = K2(x, y) = e
cos(2π(x−y))−1

σ2 ,∀x, y ∈T ,

with lengthscale σ > 0. We denote by (uG P , mG P , H G P ) the numerical result of the GP method. For the FF algorithm, given 
N ∈N , we approximate the solution of (2.1) in the space GN given by (2.22). We represent the numerical solution of the FF 
method by (uF F , mF F , H F F ). Let (u∗, m∗, H∗

) be the solution of (2.1) given by (2.2). We choose σ = 0.6 and N = 10. For both 
methods, we use the Gauss–Newton method and take the step size 0.4. We set the regularization parameters η1 = η2 =
μ1 = μ2 = 10−6 in Remarks 2.2 and 2.9. Meanwhile, we choose the penalization constants β = 10−6 and γ = 1 in (2.10)
and (2.30). Both algorithms start from the same initial point and stop after 35 iterations. In Fig. 1, we show the numerical 
solutions of the GP method and the FF algorithm when we take uniformly distributed M = 256 sample points. We present 
L∞ errors in Table 1. We see that the FF algorithm is comparable to the GP method in terms of accuracy. Table 2 records the 
CPU time consumed by the Cholesky and the QR decomposition by both methods, which implies that the FF algorithm costs 
less precomputation time than the GP method. We see that the CPU time consumed by the Cholesky decomposition in the 
FF method does not increase with the number of samples since we choose a fixed number of base functions. Surprisingly, 
the CPU time of the QR decomposition for the FF method even decreases when M = 2048. We attribute it to the tall-and-
skinny property of [φ, ζ ][φ, ζ ]T and [ψ, ζ ][ψ, ζ ]T when M >> N , i.e., [φ, ζ ][φ, ζ ]T and [ψ, ζ ][ψ, ζ ]T have more rows than 
columns.

3. The general frameworks

This section presents the general frameworks of the GP method and the FF algorithm for solving MFGs. We mainly 
state the settings for stationary MFGs. The arguments can be naturally adapted to the time-dependent cases. Numerical 
experiments on both stationary and time-dependent MFGs follow in Section 4.
10
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Fig. 1. Numerical results for (2.1): (a), (d) the histories of loss functions; (b), (e) the numerical results uG P and uF F v.s. the explicit solution u∗; (c), (f) the 
numerical approximations mG P and mF F v.s. the explicit solution m∗ . (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Table 2
The precomputation time (in seconds) for solving 
(2.1) as M increases.

GP FF

M Cholesky QR Cholesky

256 0.70 0.30 0.18
512 0.78 0.32 0.18
1024 1.59 0.34 0.18
2048 8.08 0.24 0.18

3.1. The general forms of MFGs

Let � be a subset of Rd . Suppose that the stationary MFGs of our interest have the form⎧⎪⎨
⎪⎩
P(u∗,m∗, H

∗
)(x) = 0,∀x ∈ int�,

B(u∗,m∗)(x) = 0,∀x ∈ ∂�,∫
�

u∗ dx = 0,
∫
�

m∗ dx = 1.

(3.1)

Here, P is a nonlinear differential operator and B represents a boundary operator. We assume that (3.1) admits a unique 
classical solution (u∗, m∗, H∗

). If the solution of (3.1) is not smooth enough, we suggest using the vanishing viscosity method 
[11] or regularizing the MFG with smooth mollifiers [15] to get a system with a solution of stronger regularity and applying 
our numerical methods to compute approximated solutions.

Remark 3.1. In time-dependent settings, let � be a space-time domain. We consider MFGs taking the form{
P(u∗,m∗)(x) = 0,∀x ∈ int �,

B(u∗,m∗)(x) = 0,∀x ∈ ∂�,
(3.2)

and assume that (u∗, m∗) is a unique classical solution to (3.2).

3.2. The Gaussian process method

Using the method in [16], we approximate (u∗, m∗) in the solution of (3.1) by two GPs conditioned on PDEs at sampled 
collocation points in �. Then, we compute the solution by calculating the MAP points of such conditioned GPs. More 
11
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precisely, we take a set of samples {xi}M
i=1 in such a way that x1, . . . , xM�

∈ int � and xM�+1, . . . , xM ∈ ∂� for 1 � M� � M . 
Let U and V be Banach Spaces with associated covariance operators KU : U∗ �→ U and KV : V∗ �→ V , respectively. Following 
[16], we introduce a penalization parameter β > 0 and consider the following problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
min

(u,m,H)∈U×V×R
‖u‖2

U + ‖m‖2
V + |H|2 + β

∣∣∣∣ 1
M�

M�∑
i=1

u(xi)

∣∣∣∣
2

+ β

∣∣∣∣ 1
M�

M�∑
i=1

m(xi) − 1

∣∣∣∣
2

s.t. P(u,m, H)(xi) = 0, for i = 1, . . . M�,

B(u,m)(x j) = 0, for j = M�+1, . . . , M.

(3.3)

We further make a similar assumption to Assumption 3.1 in [16] on P and B.

Assumption 1. For 1 � Q b � Q and 1 � Db � D , there exist bounded and linear operators L1, . . . , L Q b ∈ L(U; C(∂ �)), 
L Q b+1, . . . , L Q ∈L(U; C(int �)), J1, . . . , J Db ∈L(V; C(∂ �)), J Db+1, . . . , J D ∈L(V; C(int �)), and continuous nonlinear maps 
P and B such that{

P(u∗,m∗, H
∗
)(x) = P (L Q b+1(u∗)(x), . . . , L Q (u∗)(x), J Db+1(m

∗)(x), . . . , J D(m∗)(x), H
∗
),∀x ∈ int �,

B(u∗,m∗)(x) = B(L1(u∗)(x), . . . , L Q b (u∗)(x), J1(m∗)(x), . . . , J Db (m
∗)(x)),∀x ∈ ∂ �.

(3.4)

Following [16], under Assumption 1, we define functionals φ(q)

i ∈ U∗ and ψ(p)

i ∈ V∗ as

φ
(q)

i = δxi ◦ Lq,where

{
M� + 1 � i � M, if 1 � q � Q b,

1 � i � M�, if Q b+1 � q � Q ,

and

ψ
(p)

i = δxi ◦ J p,where

{
M� + 1 � i � M, if 1 � p � Db,

1 � i � M�, if Db+1 � p � D.

For ease of presentation, we denote by φ(q) the vector consisting of φ(q)

i and define

φ = (φ(1), . . . ,φ(Q )) ∈ (U∗)
⊗

NU ,where NU = (M − M�)Q b + M�(Q − Q b). (3.5)

Similarly, we concatenate ψ(p)

i to get the vector ψ (p) and denote

ψ = (ψ (1), . . . ,ψ (D)) ∈ (V∗)
⊗

NV ,where NV = (M − M�)Db + M�(D − Db). (3.6)

According to Assumption 1, we define the nonlinear map G such that for any u ∈ U , m ∈ V , H ∈R,

(G([φ, u], [ψ, u], H))i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P ([φ(Q b+1)

i , u], . . . , [φ(Q )
i , u], [ψ(Db+1)

i ,m], . . . , [ψ(D)
i ,m], H)

if i ∈ {1, . . . , M�},
B([φ(1)

i , u], . . . , [φ(Q b)

i , u], [ψ(1)
i ,m], . . . , [ψ(Db)

i ,m], H)

if i ∈ {M� + 1, . . . , M}.
(3.7)

Hence, we can rewire (3.3) as⎧⎪⎨
⎪⎩

min
(u,m,H)∈U×V×R

‖u‖2
U + ‖m‖2

V + |H|2 + β

∣∣∣∣ 1
M�

M�∑
i=1

u(xi)

∣∣∣∣
2

+ β

∣∣∣∣ 1
M�

M�∑
i=1

m(xi) − 1

∣∣∣∣
2

s.t. G([φ, u], [ψ,m], H) = 0.

(3.8)

Remark 3.2. Similarly, in time-dependent settings, we consider⎧⎨
⎩

min
(u,m)∈U×V

‖u‖2
U + ‖m‖2

V ,

s.t. G([φ, u], [ψ,m]) = 0,
(3.9)

where G is an analog to the one in (3.7)

The following theorem gives the foundation for the GP method to solve (3.8).
12
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Theorem 3.3. Suppose that Assumption 1 holds. Let NU , φ, NV , ψ , and G be as in (3.5), (3.6), and (3.7). Define matrices � ∈RNU×NU , 
� ∈RNV×NV such that

�i j = [φi,KUφ j],1 � i, j � NU , and �ks = [ψk,KVψs],1 � k, s � NV .

Assume further that � and � are invertible. Let χ = (χ1, . . . , χNU ) and η = (η1, . . . , ηNV ) be the vectors with elements

χi =
NU∑
n=1

�−1
in KUφn, i = 1, . . . , NU , and ηi =

NV∑
n=1

�−1
in KVψn, i = 1, . . . , NV ,

where �−1
in and �−1

in are the elements of �−1 and �−1 at the ith row and the nth column. Then, (u†, m†, H†
) is a solution to (3.8) if 

and only if

u† = χ T z†,m† = ηT ρ, and H
† = λ, (3.10)

where (z† , ρ†, λ) is a minimizer to⎧⎪⎨
⎪⎩

min
z∈RNU ,ρ∈RNV ,λ∈R

zT �−1z + ρT �−1ρ + |λ|2 + β

∣∣∣∣ 1
M�

M�∑
i=1

z(1)
i

∣∣∣∣
2

+ β

∣∣∣∣ 1
M�

M�∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

s.t. G(z,ρ, λ) = 0.

(3.11)

Proof. We conclude using similar arguments as in the proof of Theorem 2.3. Let (u∗, m∗, H∗
) be the solution to (3.1)

and define z∗ = [φ, u∗], ρ∗ = [ψ, m∗] and λ∗ = H
∗

. Then, G(z∗, ρ∗, λ∗) = 0. Thus, the minimization problem (3.11) can be 
restricted to the form of (2.13). Hence, (3.11) admits a minimizer. Following nearly identical steps to the derivation of (2.9), 
we conclude (3.10). �

Next, following [16], we have the convergence theorem.

Theorem 3.4. Assume that Assumption 1 holds and that the MFG in (3.1) has a unique classical solution (u∗, m∗, H∗
) in the space 

U ×V ×R. Assume further that U ⊂⊂ H1 ⊂⊂ Ct1 (�) ∩ Ct′1 (∂�) and that V ⊂⊂H2 ⊂⊂ Ct2 (�) ∩ Ct′2 (∂�), where H1 and H2 are 
Banach spaces and t1, t′

1, t2 , and t′
2 are sufficiently large. Denote by {xi}M

i=1 the collection of samples with M points. Suppose further 
that as M → ∞,

sup
x∈int�

min
1�i�M�

|x − xi| → 0 and sup
x∈∂�

min
M�+1�i�M

|x − xi| → 0. (3.12)

Given M and β , let (u†
M,β , m†

M,β , H†
M,β ) be a minimizer of (3.8). Then, as M and β go to infinity, up to a sub-sequence, 

(u†
M,β , m†

M,β , H†
M,β ) converges to (u∗, m∗, H∗

) pointwisely in � and in H1 ×H2 ×R.

Proof. The argument is similar to the proof of Theorem 2.4. Given M sample points and the penalization parameter β , 
denote by (u†

M,β , m†
M,β , H†

M,β ) a minimizer to (3.8). Using the fact that the classical solution (u∗, m∗, H∗
) to (3.1) satisfies the 

constraints in (3.8), we prove that there exists a sequence {(Mp, βp)}∞p=1 such that ‖u†
Mp ,βp

‖U , ‖m†
Mp ,βp

‖V , and |H Mp ,βp | are 

uniformly bounded for all p � 1, and that 
∫
�

m†
Mp ,βp

dx → 1 and 
∫
�

u†
Mp ,βp

dx → 0. Since U ⊂⊂H1, V ⊂⊂H2, and a closed 

bounded set in R is compact, the sequence (u†
M,p, m†

M,p, H†
M,p) converge, up to a sub-sequence, to a limit (u†∞, m†∞, H†

∞) in 

H1 ×H2 ×R as p → ∞. Using H1 ⊂⊂ Ct1 (�) ∩Ct′1 (∂�) and that H2 ⊂⊂ Ct2 (�) ∩Ct′2 (∂�), we conclude that (u†∞, m†∞, H†
∞)

satisfies the constraints in (3.3) at all points in {xi}M
i=1. Due to (3.12), {xi}M

i=1 is dense in � as M → ∞. Hence, (u†∞, m†∞, H†
∞)

solves (3.1). Since the solution to (3.1) is unique, we conclude that (u†∞, m†∞, H†
∞) = (u∗, m∗, H∗

). �
Remark 3.5. To deal with the nonlinear constraints of (3.11), we introduce two penalization parameters, γ > 0 and β > 0, 
and consider the relaxation formulation similar to (2.10).

Remark 3.6. Under similar Assumptions of Theorems 3.3 and 3.4, (3.9) admits a solution (u†
M , m†

M) for given sample size M , 
and (u†

, m†
) converges to the classical solution of (3.2) as M goes to infinity.
M M

13
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3.3. The Fourier features method

Let O = {ζ(·, ω)|ω ∈W} be a family of base functions parametrized over the set W , where

sup
x∈�

|ζ(x,ω)| � 1,∀w ∈ W and
∫
�

ζ 2(x,ω)dx < ∞. (3.13)

We propose to approximate u∗ and m∗ in the solution of (3.1) by linear combinations of functions sampled from O. More 
precisely, given N ∈N , we take samples {ωi}N

i=1 and {τi}N
i=1 from W and define vector valued functions ζ N and ϑN by

ζ N(·) = [ζ(·; w1), . . . , ζ(·; w N)]T and ϑN(·) = [ζ(·;τ1), . . . , ζ(·;τNT )]T . (3.14)

Then, we define spaces

Gζ N = {αT ζ N |α ∈RN} and GϑN = {βT ϑN |β ∈ RN}. (3.15)

Meanwhile, for ζ satisfying (3.13), we equip the spaces Gζ N and GϑN with the norms∥∥uα
∥∥
G

ζ N
= |α|,∀uα = αT ζ N ∈ Gζ N and

∥∥mβ

∥∥
G

ϑN
= |β|,∀mβ = βT ϑN ∈ GϑN .

By (3.13), the norms ‖ · ‖G
ζ N and ‖ · ‖L2(�) are equivalent for the space Gζ N . Then, we approximate the solution of (3.1) by 

the minimizer of the following problem

min
uα∈G

ζ N ,mβ∈G
ϑN ,H∈R

‖uα‖2
L2(�)

+ ‖mβ‖2
L2(�)

+ γ ‖P(uα,mβ , H)‖2
L2(�)

+γ ‖B(uα,mβ)‖2
L2(�)

+ γ

∣∣∣∣
∫
�

mβ dx − 1

∣∣∣∣
2

+ γ

∣∣∣∣
∫
�

uα dx

∣∣∣∣
2

,

(3.16)

where P and B are given in Assumption 1, and γ > 0.

Remark 3.7. When the domain � =Td , we choose O such that

O = {ζ(·,ω) = cos(2π〈a, ·〉 + b)|ω = (a,b) ∈Zd × {0,π/2}}.
Then, given N ∈ N , we select a subset {ωi = (ai, bi)}N

i=1 in Zd × {0, π/2}. Thus, the vector valued function ζ N in (3.14)
becomes

ζ N(·) = [cos(2π〈a1, ·〉 + b1), . . . , cos(2π〈aN , ·〉 + bN)]T .

Hence, for α = {α1, . . . , αN} ∈RN , the function uα ∈ Gζ N in (3.15) has the following form

uα(x) =
N∑

i=1

αi cos(2πaT
i x + bi).

The same construction holds for the space Gϑ N .

Remark 3.8. When the domain � is non-periodic, we choose

O = {ζ(·,ω) = cos(2π〈ω, ·〉)|ω ∈Rd} ∪ {ζ(·,ω) = sin(2π〈ω, ·〉)|ω ∈Rd}.
Then, we take N/2, N ∈ N and N is even, samples {ωi}N/2

i=1 from Rd in such a way that the nonlinear map ζ N in (3.14) is 
defined as

ζ N(x) =
√

2

N
[sin(ωT

1 x), . . . , sin(ωT
N/2x), cos(ωT

1 x), . . . , cos(ωT
N/2x)]T ,∀x ∈ Rd.

To sample {ωi}N/2
i=1 , we use the method of orthogonal random features [48]. More precisely, the matrix W = [ω1, . . . , ωN/2]T

satisfies

W = 1

ς
S Q , (3.17)
14
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where ς > 0, Q is a uniformly distributed random orthogonal matrix, and S is a diagonal matrix with entries sampled i.i.d. 
from χ -distribution with d degrees of freedom. We refer readers to [48] for more details about the construction of W .

Then, given α = {α1, . . . , αN } ∈RN and uα ∈ Gζ N in (3.15), we obtain

uα(x) =
N/2∑
i=1

αi sin(ωT
i x) +

N∑
i=N/2+1

αi cos(ωT
i x).

We use the same method to build the space Gϑ N .

Remark 3.9. In a time-dependent setting, the space-time domain is non-periodic. Hence, we use features given in Re-
mark 3.8 and approximate the solution to (3.2) by the minimizer of the following problem

min
uα∈G

ζ N ,mβ∈G
ϑN ,H∈R

‖uα‖2
L2(�)

+ ‖mβ‖2
L2(�)

+ γ ‖P(uα,mβ , H)‖2
L2(�)

+ γ ‖B(uα,mβ)‖2
L2(�)

.

A numerical example for a time-dependent planning MFG is shown in Section 4.

The following theorem gives the existence of a solution to (3.16).

Theorem 3.10. Under Assumption 1, the minimization problem (3.16) admits a minimizer for any given γ � 0.

Proof. The arguments are the same as in the proof of Theorem 2.5. First, we convert (3.16) into an equivalent minimization 
problem similar to (2.27). Then, from the lower semi-continuity and the coercivity of the objective function, we conclude 
that a minimizer exists. �

Next, we study the convergence of (3.16) as N and γ go to infinity. We do not try to provide the most general conver-
gence result for all MFGs since the spaces in (3.15) lack compactness. Hence, we cannot apply the arguments of Theorem 3.4
here. Instead, we prove the validity of our method in concrete setups of interests. In the rest of this subsection, we build the 
convergence results of the FF method applied to a stationary MFG with a Lipschitz coupling and a unique smooth solution, 
see Subsection 4.1 for a numerical experiment. We postpone the study of the convergence of the FF method in settings of 
time-dependent MFGs to future work.

More precisely, given a smooth function V : Rd �→ R and a functional F : C(Td) �→ C(Td), we consider the following 
MFG ⎧⎪⎪⎨

⎪⎪⎩
−�u + |∇u|2

2 + V (x) = F [m](x) + H, in Td,

−�m − div(m∇u) = 0, in Td,∫
Td m dx = 1,

∫
Td u dx = 0.

(3.18)

We assume that (3.18) admits a smooth solution. In addition, we suppose further that (3.18) satisfies the following assump-
tion, which guarantees the uniqueness of the solution to (3.18).

Assumption 2. There exists a constant L F > 0 such that for any m, μ ∈ C(Td),

sup
x∈Td

|F [m](x) − F [μ](x)| � L F ‖m − μ‖L∞(Td). (3.19)

Meanwhile, F is monotone, i.e., for any m, μ ∈ C(Td), m = μ if and only if∫
Td

(F [m](x) − F [μ](x))(m(x) − μ(x))dx � 0.

Next, we study the convergence of our method when we use the Fourier series to approximate u and m. Given N ∈ N , 
we define the Fourier features space

GN =
{
φ

∣∣∣∣φ(x) = c +
∑

i∈Zd
N

αi sin(2π iT x) +
∑

i∈Zd
N

βi cos(2π iT x), c,αi, βi ∈ R

}
(3.20)

and equip GN with the norm ‖ · ‖GN defined as
15
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‖φ‖GN = |c|2 +
∑

i∈Zd
N

|αi|2 + |βi|2,∀φ ∈ GN .

For ease of presentation, given γ > 0, we define the following functional

Jγ (u,m, H) =
∫
Td

|u|2 dx +
∫
Td

|m|2 dx + H
2 + γQ(u,m, H), (3.21)

where

Q(u,m, H) =
∫
Td

| − �u + |∇u|2
2

+ V (x) − F [m](x) − H|2 dx

+
∫
Td

| − �m − div(m∇u)|2 dx +
∣∣∣∣
∫
Td

u dx

∣∣∣∣
2

+
∣∣∣∣
∫
Td

m dx − 1

∣∣∣∣
2

.

(3.22)

Then, (3.16) is equivalent to

min
uN ∈GN ,m∈GN ,H

N∈R
Jγ (uN ,mN , H

N
). (3.23)

Using the same arguments as in the proof of Theorem 3.10, we conclude that (3.23) admits a minimizer. Next, we show 
the convergence of a minimizer of (3.23). First, we give an upper bound for the minimum of (3.23) in the following theo-
rem.

Theorem 3.11. Let (u∗, m∗, H∗
) be the solution to (3.18) and the functional Jγ be as in (3.21) for γ > 0. Suppose that Assump-

tion 2 holds. Then, for any sufficiently small ε > 0, there exist a constant C > 0, N ∈ N , and functions (uN , mN) ∈ GN × GN such 
that

Jγ (uN ,mN , H
∗
) � 2‖u∗‖2

L2(Td)
+ 2‖m∗‖2

L2(Td)
+ |H∗|2 + C(1 + γ )ε2. (3.24)

See Appendix A for the proof of the above theorem. The following corollary follows directly from Theorem 3.11 and 
proves that there exists a minimizer (uN,γ , mN,γ , H N,γ

) of (3.23) such that Q(uN,γ , mN,γ , H N,γ
) → 0 as N and γ go to 

infinity.

Corollary 3.12. Let Q be as in (3.22). Under the same assumptions of Theorem 3.11, for any ε > 0, there exist a constant C > 0, 
sufficiently large γ > 0 and N > 0, and a minimizer of (3.23), which is denoted by (uN,γ , mN,γ , H N,γ

) ∈ GN × GN × R, satis-
fies

Q(uN,γ ,mN,γ , H
N,γ

)� Cε.

We give the proof of Corollary 3.12 in Appendix A. The following theorem shows the convergence of minimizers of (3.23)
to the solution of (3.18) as N and γ go to infinity. The proof is presented in Appendix A.

Theorem 3.13. Let (u∗, m∗, H∗
) be the solution to (3.18). Under the assumptions of Theorem 3.11, there exists a sequence {(Ni, γi)}∞i=1

such that the sequence {(ui, mi, Hi
)}∞i=1 , where (ui, mi, Hi

) is a minimizer of (3.23) corresponding to Ni and γi , satisfies ui → u∗ in 
H1(Td), mi → m∗ in H1(Td), and Hi → H

∗
in R as i → ∞.

Next, we propose a method to solve (3.16). We take M samples {xi}M
i=1 in the domain � such that {xi}M�

i=1 ⊂ int�

and {xi}M
i=M�+1 ⊂ ∂� for 1 � M� � M . To capture different variability of the constraints, we introduce two penalization 

parameters γ , β , and consider

min
uα∈G

ζ N ,mβ∈G
ϑN ,H∈R

‖uα‖2
G

ζ N
+ ‖mβ‖2

G
ϑN

+ |H|2 + β

∣∣∣∣ 1

M�

M�∑
i=1

mβ(xi) − 1

∣∣∣∣
2

+β

∣∣∣∣ 1

M�

M�∑
i=1

uα(xi)

∣∣∣∣
2

+ γ

M�∑
i=1

|P(uα,mβ , H)(xi)|2 + γ

M∑
i=M�+1

|B(uα,mβ)(xi)|2.
(3.25)
16
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Let NU and NV be as in (3.5) and (3.6). Under Assumption 1, we reformulate (3.25) into an equivalent two-level minimiza-
tion problem

min
z∈RNU ,ρ∈RNV ,λ∈R

γ ‖G(z,ρ, λ)‖2 + β

∣∣∣∣ 1

M�

M�∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M�

M�∑
i=1

z(1)
i

∣∣∣∣
2

+
⎧⎨
⎩

min
α∈RN ,β∈RN ,H∈R

‖α‖2 + ‖β‖2 + H
2
,

s.t. [φ, ζ N ]α = z, [ψ,ϑN ]β = ρ, H = λ.

(3.26)

The first level optimization problem gives⎧⎪⎪⎨
⎪⎪⎩

α = [φ, ζ N ]T ([φ, ζ N ][φ, ζ N ]T )−1z,

β = [ψ,ϑN ]T ([ψ,ϑN ][ψ,ϑN ]T )−1ρ,

H = λ.

Hence, (3.26) is equivalent to

min
z∈RNU ,ρ∈RNV ,λ∈R

γ ‖G(z,ρ, λ)‖2 + β

∣∣∣∣ 1

M�

M�∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M�

M�∑
i=1

z(1)
i

∣∣∣∣
2

+zT ([φ, ζ N ][φ, ζ N ]T )−1z + βT ([ψ,ϑN ][ψ,ϑN ]T )−1β + λ2.

Remark 3.14. In general, the matrices [φ, ζ N ][φ, ζ N ]T and [ψ, ϑN ][ψ, ϑN ]T are ill-conditioned. Hence, we choose two reg-
ularization parameters, μ1 > 0 and μ2 > 0, and consider

min
z∈RNU ,ρ∈RNV ,λ∈R

γ ‖G(z,ρ, λ)‖2 + β

∣∣∣∣ 1

M�

M�∑
i=1

ρ
(1)
i − 1

∣∣∣∣
2

+ β

∣∣∣∣ 1

M�

M�∑
i=1

z(1)
i

∣∣∣∣
2

+zT ([φ, ζ N ][φ, ζ N ]T + μ1 I)−1z

+βT ([ψ,ϑN ][ψ,ϑN ]T + μ2 I)−1β + λ2.

(3.27)

Remark 3.15. When necessary, we also eliminate equality constraints in (3.27) as discussed in Section 3.3 of [16].

Remark 3.16. According to Theorems 3.4 and 3.13, using the GP and the FF methods, the non-negativity of the probability 
measure m is guaranteed at the limit. Thus, unless the coupling term is not well defined when m is non-positive (see 
Remark 2.1 for discussions about a MFG with a log coupling), we do not impose extra non-negativity constraints on the 
Gauss–Newton iterations. We will also see that the numerical results of the probability measures are non-negative in the 
next section.

4. Numerical results

In this section, we implement our methods to solve a non-local stationary MFG in Subsection 4.1 and a time-dependent 
planning problem in Subsection 4.2. The runtimes are measured using MacBook Air 2015 (4 GB Ram, Intel Core i5 CPU). 
Our implementation is based on the code of [16],1 which uses Python with the JAX package for automatic differentiation. 
Our experiments count only on CPUs. Additional speedups can be achieved by using accelerated hardware such as Graphics 
Processing Units (GPU).

4.1. A second-order non-local stationary MFG

We consider a variant of the non-local stationary MFG in Subsection 6.2.5 of [2]. More precisely, given ν > 0, we want 
to find (u, m, H) solving⎧⎪⎨

⎪⎩
−ν�u + H(x,∇u) = (

(1 − �)−1(1 − �)−1m
)
(x) + H, in T 2,

−ν�m − div(mD p H(x,∇u)) = 0, in T 2,∫
T2 u dx = 0,

∫
T2 m dx = 1,

(4.1)

1 https://github .com /yifanc96 /NonlinearPDEs -GPsolver.git.
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Table 3
The precomputation time (in seconds) consumed by 
the GP method and the FF algorithm for solving 
(4.1) when ν = 0.1 and N = 10 as M increases.

GP FF

M Cholesky QR Cholesky

400 1.29 0.35 0.31
800 6.31 0.50 0.21
1200 38.66 1.09 0.23
1600 88.79 1.92 0.30

where

H(x, p) = sin(2πx1) + sin(2πx2) + cos(4πx1) + |p|2,∀x ∈T 2, p ∈R2.

We use the GP method and the FF algorithm proposed in Section 3 to solve (4.1). In the experiments, we write (4.1) in the 
form of (3.4) with Q b = Db = 0, Q = 4, D = 5, and with linear operators L1(u) = u, L2(u) = ∂xu, L3(u) = ∂yu, L4(u) = �u, 
J1(m) = m, J2(m) = ∂xm, J3(m) = ∂ym, J4(m) = �m, and J5(m) = (1 − �)−1(1 − �)−1m. We compute the action of J5 on 
a kernel by the Fast Fourier transform. The GP method uses the periodic kernels

K1((x1, x2), (y1, y2)) = K2(x1, x2, y1, y2) = e
1

σ2 (cos(2π(x1−y1))+cos(2π(x2−y2))−2)

with lengthscale σ = 0.2. For the FF method, we fix N ∈N , use the basis

ζ N(x1, x2) =ϑN(x1, x2) = [1, sin(2πx1 + 2πx2), . . . , sin(2π ix1 + 2π jx2),

. . . , sin(2π Nx1 + 2π Nx2), cos(2πx1 + 2πx2),

. . . , cos(2π ix1 + 2π jx2), . . . , cos(2π Nx1 + 2π Nx2)]T ,∀i, j = 1, . . . , N,

and approximate u and m by functions in the space Gζ N as in (3.15). We choose the regularization parameters η1 = η2 =
μ1 = μ2 = 10−5 in Remarks 2.2 and 2.9. To measure the accuracy of our algorithms, we identify T 2 with [0, 1) × [0, 1), 
discretize the domain with 100 × 100 uniformly distributed grid points, and use the FD method in [2] to solve (4.1) with 
high accuracy. The GP method and the FF algorithm use the same sample points and start from the same initial values. 
We denote by (uG P , mG P , H G P ) and (uF F , mF F , H F F ) the numerical solutions of the GP method and the FF algorithm, 
separately.

In Fig. 2, we show the numerical results of both algorithms for ν = 0.1 after 36 iterations. We take the same M = 400
samples for both the GP method and the FF algorithm, which is shown in Fig. 2d. We use the Gauss–Newton iteration with 
step size 1 to solve the optimization problems, and choose N = 10 for the FF method. We set the penalization parameters 
β = 1 and γ = 10−15 for both algorithms. Figs. 2b, 2e, 2c, and 2f plot the graphs of uG P , uF F , mG P , and mF F , separately. 
The convergence histories of the Gauss–Newton iterations are presented in Figs. 2g and 2j, which verify the convergence of 
our algorithms. We attribute the non-monotone decreasing of the loss curves to the non-linearity of the objective functions. 
The contours of pointwise errors are shown in Figs. 2h, 2i, 2k, and 2l. We see that the errors are smaller in smoother areas. 
The errors of HG P and H F F are given in Fig. 2a.

For larger values of ν , the solutions are smoother. Then, fewer bases are enough for the FF method to achieve higher 
accuracy, which is shown in Fig. 3. We take M = 400, ν = 1, and N = 2. Meanwhile, we set the penalization parameters 
β = 1, γ = 10−15 for the FF method and β = 10−2, γ = 10−15 for the GP algorithm. The Gauss–Newton method uses step 
size 1 for both methods and stops after 5 iterations. Figs. 2 and 3 imply that the selection of parameters depends on the 
data of the model and suggest the need to study hyperparameter learning in future work.

Table 3 records the CPU time of performing the Cholesky and the QR decomposition for both algorithms as M increases. 
We set ν = 0.1 and N = 10. We see that the FF algorithm outperforms the GP method in the precomputation stage.

4.2. A planning problem

We consider a planning MFG, a variant of the crowd motion model given in [45]. Let ρG(·, μ0, σ0) be the probability 
density function of a one-dimensional Gaussian with mean μ0 ∈R and standard variance σ0. We seek (u, m) solving⎧⎪⎨

⎪⎩
− ∂u

∂t + 1
2 |ux|2 = 0.01m, in (0,1) ×R,

∂m
∂t − (mux)x = 0, in (0,1) ×R,

m(0, x) = ρ0(x),m(1, x) = ρ1(x), in R,

(4.2)

where ρ0(x) = ρG(x, 0.5, 0.1) and ρ1(x) = ρG(x, −0.5, 0.1). Since the time and the space domains have different variability, 
following [16], we use the anisotropic kernel
18
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Fig. 2. The numerical solutions of the non-local stationary MFG (4.1) when ν = 0.1. (a) The errors of HG P and H F F with respect to the reference H F D ; 
(b), (c), (e), (f) Numerical values of uG P , mG P , uF F , and mF F ; (d) the samples used by the GP and the FF methods; (g), (j) the evolution of the losses, which 
are the objective functions in (3.11) and (3.27); (h), (i), (k), (l) The contours of the pointwise errors of uG P , mG P , uF F , and mF F .

κ((t, s), (t′, s′)) = exp(−(s − s′)2/σ 2
1 − (t − t′)2/σ 2

2 )

for the GP method, where (σ1, σ2) = (1/
√

5, 1/
√

2). We choose the regularization parameters η1 = η2 = μ1 = μ2 = 10−5

in Remarks 2.2 and 2.9. For the FF method, we use orthogonal random Fourier features stated in Remark 3.8. In (3.17), 
we choose ς = 0.2 and select 200 random Fourier features both for approximating u and m. We write (4.2) in an analog 
form of (3.4) with Q b = Db = 0, Q = 4, D = 3, and with linear operators L1(u) = u, L2(u) = ∂t u, L3(u) = ∂xu, L4(u) = ∂2

x u, 
J1(m) = m, J2(m) = ∂tm, and J3(m) = ∂xm. To solve the optimization problems, we apply the Gauss–Newton method with 
step size 0.1. Both algorithms stop after 320 iterations. In the experiments, we uniformly sample M� = 1200 points in 
(0, 1) × (−2, 2), 200 samples in {0} × (−2, 2), and 200 points in {1} × (−2, 2). To show the accuracy of our methods, we 
19
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Fig. 3. The numerical solutions of the non-local stationary MFG (4.1) when ν = 1. (a) The errors of H G P and H F F with respect to the reference H F D ; (b), (c), 
(e), (f) Numerical values of uG P , mG P , uF F , and mF F ; (d) the samples used by the GP and the FF methods; (g), (j) the evolution of the losses, which are 
the objective functions in (3.11) and (3.27); (h), (i), (k), (l) The contours of the pointwise errors of uG P , mG P , uF F , and mF F .

discretize the domain [0, 1] × [−2, −2] with 64 × 512 uniformly distributed grid points, solve (4.2) via the Eulerian solver2

used in [45], and save the results as a reference. Denote by (uG P , mG P ) and (uF F , mF F ) the numerical solutions of the 
GP method and the FF algorithm, separately. We represent the result of the Eulerian solver by (uF V , mF V ). Fig. 4 plots 
numerical results for the planning MFG. We plot the histories of Gauss–Newton iterations in Figs. 4a-4b. Both the GP and 
the FF methods use the same set of samples, which is shown in Fig. 4c. Since we care more about the evolution of the 
probability density in the planning problem, we show the pointwise error between mG P and mF V in Fig. 4d, and plot the 
error between mF F and mF V in Fig. 4e. We see that the errors are larger near the peaks of the probability density. This 

2 https://github .com /EmoryMLIP /MFGnet .jl .git.
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Fig. 4. Numerical results for the Planing MFG (4.2): (a), (b) The histories of Gauss–Newton iterations; (c) uniformly sampled points in the space-time do-
main; (d), (e) contours of the pointwise errors of the numerical solutions; (f)-(k) time slices of the numerical solutions and the reference at t = 1/4, 1/2, 3/4.

phenomenon suggests the need to study non-uniformly distributed sample points in the future. Figs. 4f-4k compare various 
time slices of mG P , mF F , and mF V at time t = 1/4, 1/2, 3/4 to highlight the accuracy of our methods.

5. Conclusions and future work

This paper presents two meshless algorithms, the GP method and the FF algorithm, to solve MFGs. The GP method adapts 
the algorithm in [16] to solve MFGs and finds numerical solutions in RKHSs. The convergence analysis of the GP method 
does not rely on the Lasry–Lions monotonicity condition. Hence, we plan to apply the GP method to solve MFGs with other 
monotonicity conditions or with non-monotone couplings in future work. To get better performance, we introduce the FF 
algorithm seeking approximations in Fourier features spaces. Compared to the GP method, the FF algorithm consumes less 
precomputation time without losing accuracy by using a prescribed number of base functions. Since the Fourier features 
21
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space lacks compactness, we cannot use the same convergence arguments of the GP method. Instead, the Lasry–Lions 
monotonicity ensures the boundedness of numerical errors and gives the convergence of the FF method. We plan to study 
the convergence of the FF algorithm in displacement monotone or non-monotone settings in future work. We believe that 
one can also use the FF method to solve general PDEs. As we have observed in the numerical experiments, the choices of 
base functions and parameters in our methods profoundly influence the accuracy of numerical solutions. Hence, in future 
work, we also plan to investigate methods of hyperparameter learning and different sampling techniques.
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Appendix A. Proofs of the results

Proof of Theorem 2.6. Let (u∗, m∗, H∗
) be the solution of (2.1). By the explicit formulas in (2.2), u∗ and m∗ are smooth. 

Thus, according to the approximation theorem of Fourier series [47, Chapter 14], for any ε > 0, there exist N ∈ N and 
functions uN , mN ∈ GN such that

max
i�2

sup
x∈T

|d(i) uN(x) − d(i) u∗(x)| � ε (A.1)

and

max
i�1

sup
x∈T

|d(i) mN(x) − d(i) m∗(x)| � ε, (A.2)

where d(i) represents the ith order derivative. Hence, by the definition of Q in (2.24), we have

Q(uN ,mN , H
∗
) =

∫
T

|eH(x,uN
x )−H

∗ − mN |2 dx +
∣∣∣∣
∫
T

uN dx

∣∣∣∣
2

+
∣∣∣∣
∫
T

mN dx − 1

∣∣∣∣
2

+
∫
T

|mN(uN
xx + bx(x)) + mN

x (uN
x + b(x))|2 dx

�
∫
T

|eH(x,uN
x )−H

∗ − eH(x,u∗
x )−H

∗ |2 dx +
∫
T

|mN − m∗|2 dx

+
∣∣∣∣
∫
T

uN dx −
∫
T

u∗ dx

∣∣∣∣
2

+
∣∣∣∣
∫
T

mN dx −
∫
T

m∗ dx

∣∣∣∣
2

+
∫
T

|mN(uN
xx + bx(x)) − m∗(u∗

xx + bx(x))|2 dx

+
∫
T

|mN
x (uN

x + b(x)) − m∗
x(u∗

x + b(x))|2 dx.

(A.3)
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Next, we estimate the terms at the right-hand side (RHS) of (A.3). From (A.1) and (A.2), we get∫
T

|mN − m∗|2 dx +
∣∣∣∣
∫
T

uN dx −
∫
T

u∗ dx

∣∣∣∣
2

+
∣∣∣∣
∫
T

mN dx −
∫
T

m∗ dx

∣∣∣∣
2

� 3ε2. (A.4)

For the first term at the RHS of (A.3), we have∫
T

|eH(x,uN
x )−H

∗ − eH(x,u∗
x )−H

∗ |2 dx

=e−2H
∗ ∫
T

∣∣∣∣
1∫

0

deH(x,ûN
x )

∣∣∣∣
2

dx (where ûx := suN
x + (1 − s)u∗

x , s ∈ [0,1])

=e−2H
∗ ∫
T

∣∣∣∣
1∫

0

eH(x,ûN
x )D p H(x, ûN

x )(uN
x − u∗

x)ds

∣∣∣∣
2

dx.

(A.5)

Using (A.1), we get

sup
x∈T

|ûN
x (x)| � sup

x∈T
s|uN

x − u∗
x | + sup

x∈T
|u∗

x |� sε + sup
x∈T

|u∗
x |. (A.6)

Thus, by the definition of H in (2.3), (A.1), (A.5), and (A.6), there exists a constant C > 0 such that∫
T

|eH(x,uN
x )−H

∗ − eH(x,u∗
x )−H

∗ |2 dx � Cε2. (A.7)

Next, we use (A.1) and (A.2), and get∫
T

|mN(uN
xx + bx(x)) − m∗(u∗

xx + bx(x))|2 dx �
∫
T

|(mN − m∗)(uN
xx + bx(x))|2 dx +

∫
T

|m∗(uN
xx − u∗

xx)|2 dx � Cε2.

(A.8)

Similarly, there exists a constant C > 0 such that∫
T

|mN
x (ux + b(x)) − m∗

x(u∗
x + b(x))|2 dx � Cε2. (A.9)

Combining (A.4), (A.7), (A.8), (A.9), we get from (A.3) that

Q(uN ,mN , H
∗
) � Cε2. (A.10)

Using (A.1) and (A.2) again, we get∫
T

‖uN‖2 dx � 2‖u∗‖2
L2(T )

+ 2ε2 and
∫
T

‖mN‖2 dx � 2‖m∗‖2
L2(T )

+ 2ε2. (A.11)

Therefore, we conclude (2.28) by combining (A.10), (A.11), and the definition of Jγ in (2.23). �
Proof of Corollary 2.7. Let (u∗, m∗, H∗

) be the solution of (2.1). By Theorem 2.6, for given small ε > 0 and γ > 0, there 
exists a constant C and functions (uN , mN) ∈ GN × GN such that

Jγ (uN ,mN , H
∗
) � 2‖u∗‖2

L2 + 2‖m∗‖2
L2 + |H∗|2 + C(1 + γ )ε2. (A.12)

Let (uN,γ , mN,γ , H N,γ
) be a minimizer in (2.25) given N and γ . Then, we have

Jγ (uN,γ ,mN,γ , H
N,γ

) � Jγ (uN ,mN , H
∗
).

Thus, using (A.12) and the definition of Jγ in (2.23), we have

γQ(uN,γ ,mN,γ , H
N,γ

) � 2‖u∗‖2
L2 + 2‖m∗‖2

L2 + |H∗|2 + C(1 + γ )ε2,
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which yields

Q(uN,γ ,mN,γ , H
N,γ

)� 2

γ
(‖u∗‖2

L2 + ‖m∗‖2
L2 + |H∗|2) + C(

1

γ
+ 1)ε2.

Therefore, we conclude (2.29) by passing γ to infinity. �
Proof of Theorem 2.8. By Theorem 2.6 and Corollary 2.7, there exists a sequence {(Ni, γi)}∞i=1 such that the set

{(ui, mi, Hi
)}∞i=1, where (ui, mi, Hi

) is a minimizer of (2.25) given Ni and γi , satisfies

Q(ui,mi, H
i
) → 0 as i → ∞. (A.13)

Meanwhile, there exits a constant C such that for i � 1,

Jγi (ui,mi, H
i
)� C . (A.14)

Thus, by (A.14) and the definition of Jγi in (2.23), there exists a constant C such that

‖ui‖L2(T ) � C, ‖mi‖L2(T ) � C, and |Hi|� C . (A.15)

Then, there exists H
∞ ∈R such that, up to a subsequence, H

i
converges to H

∞
in R. Let hi and gi be functions such that{

(ui)
2
x

2 + V (x) + b(x)ui
x = ln(mi + hi(x)) + H

i
,

−(mi(ui
x + b(x)))x = gi(x).

(A.16)

By (A.13), we have

lim
i→∞

∫
T

mi dx = 1, lim
i→∞‖hi‖L2(T ) → 0 and lim

i→∞‖gi‖L2(T ) → 0. (A.17)

Hence, integrating the first equation of (A.16), we get from (A.17) and (A.15) that

‖ui
x‖L2(T ) � C .

Thus, ui ∈ H1(T ). Since ui is the finite linear combination of trigonometric functions, there exists a constant C such that

‖ui‖C1(T ) � C‖ui‖H1(T ) � C . (A.18)

Next, we prove the convergence of (ui, mi, Hi
) using the Lasry-Lions monotonicity argument. Let (u∗, m∗, H∗

) be the 
solution to (2.1). Then, from (A.16), we get{

(ui
x)

2

2 − (u∗
x )2

2 + b(x)ui
x − b(x)u∗

x = ln(mi + hi(x)) − ln m∗ + H
i − H

∗
,

−(mi(ui
x + b(x)))x + (m∗(u∗

x + b(x)))x = gi(x).
(A.19)

Multiplying the first equation of (A.19) by mi +hi −m∗ and the second equation in (A.19) by ui −u∗ , subtracting the resulting 
equations, and integrating by parts, we obtain

1

2

∫
T

(mi + hi)|u∗
x − ui

x|2 dx + 1

2

∫
T

m∗|u∗
x − ui

x|2 dx +
∫
T

(ln(mi + hi) − ln m∗)(mi + hi − m∗)dx

=(H
∗ − H

i
)

∫
T

(mi + hi − m∗)dx +
∫
T

gi(ui − u∗)dx +
∫
T

hi(ui
x + b(x))(ui

x − u∗
x)dx.

(A.20)

By passing i → 0, (A.17), (A.18), and (A.20) yield

lim
i→0

1

2

∫
T

(mi + hi)|u∗
x − ui

x|2 dx + 1

2

∫
T

m∗|u∗
x − ui

x|2 dx +
∫
T

(ln(mi + hi) − lnm∗)(mi + hi − m∗)dx = 0. (A.21)

From the first equation of (A.16), we get

mi + hi(x) = e
1
2 (ui

x+b(x))2+V (x)−H
i−b2(x) � e−C min

x∈T
eV (x)−b2(x).

Then, the left-hand side of (A.21) is non-negative, and mi + hi is uniformly bounded below. Hence, (A.21) yields
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ui
x → u∗

x in L2(T ).

Thus, up to a sub-sequence, ui
x converges to u∗

x pointwisely. By the first equation of (A.16), there exists a function m∞ such 
that, up to a sub-sequence,

mi → m∞ = e
(u∗

x )2

2 +V (x)+b(x)u∗
x−H

∞
pointwisely.

Since mi is uniformly bounded above, by the dominated convergence theorem, we conclude that mi converges to m∞
in L1(T ). We note that (u∗, m∞, H∞

) satisfies (2.1). By the uniqueness of the solution, we conclude that m∞ = m∗ and 
H

∞ = H
∗

. �
Proof of Theorem 3.11. The arguments here are similar to the proof of Theorem 2.6. Using the approximation theorem of 
Fourier series and (3.19), we perform similar computations as in (A.3)-(A.11). Then, we conclude (3.24) by the definition of 
Jγ . �
Proof of Corollary 3.12. The proof is the same as in the arguments of Corollary 2.7. �
Corollary A.1. Let { f i}∞i=1 be a sequence such that f i ∈ G i defined in (3.20). If { f i}∞i=1 is uniformly bounded in L2(Td). Then, there 
exists a constant C > 0 such that

‖ f i‖L∞(Td) � C .

Moreover, there exits a continuous function f such that, up to a sub-sequence, f i converges to f in L∞(Td) as i → ∞.

Proof. Since f i ∈ G i for i � 1, there exist real numbers {αi
j} j∈Zd

i
, {β i

j} j∈Zd
i
, and ci such that

f i(x) = ci +
∑
j∈Zd

i

αi
j sin(2π jT x) +

∑
j∈Zd

i

β i
j cos(2π jT x), x ∈Td.

Thus, we have

( f i(x))2 =(ci)2 +
∑

k, j∈Zd
i

αi
jα

i
k sin(2π jT x) sin(2πkT x) +

∑
k, j∈Zd

i

β i
jβ

i
k cos(2π jT x) cos(2πkT x)

+ 2
∑

k, j∈Zd
i

β i
jα

i
k cos(2π jT x) sin(2πkT x) + ci

∑
j∈Zd

i

αi
j sin(2π jT x) + ci

∑
j∈Zd

i

β i
j cos(2π jT x).

(A.22)

Since ∀i, j ∈Zd ,∫
Td

cos(2π iT x)dx =
∫
Td

sin(2π iT x)dx = 0,

∫
Td

sin(2π jT x) sin(2π iT x)dx =
{

0, if i = j or i = j = 0,

1
2 , if i = j = 0,

∫
Td

cos(2π jT x) cos(2π iT x)dx =

⎧⎪⎪⎨
⎪⎪⎩

0, if i = j,
1
2 , if i = j = 0,

1, if i = j = 0,

and ∫
Td

cos(2π jT x) sin(2π iT x)dx = 0,

we get from (A.22) that∫
Td

( f i)2 dx = (ci)2 + 1

2

∑
j∈Zd

i

(αi
j)

2 + 1

2

∑
j∈Zd

i

(β i
j)

2. (A.23)
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By (A.23) and the fact that { f i}∞i=1 is uniformly bounded in L2(Td), there exits a constant C > 0 such that∫
Td

( f i)2 dx = (ci)2 + 1

2

∑
j∈Zd

i

(αi
j)

2 + 1

2

∑
j∈Zd

i

(β i
j)

2 � C . (A.24)

Thus, using (A.24) and Young’s inequality, we obtain

‖ f i‖2
L∞(Td)

� (|ci | +
∑
j∈Zd

i

|αi
j| +

∑
j∈Zd

i

|β i
j|)2 � C

∫
Td

( f i)2 dx � C .

Hence, { f i}∞i=1 is uniformly bounded in L∞(Td).
Meanwhile, by (A.24), there exist real numbers c, {α j}∞j=1, and {β j}∞j=1 such that, up to subsequences, ci → c, αi

j → α j , 
and β i

j → β j , for all j ∈Zd
i , as i → ∞. Furthermore, for any ε > 0, there exists N ∈N such that for any |i| � N ,∑

j∈Zd
i ,| j|�N

|αi
j| � ε,

∑
j∈Zd

i ,| j|�N

|β i
j| � ε, (A.25)

∑
j∈Zd,| j|�N

|α j| � ε, and
∑

j∈Zd,| j|�N

|β j| � ε. (A.26)

We define

f (x) = c +
∑

j∈Zd\{0}
α j sin(2π jT x) +

∑
j∈Zd\{0}

β j cos(2π jT x)

and

f N(x) = c +
∑
j∈Zd

N

α j sin(2π jT x) +
∑
j∈Zd

N

β j cos(2π jT x).

Thus, for |i| > N , by (A.25) and (A.26), there exists a constant C > 0 such that

‖ f i − f ‖L∞(Td) �‖ f i − f N‖L∞(Td) + ‖ f N − f ‖L∞

�|ci − c| +
∑
j∈Zd

N

|αi
j − α j| +

∑
j∈Zd

N

|β i
j − β j|

+
∑

j∈Zd
i ,| j|>N

|αi
j| +

∑
j∈Zd

i ,| j|>N

|β i
j| +

∑
j∈Zd,| j|>N

|α j| +
∑

j∈Zd,| j|>N

|β j|� Cε.

Therefore, we conclude that f i converges to f in L∞(Td). �
Proof of Theorem 3.13. By Theorem 3.11 and Corollary 3.12, there exist a sequence {(Ni, γ i)}∞i=1 and a constant C such that 
the sequence {(ui, mi, Hi

)}∞i=1, where (ui, mi, Hi
) is a minimizer of (3.23) given Ni and γ i , satisfies

‖ui‖L2(Td) � C, ‖mi‖L2(Td) � C, and |Hi| � C . (A.27)

Meanwhile, let hi and gi be functions such that{
−�ui + |∇ui |2

2 + V (x) − F [mi] − H
i = hi(x),

−�mi − div(mi∇ui) = gi(x).
(A.28)

Then,

lim
i→∞

‖hi‖L2(Td) → 0 and lim
i→∞

‖gi‖L2(Td) → 0. (A.29)

Next, we study the regularity and the convergence of {ui}∞i=1. We split our arguments into three claims and prove each 
claim.

Claim 1. There exists a constant C > 0 such that ‖ui‖C1(Td) � C for all i and exists a multi-valued function ς ∈ (L∞(Td))d such that, 
up to a subsequence, ∇ui converges to ς in (L∞(Td))d.
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Integrating the first equation in (A.28), we get∫
Td

|∇ui|2
2

dx = −
∫
Td

V (x)dx +
∫
Td

F [mi]dx + H
i +

∫
Td

hi(x)dx. (A.30)

Thus, for i large enough, using Assumption 2, (A.27), (A.29), and the smoothness of V , we get that ∇ui is uniformly bounded 
in (L2(Td))d . Hence, by Corollary A.1 and (A.27), there exists a constant C such that ‖ui‖C1(Td) � C and exists a function 
ς ∈ (L∞(Td))d such that, up to a sub-sequence, ∇ui converges in (L∞(Td))d to ς .

The following claim gives the convergence of {mi}∞i=1 and the properties of the limit.

Claim 2. There exits a continuous function m∞ such that, up to a subsequence, mi converges to m∞ in H1(Td) and in L∞(Td) as 
i → ∞. Moreover, 

∫
Td m∞ dx = 1 and m∞ � 0.

By (A.27) and Corollary A.1, there exists a continuous function m∞ ∈ L∞(Td) such that mi → m∞ in L∞(Td). By Corol-
lary 3.12, limi→∞

∫
Td mi dx = 1. Thus, 

∫
Td m∞ dx = 1. Next, we show that m∞ � 0.

Multiplying the second equation of (A.28) by mi and integrating by parts, we get∫
Td

|∇mi|2 dx = −
∫
Td

mi〈∇ui,∇mi〉dx +
∫
Td

gimi dx

�1

2

∫
Td

(mi)2|∇ui |2 dx + 1

2

∫
Td

|∇mi|2 dx +
∫
Td

gimi dx,
(A.31)

where we use Young’s inequality in the above inequality. Hence, by (A.27), (A.29), Claim 1, and (A.31), there exists a constant 
C such

‖∇mi‖L2(Td) � C .

Then, by Corollary A.1, up to a subsequence, ∇mi converges to a vector field Ξ ∈ (L∞(Td))d . Since mi → m∞ in L∞(Td), 
m∞ is differentiable and Ξ = ∇m∞ . Hence, mi converges to m∞ in H1(Td). We multiply the second equation of (A.28) by 
ϕ ∈ C∞(Td), integrate it by parts, and get∫

Td

〈∇mi,∇ϕ〉dx +
∫
Td

mi〈∇ui,∇ϕ〉dx =
∫
Td

giϕ dx.

Passing i to infinity, we obtain∫
Td

〈∇m∞,∇ϕ〉dx +
∫
Td

m∞〈ς,∇ϕ〉dx = 0.

Hence, m∞ is a weak solution to

−�m∞ − div(ςm∞) = 0 in Td and
∫
Td

m∞ dx = 1.

Thus, by the ergodic theory, m∞ � 0 (see Section 1.4 of [8]).

Finally, we have the convergence of a subsequence of (ui , mi, Hi
)∞i=1 to the solution of (3.18). The proof is based on the 

Lasry-Lions monotonicity argument.

Claim 3. Up to a subsequence, ui → u∗ in H1(Td), mi → m∗ in H1(Td), and Hi
converges to H∗

in R as i goes to infinity.

Denote wi = ui − u∗ , ρ i = mi − m∗ , τ i = H
i − H

∗
. Then, we have{

−�wi + 〈∇ui+∇u∗
2 ,∇wi〉 = F [mi] − F [m∗] + τ i + hi(x),

−�ρ i − div(∇wimi) − div(ρ i∇u∗) = gi(x).
(A.32)

Multiplying the first equation in (A.32) by ρ i and integrating by parts, we obtain
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∫
Td

〈∇wi,∇ρ i〉dx +
∫
Td

〈∇ui + ∇u∗

2
,∇wiρ i

〉
dx =

∫
Td

(F [mi] − F [m∗])ρ i dx + τ i
∫
Td

ρ i dx +
∫
Td

hi(x)ρ i dx. (A.33)

Then, we integrate the second equation of (A.32) multiplied with wi over Td and get∫
Td

〈∇ρ i,∇wi〉dx +
∫
Td

|∇wi |2mi dx +
∫
Td

〈ρ i∇u∗,∇wi〉dx =
∫
Td

gi(x)wi dx. (A.34)

Subtracting (A.33) from (A.34), we have

1

2

∫
Td

|∇wi |2(mi + m∗)dx +
∫
Td

(F [mi] − F [m∗])ρ i dx = −τ i
∫
Td

ρ i dx −
∫
Td

hi(x)ρ i dx +
∫
Td

gi(x)wi dx.

Using (A.29), 
∫
Td m∗ dx = ∫

Td m∞ dx = 1, and Claim 2, we obtain

lim
i→∞

1

2

∫
Td

|∇wi |2(mi + m∗)dx +
∫
Td

(F [mi] − F [m∗])(mi − m∗)dx = 0.

Hence, we have

1

2

∫
Td

|∇wi |2(m∞ + m∗)dx +
∫
Td

(F [mi] − F [m∗])(mi − m∗)dx → 0.

Since m∞ � 0 and m∗ � 0, we get

lim
i→0

∫
Td

(F [mi] − F [m∗])(mi − m∗)dx = 0.

By Assumption 2 and Claim 2,∫
Td

(F [m∞] − F [m∗])(m∞ − m∗)dx = 0.

Thus, we have m∞ = m∗ . By Claim 2, we conclude that, up to a sub-sequence, mi converges to m∗ in H1(Td). Next, we 
show the convergence of ui .

Multiplying the first equation in (A.32) by wi and integrating by parts, we get∫
Td

|∇wi |2 = −
∫
Td

〈∇ui + ∇u∗

2
,∇wi wi

〉
dx +

∫
Td

(F [mi] − F [m∗])wi dx + τ i
∫
Td

wi dx +
∫
Td

hi(x)wi dx. (A.35)

Hence, passing i to infinity, we get from (A.35) that ∇wi converges to 0 in L2(Td). Thus, ui converges to u∗ in H1(Td). 
Finally, using (A.30), H

i
converges to H

∗
in R. �
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