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Abstract. In this article, we propose a numerical method based on sparse Gaussian processes (SGPs) to

solve nonlinear partial differential equations (PDEs). The SGP algorithm is based on a Gaussian process
(GP) method, which approximates the solution of a PDE with the maximum a posteriori probability esti-

mator of a GP conditioned on the PDE evaluated at a finite number of sample points. The main bottleneck

of the GP method lies in the inversion of a covariance matrix, whose cost grows cubically with respect to the
size of samples. To improve the scalability of the GP method while retaining desirable accuracy, we draw

inspiration from SGP approximations, where inducing points are introduced to summarize the information
of samples. More precisely, our SGP method uses a Gaussian prior associated with a low-rank kernel gener-

ated by inducing points randomly selected from samples. In the SGP method, the size of the matrix to be

inverted is proportional to the number of inducing points, which is much less than the size of the samples.
The numerical experiments show that the SGP method using less than half of the uniform samples as in-

ducing points achieves comparable accuracy to the GP method using the same number of uniform samples,

which significantly reduces the computational cost. We give the existence proof for the approximation to
the solution of a PDE and provide rigorous error analysis.

1. Introduction

This work develops a new numerical method based on sparse Gaussian processes (SGPs) [14, 31] to
solve nonlinear partial differential equations (PDEs). PDEs have been widely used to model applications
in science, economics, and biology [20, 30]. However, very few PDEs admit explicit solutions. Standard
numerical approaches including finite difference [30] and finite element methods [9] for solving PDEs are
prone to the curse of dimensions. Recently, to keep pace with increasing problem sizes, machine learning
methods intrigue a lot of attention [1, 15, 16, 24, 36]. Probabilistic algorithms to solve linear problems
are presented in [2, 17, 18]. The authors of [1] extend these ideas and propose a Gaussian process (GP)
framework for solving general nonlinear PDEs. In particular, for time-dependent PDEs, GP methods based
on time-discretization are considered in [11, 23, 32]. The computational costs of the above GP methods grow
cubically with respect to the number of samples due to the inversion of covariance matrices. To improve the
performance, based on [1], [16] proposes to approximate the solution of a PDE in the space generated by
random Fourier features [22, 35], where the corresponding covariance matrix is a low-rank approximation to
that of the GP method in [1].

In this paper, we propose another low-rank approximation method based on SGPs, which leverages a
few inducing points to summarize the information from observations. Our SGP method is based on [1],
where a numerical approximation of the solution to a nonlinear PDE is viewed as the maximum a posteriori
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(MAP) estimator of a GP conditioned on solving the PDE at a finite set of sample points. In our SGP
method, we replace the Gaussian prior by an alternative with a zero mean and a low-rank kernel induced
from inducing points. The approximation to the solution of a PDE can be viewed as a MAP estimator of a
SGP conditioned on a noisy observation about the values of linear operators of the true solution, where the
observation satisfies the PDE at the samples. Meanwhile, the numerical approximation can also be viewed
as a function with the minimum norm in the reproducing kernel Hilbert space (RKHS) associated with the
low-rank kernel. The values of linear operators of the function are close to those satisfying the PDE at
sample points. By a stable Woodbury matrix identity stated in Subsection 2.2, the dimension of the matrix
to be inverted in the SGP method depends only on the number of inducing points selected.

This inducing-point approach is initially proposed in the deterministic training conditional (DTC) ap-
proximation [26], and then it has been fully studied in several works. [21] provides a unifying view for the
approximation of GP regressions. This framework includes the DTC, the fully independent training condi-
tional (FITC) approximation [29], and the partial independent training conditional (PITC) approximation.
All above methods modify the joint prior using a conditional independent assumption between training and
test data given inducing variables. Alternatively, [8, 31] leverage the inducing-point approach into the com-
puting of the evidence lower bound of the log marginal likelihood. They retain exact priors but approximate
the posteriors via variational inference. On the other hand, the estimation of inducing inputs has been gen-
eralized into an augmented feature space in [12]. In particular, SGPs are extended in the spectral domain
with and without variational inference [7, 13]. Moreover, some works direct speed up the computation of
GP regressions through fast matrix-vector multiplication and pre-conditional conjugate gradients [5], and
through structured kernel interpolation [34].

Our contributions are summarized as follows:

1. We introduce a general framework based on SGPs to solve nonlinear PDEs. The numerical experi-
ments in Section 4 show that the SGP method using less than half of the uniform samples as inducing
points significantly reduces the computational cost without losing much accuracy compared to the
GP method in [1] using the same number of uniform samples;

2. We give a rigorous existence proof for the numerical approximation to the solution of a general
PDE and analyze error bounds in Section 3. Our analysis bases on the arguments in [1], learning
theory [27, 28], and Nyström approximations [10]. The error bound given in Theorem 3.7 provides
qualitative hints to improve the accuracy of our method;

3. The numerical experiments show that the choice of the positions of inducing points and parameters
of kernels has a profound impact on the accuracy of the numerical approximations. In Section 2, we
give a probabilistic interpretation for the SGP method in the setting of [31], which motivates future
work for hyperparameter learning.

The paper is organized as follows. Section 2 summarizes our SGP method by solving a nonlinear elliptic
PDE. In Section 3, we provide a framework of the SGP method to solve general PDEs. Numerical experiments
are presented in Section 4. Further discussions and future work appear in Section 5.

Notations. Vectors are in bold font. For a real-valued vector v, we represent by |v| the Euclidean norm of
v and by vT its transpose. For a matrix A, we denote by ‖A‖ the spectral norm of A. Let 〈u,v〉 or uTv be
the inner product of vectors u and v. For a normed vector space V , let ‖ · ‖V be the norm of V . Let U be a
Banach space associated with a quadratic norm ‖ ·‖U and let U∗ be the dual of U . Denote by [·, ·] the duality
pairing between U∗ and U . We assume that there exists a linear, bijective, symmetric ([KUφ, ψ] = [KUψ, φ]),
and positive ([KUφ, φ] > 0 for φ 6= 0) covariance operator KU : U∗ 7→ U , such that

‖u‖2U = [K−1u, u],∀u ∈ U .

Let {φi}Pi=1 be a set of P ∈ N elements in U∗ and let φ := (φ1, . . . , φP ) be in the product space (U∗)
⊗
P

.
Then, for u ∈ U , we denote the pairing [φ, u] by

[φ, u] := ([φ1, u], . . . , [φP , u]).
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Furthermore, for u := (u1, . . . , uS) ∈ U
⊗
S , S ∈ N, we represent by [φ,u] ∈ RP×S the matrix with entries

[φi, uj ]. We write ‖ · ‖ as the induced norm for linear operators on U , i.e., for any F : U 7→ U , we define
‖F‖ = max‖u‖U=1 ‖F(u)‖U . Given any R ∈ N, we denote by [R] the set of nonnegative integers less equal
to R. Finally, we represent by C a positive real number whose value may change line by line.

2. A Recapitulation of the SGP Method

In Subsection 2.1, we demonstrate the SGP method by dealing with a nonlinear elliptic PDE given in [1].
The SGP method approximates the solution of the PDE by a minimizer of an optimal recovery problem,
which searching a solution with the minimum norm in the RKHS associated with a low-rank kernel generated
by inducing points and the values of linear operators of the solution are close to those satisfying the PDE
at finite samples. From a probabilistic perspective, the optimal recovery problem can also be interpreted as
the MAP estimation for a SGP constrained by a noisy observation of values of linear operators of the true
solution. The main bottleneck of the SGP method is the inversion of a covariance matrix. In Subsection
2.2, we describe a robust way to compute the inverse of the covariance matrix, which is the cornerstone of
the SGP method to reduce computational complexity. Finally, in Subsection 2.3, we give a probabilistic
explanation for the SGP method, which motivates a way to choose hyperparameters in future work.

2.1. The SGP Method. Let d > 1 and Ω be a bounded open subset of Rd with a Lipschitz boundary ∂Ω.
Given continuous functions f : Ω 7→ R, τ : Ω 7→ R, and g : ∂Ω 7→ R, we find the strong solution u∗ solving{

−∆u∗(x) + τ(u∗(x)) = f(x), x ∈ Ω,

u∗(x) = g(x), x ∈ ∂Ω,
(2.1)

where τ is chosen such that (2.1) admits a unique strong solution. We propose to approximate the solution
to (2.1) by functions in a RKHS generated by inducing points. First, we show the construction of such
RKHS. We assume that the solution of (2.1) is in the space U , where U is the RKHS associated with a
nondegenerate, symmetric, and positive definite kernel K : Ω × Ω 7→ R. We view U as the ambient space.
Let U∗ be the dual space of U and let [·, ·] : U∗×U 7→ R be the duality pairing. Next, we sample M inducing

points {x̂j}Mj=1 in Ω such that {x̂j}MΩ
j=1 ⊂ Ω and {x̂j}Mj=MΩ+1 ⊂ ∂Ω for 1 6 MΩ 6 M . Then, we define the

functionals φ
(1)
j = δx̂j for 1 6 j 6M and φ

(2)
k = δx̂k ◦∆ for 1 6 k 6MΩ. Denote by φ(1) and φ(2) the vectors

with entries φ
(1)
j and φ

(2)
k , respectively. Let φ be the vector concatenating φ(1) and φ(2). For simplicity,

we denote by φj the jth component of φ. Define K(·,φ) as the vector with entries
∫
K(·,x′)φj(x′) dx′

and define K(φ,φ) as the matrix with elements
∫ ∫

K(x,x′)φi(x)φj(x
′) dx dx′. Suppose that the inducing

points are chosen such that K(φ,φ) are invertible. Then, we define a new kernel Q : Ω× Ω 7→ R as

Q(x,x′) = K(x,φ)(K(φ,φ))−1K(φ,x′).

Using the positivity of the kernel K, we see that Q is semi-definite (see Lemma 3.1 in Section 3). Thus, by
the Moore–Aronszajn theorem, Q induces a unique RKHS, denoted by UQ. We call UQ the RKHS generated
by inducing points.

Next, we approximate the solution u in UQ. We take N samples {xi}Ni=1 such that {xi}NΩ
i=1 ⊂ Ω and

{xi}Ni=NΩ+1 ⊂ ∂Ω for 1 6 NΩ 6 N . Let ‖ · ‖UQ be the norm of UQ. Then, our SGP method approximates
the solution u∗ of (2.1) with a minimizer of the following regularized optimal recovery problem

min
z∈RNΩ+N ,u∈UQ

N∑
j=1

|z(1)
j − u(xj)|2 +

NΩ∑
j=1

|z(2)
j −∆u(xj)|2 + γ‖u‖2UQ

s.t. − z(2)
j + τ(z

(1)
j ) = f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N,

(2.2)

where γ > 0 is a given small regularization parameter and z := (z
(1)
NΩ+1, . . . , z

(1)
N , z

(1)
1 , . . . , z

(1)
NΩ
, z

(2)
1 , . . . , z

(2)
NΩ

).

Let (u†, z†) be a minimizer of (2.2). A minimizer u† of (2.2) can be viewed as a MAP estimator of a SGP
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ξ ∼ N (0, Q) conditioned on a noisy observation z† about values of the linear operators of u†, where z†

satisfies the PDE at the sample points. A probabilistic interpretation of (2.2) is given in Subsection 2.3.

Then, we define the functionals ψ
(1)
j = δxj for 1 6 j 6 N and ψ

(2)
k = δxk ◦ ∆ for 1 6 k 6 NΩ. Define

ψ as the vector consisting of ψ
(1)
j and ψ

(2)
k . We represent by ψj the jth component of ψ. Let Q(·,ψ)

be the vector containing entries
∫
Q(·,x′)ψj(x′) dx′ and let Q(ψ,ψ) be the matrix consisting of elements∫ ∫

Q(x,x′)ψi(x)ψj(x
′) dx dx′. Theorem 3.4 in Section 3 shows that (2.2) admits a minimizer u† such that

u†(x) = Q(x,ψ)T (γI +Q(ψ,ψ))−1z†, (2.3)

where I is the identity matrix and z† is a minimizer of
min

z∈RNΩ+N ,u∈UQ
zT (γI +Q(ψ,ψ))−1z

s.t. − z(2)
j + τ(z

(1)
j ) = f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N.

(2.4)

Next, we use the technique of eliminating variables in [1] to remove the constraints of (2.4). More precisely,

observing z
(1)
j = g(xj) and z

(2)
j = τ(z

(1)
j )− f(xj), we rewrite (2.4) as

min
zΩ∈RNΩ

(zΩ, g(x∂Ω), f(xΩ)− τ(zΩ))(γI +Q(ψ,ψ))−1

 zΩ

g(x∂Ω)
f(xΩ)− τ(zΩ)

 , (2.5)

where zΩ = (z
(1)
j )NΩ

j=1, g(x∂Ω) = (g(xj))
N
j=NΩ+1, f(xΩ) = (f(xj))

NΩ
j=1, and τ(zΩ) = (τ(z

(1)
j ))NΩ

j=1. Then, we

obtain z† by solving (2.5) using the Gauss–Newton method and get u† by (2.3).

Remark 2.1. In the first attempt, we consider a similar formulation to that of the GP method in [1] and
solve the optimal recovery problem

min
u∈UQ

‖u‖2UQ
s.t. −∆u(xj) + τ(u(xj)) = f(xj),∀j = 1, . . . , NΩ,

u(xj) = g(xj),∀j = NΩ + 1, . . . , N.

(2.6)

However, since Q(ψ,ψ) = K(ψ,φ)(K(φ,φ))−1K(φ,ψ), the matrix Q(ψ,ψ) is not invertible when the
number of samples is larger than the number of inducing points. Hence, the representer theorem [19, Section
17.8] does not apply. Furthermore, since UQ is a subspace of U , the solution u∗ to (2.1) may not lie in UQ.
Hence, we may not find a function in UQ satisfying the constraints in (2.6).

2.2. Computing (γI + Q(ψ,ψ))−1. The bottleneck of solving (2.5) is to calculate the inverse of γI +
Q(ψ,ψ), whose size is proportional to the number of sample points. The computational complexity of stan-
dard Cholesky decomposition algorithms is O(N3) in general. The algorithm in [25] computes ε approximate

Cholesky factors of (γI + Q(ψ,ψ))−1 in O(N log2d(N/ε)). Using the structure of Q(ψ,ψ), we show that
the computational complexity can be reduced and depends only on the number of inducing points. The
technique is from Section 3.4.3 of [33] and is well explained in the documents of GPflows∗. We provide the
full details below for the sake of completeness.

Using the Woodbury identity, we get

(γI +Q(ψ,ψ))−1 =(γI +K(ψ,φ)(K(φ,φ))−1K(φ,ψ))−1

=γ−1I − γ−2K(ψ,φ)(K(φ,φ) + γ−1K(φ,ψ)K(ψ,φ))−1K(φ,ψ).
(2.7)

∗https://gpflow.github.io/GPflow/2.4.0/notebooks/theory/SGPR notes.html
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The equation (2.7) is not numerically stable when γ is small. To get a better conditioned matrix, we perform
the Cholesky decomposition on K(φ,φ) and get K(φ,φ) = LLT (see Remark 2.2 below). Then, we consider

(γI +Q(ψ,ψ))−1 =γ−1I − γ−2K(ψ,φ)(K(φ,φ) + γ−1K(φ,ψ)K(ψ,φ))−1K(φ,ψ)

=γ−1I − γ−2K(ψ,φ)L−TLT (K(φ,φ) + γ−1K(φ,ψ)K(ψ,φ))−1LL−1K(φ,ψ)

=γ−1I − γ−2K(ψ,φ)L−T (L−1(K(φ,φ) + γ−1K(φ,ψ)K(ψ,φ))L−T )−1L−1K(φ,ψ)

=γ−1I − γ−2K(ψ,φ)L−T (I + γ−1L−1K(φ,ψ)K(ψ,φ)L−T )−1L−1K(φ,ψ).

(2.8)

Let A := γ−1/2L−1K(φ,ψ). Then, (2.8) gives

(γI +Q(ψ,ψ))−1 = γ−1I − γ−1AT (I +AAT )−1A. (2.9)

The identity (2.9) is the cornerstone for the SGP method to reduce the computational complexity. We note
that the dimension of the matrix needed to be inverted at the right-hand side of (2.9) depends only on the
length of φ, which is proportional to the number of inducing points. Hence, if M << N , using (2.9), we
are able to save computational time and memory storage. The numerical results in Section 4 show that a
small number of inducing points is sufficient for the SGP approach to achieve comparable accuracy to the
GP method in [1].

Remark 2.2. In general, K(φ,φ) is ill-conditioned. Thus, to deal with the inverse of K(φ,φ), we perform
the Cholesky decomposition on K(φ,φ) + ηR, where R is a block diagonal nugget built using the approach
in [1] and η > 0 is a small regularization parameter.

2.3. A Probabilistic Perspective of the SGP Method. Here, we give a probabilistic interpretation for
the SGP method. First, we put a Gaussian prior on the solution u∗ to (2.1), i.e., let u∗ ∼ N (0,K), where
K is kernel associated with the RKHS U in Subsection 2.1. Let {xi}Ni=1 be the set of sample points in
Subsection 2.1. Define

u = (u∗(x1), . . . , u∗(xN ),∆u∗(x1), . . . ,∆u∗(xNΩ)).

Then, u is a multivariate Gaussian random variable following the distribution N (0,K(ψ,ψ)). Let z be a
noisy observation of u, i.e.,

z = u+ ε,

where ε is a noise following the distributionN (0, γI), which is independent with u∗. Thus, z ∼ N (0,K(ψ,ψ)+
γI) and the probability density of z is

p(z) =
1√

(2π)2(NΩ+N) det(K(ψ,ψ) + γI)
e−

1
2z

T (K(ψ,ψ)+γI)−1z.

Then, solving (2.1) by the GP method in [1] is equivalent to finding z with the MAP, where z satisfies the
PDE system. More precisely, the GP method seeks to find z solving

max
z

ln p(z)

s.t. − z(2)
j + τ(z

(1)
j ) = f(xj),∀j, 1 6 j 6 NΩ,

z
(1)
j = g(xj),∀j,NΩ + 1 6 j 6 N.

(2.10)

In our SGP method, we replace the log-likelihood in (2.10) with its lower bound. The derivation follows [31].
More precisely, let {x̂i}Mi=1 be the inducing points in Subsection 2.1 and define v(1) = (u(x̂1), . . . , u(x̂M )) and
v(2) = (∆u(x̂1), . . . ,∆u(x̂MΩ)). Let v = (v(1),v(2)). Then, v and z are joint Gaussian random variables.
Let q(v) be the variational distribution of v and let q(u,v) = p(u|v)q(v) be the probability density function
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of the variational distribution of (u,v). Then, by Jensen’s inequality, we have

ln p(z) = ln

∫ ∫
p(z,u,v) dudv = ln

∫ ∫
q(u,v)

p(z,u,v)

q(u,v)
du dv

>
∫ ∫

q(u,v) ln
p(z,u,v)

q(u,v)
dudv =

∫ ∫
p(u|v)q(v) ln

p(z|u)p(v)

q(v)
dudv

=:F(z, q).

(2.11)

Thus, F(z, q) provides a lower bound for ln p(z). To get an optimal lower bound, we take the derivative of
F w.r.t. q and get

δF(z, q(v))

δq(v)
=

∫
p(u|v)(ln

p(z|u)p(v)

q(v)
− 1) du.

Letting δF(q(v))/δq(v) = 0, we get the optimal variational distribution

q∗(v) =
p(v)

Z
exp

(∫
p(u|v) ln p(z|u) du

)
, (2.12)

where Z is a real number guaranteeing the unit mass of q∗. Then, plugging (2.12) into (2.11), we get

F(z, q) = −N +NΩ

2
ln 2π − 1

2
ln det(Q(ψ,ψ) + γI)− zT (Q(ψ,ψ) + γI)−1z − 1

2γ
Tr(K(ψ,ψ)−Q(ψ,ψ)).

Hence, if we replace ln p(z) by F(z, q∗) in (2.10), we note that (2.4) is equivalent to
max
z
F(z, q∗)

s.t. − z(2)
j + τ(z

(1)
j ) = f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N.

(2.13)

Remark 2.3. The probabilistic interpretation of the SGP method above suggests a way for hyperparameter
learning. Let θ be the parameter vector consisting of the positions of the inducing points and the kernel’s
parameters. Write q∗θ to emphasize the dependence of q∗ in (2.12) on θ. Then, the SGP method with
hyperparameter learning for solving (2.1) considers the maximization problem

max
z,θ
F(z, q∗θ)

s.t. − z(2)
j + τ(z

(1)
j ) = f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N.

(2.14)

However, the objective function in (2.14) is highly nonlinear. Thus, the computation of (2.14) is very costly.
In the numerical experiments of Section 4, we fix the positions of inducing points. Then, we use the Gauss–
Newton method to solve (2.14) for different values of the parameters of the kernel on the uniform grid in the
domain of parameters and accept the result that achieves the largest value of the objective function in (2.14).
If we choose Gaussian kernels for solving PDEs, which contain only one or two lengthscale parameters, the
above grid search method for choosing hyperparameters is efficient. We leave the full optimization over z
and θ in (2.14) to future work.

3. A General Framework for the SGP method

In this section, we provide a framework of the SGP method for solving a general PDE. Then, we give the
existence argument for a minimizer of the optimal recovery problem used to approximate the solution of the
PDE. Finally, we analyze the approximation errors.
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3.1. A RKHS Generated by Linear Operators. In this subsection, we show the construction of a RKHS
generated by linear operators based on the abstract theory of RKHSs (see [19]). The RKHS forms a space
where we seek approximations for solutions to general PDEs.

Let U be a Banach space, let U∗ be its dual, and let [·, ·] be their duality paring. We assume further that
there exists a covariance operator K : U∗ 7→ U that is linear, bijective, symmetric ([Kφ, ϕ] = [Kϕ, φ]), and
positive ([Kφ, φ] > 0 for φ 6= 0), and suppose that the norm of U is given by

‖u‖U =
√

[K−1u, u],∀u ∈ U .
Meanwhile, the inner products of U and U∗ are given by

〈u, v〉 :=[K−1u, v],∀u, v ∈ U ,
〈φ, ϕ〉∗ :=[φ,Kϕ],∀φ, ϕ ∈ U∗.

Then, U coincides with the RKHS space of the kernel K defined by

K(x,x′) = [δx,Kδx′ ],∀x,x′ ∈ Ω, (3.1)

where δx is the Dirac delta function centered at x. Let ξ ∼ N (0,K) be the canonical GP on U [19, Chapter
17.6] and let [φ, ξ] be the image of φ ∈ U∗ under ξ. Then, we have

E[φ, ξ] = 0 and E[φ, ξ][ϕ, ξ] = [φ,Kϕ],∀φ, ϕ ∈ U∗.

The GP method proposed in [1] approximates a solution of a nonlinear PDE by a MAP point for the GP
ξ ∼ N (0,K) conditioned on PDE constraints at the collocation points. To reduce the computation time, we
consider a Gaussian prior with a different covariance operator generated by selected linear operators.

Let φ := {φi}Ri=1 be the collection of R non-trivial elements of U∗. For the canonical GP ξ ∼ N (0,K),
[φ, ξ] is a RR-valued Gaussian vector and [φ, ξ] ∼ N (0,Θ), where

Θ ∈ RR×R,Θi,n = [φi,Kφn],∀1 6 i, n 6 R.
Suppose that Θ is invertible. We define the induced covariance operator Q as

[ϕ,Qϕ] = K(ϕ,φ)Θ−1K(φ, ϕ),∀ϕ ∈ U∗. (3.2)

The next lemma guarantees that Q is a covariance operator and associates with a RKHS.

Lemma 3.1. Let φ := {φi}Ri=1 be the collection of R linearly independent non-trivial elements of U∗. Then,
the operator Q defined in (3.2) is linear, symmetric, and nonnegative. Hence, there exists a unique RKHS
UQ associated with the kernel Q defined by

Q(x,x′) = [δx,Qδx′ ],∀x,x′ ∈ Ω. (3.3)

Furthermore, UQ ⊂ U and

‖u‖UQ = ‖u‖U ,∀u ∈ UQ. (3.4)

Proof. It is easy to see that Q is linear and symmetric. Since K is positive, Θ is positive definite. Then,
[ϕ,Qϕ] = K(ϕ,φ)Θ−1K(φ, ϕ) > 0,∀ϕ ∈ U∗. The equality holds if and only if ϕ is perpendicular to φ w.r.t.
K. Thus, Q is nonnegative. Hence, the kernel Q in (3.3) is symmetric and positive semi-definite. According
to the Moore–Aronszajn theorem, there exists a unique RKHS UQ associated with the kernel Q. Next, we
show the relation between UQ and U .

Since Q(x, ·) ∈ U for any x ∈ Ω, the linear span of {Q(x, ·),x ∈ Ω}, denoted by UQ0
, is a subset of U . By

the Moore–Aronszajn theorem, UQ is the completion of UQ0
. Thus, UQ ⊂ U . For any u ∈ UQ0

, there exist
sequences {xi}mi=1 and {αi}mi=1, m ∈ N, such that

‖u‖2UQ =

m∑
i=1

m∑
j=1

αiαjQ(xi,xj) =

m∑
i=1

m∑
j=1

αiαjK(δxi ,φ)Θ−1K(φ, δxj ) = ‖u‖2U ,

where the last two equities follows by (3.2) and (3.3). Thus, we conclude (3.4). �
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3.2. The SGP method. In this subsection, we present a general framework of the SGP method to solve
nonlinear PDEs. Let Ω ⊂ Rd be a bounded open domain with the boundary ∂Ω for d > 1. Let L1, . . . , LD ∈
L(U ;C(Ω)) and L1, . . . , LDb ∈ L(U ;C(∂Ω)) be bounded linear operators for 1 6 Db 6 D. We seek to find a
function u∗ solving the nonlinear PDE{

P (LDb+1(u∗)(x), . . . , LD(u∗)(x)) = f(x),∀x ∈ Ω,

B(L1(u∗)(x), . . . , LDb(u
∗)(x)) = g(x),∀x ∈ ∂Ω,

(3.5)

where P,B represent nonlinear operators, and f , g are given data. Throughout this section, we assume that
(3.5) admits a unique strong solution in a quadratic Banach space U associated with the covariance operator
K, which means that u∗ has enough regularity for the linear operators to be well defined pointwisely in (3.5).

We propose to approximate the solution to (3.5) in a RKHS generated by linear operators associated

with inducing points. To do that, we take M inducing points {x̂j}Mj=1 in Ω such that {x̂j}MΩ
j=1 ⊂ Ω and

{x̂j}Mj=MΩ+1 ⊂ ∂Ω. Then, we define the functionals φ
(i)
j ∈ U∗ as

φ
(i)
j := δx̂j ◦ Li, and

{
MΩ + 1 6 j 6M, if 1 6 i 6 Db,

1 6 j 6MΩ, if Db + 1 6 i 6 D.

Let φ(i) be the vector concatenating the functionals φ
(i)
j for fixed i and define

φ := (φ(1), . . . ,φ(D)) ∈ (U∗)⊗R, where R = (M −MΩ)Db +MΩ(D −Db). (3.6)

The next corollary gives a RKHS generated by φ.

Corollary 3.2. Let φ be as in (3.6). Assume that the elements of φ are linearly independent in U∗. Define

Θ ∈ RR×R,Θi,r = [φi,Kφr],∀1 6 i, r 6 R.

Then, there exists a RKHS UQ associated with the kernel Q defined by

Q(x,x′) = K(x,φ)Θ−1K(φ,x′),∀x,x′ ∈ Ω,

such that UQ ⊂ U . Denote by ‖ · ‖UQ the norm of UQ. Then,

‖u‖UQ = ‖u‖U ,∀u ∈ UQ.

Proof. The claim is a direct result of Lemma 3.1. �

Next, we propose to approximate the solution u∗ of (3.5) in the space UQ. More precisely, we take N

samples x := {xi}Ni=1 in Ω such that {xi}NΩ
i=1 ⊂ Ω and {xi}Ni=NΩ+1 ⊂ ∂Ω. Given a regularization parameter

γ > 0, we approximate u∗ by the minimizer of the following optimization problem
min

z∈RR,u∈UQ

Db∑
i=1

N∑
j=NΩ+1

|Li(u)(xj)− z(i)
j |2 +

D∑
i=Db+1

NΩ∑
j=1

|Li(u)(xj)− z(i)
j |2 + γ‖u‖2UQ

s. t. P (z
(Db+1)
j , . . . , z

(D)
j ) = f(xj), for j = 1, . . . , NΩ,

B(z
(1)
j , . . . , z

(Db)
j ) = g(xj), for j = NΩ + 1, . . . , N,

(3.7)

where

R = (N −NΩ)Db +NΩ(D −Db) (3.8)

and

z := (z
(1)
NΩ+1, . . . , z

(1)
N , . . . , z

(Db)
NΩ+1, . . . , z

(Db)
N , z

(Db+1)
1 , . . . , z

(Db+1)
NΩ

, . . . , z
(D)
1 , . . . , z

(D)
NΩ

).
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For ease of presentation, we rewrite (3.7) into a compact form. To do that, we define the functionals ψ
(i)
j ∈ U∗

as

ψ
(i)
j := δxj ◦ Li, and

{
NΩ + 1 6 j 6 N, if 1 6 i 6 Db,

1 6 j 6 NΩ, if Db + 1 6 i 6 D.

Meanwhile, let ψ(i) be the vector consisting of ψ
(i)
j for fixed i and define

ψ := (ψ(1), . . . ,ψ(D)) ∈ (U∗)⊗R. (3.9)

Next, we define the data vector y ∈ RN by

yi =

{
f(xi), if i ∈ {1, . . . , NΩ},
g(xi), if i ∈ {NΩ + 1, . . . , N}.

Furthermore, we define the nonlinear map

(F (z))j :=

{
P (z

(Db+1)
j , . . . , z

(D)
j ), for j = 1, . . . , NΩ,

B(z
(1)
j , . . . , z

(Db)
j ), for j = NΩ + 1, . . . , N.

Thus, we reformulate (3.7) as  min
z∈RR,u∈UQ

|[ψ, u]− z|2 + γ‖u‖2UQ

s. t. F (z) = y.
(3.10)

Next, we prove the existence of minimizers of (3.10) and analyze the error between a minimizer u† of
(3.10) and the strong solution u∗ to (3.5). The arguments are based on the framework in [27]. Let `2(x) be
the set of sequences a = (ax)x∈x with 〈a, b〉 =

∑
x∈x axbx defining the inner product. Define the sampling

operator Sx : UQ 7→ `2(x) by

Sx(u) = [ψ, u],∀u ∈ UQ. (3.11)

One can view Sx as a generalization of the sampling operator in [27], which only samples values of a function
at the sample points. Denote by 〈·, ·〉UQ the inner product of UQ and by S∗x the adjoint of Sx. Then, for

each c ∈ `2(x) and u ∈ UQ, we have

〈S∗xc, u〉UQ = 〈Sxu, c〉`2(x) = cT [ψ, u] = 〈cTQψ, u〉UQ .

Thus, we have

S∗xc = cTQψ,∀c ∈ `2(x). (3.12)

The next lemma gives some basic properties of Sx and S∗x. For a little abuse of notations, in the rest of this
section, we denote by I the identity map or the identity matrix, whose meaning is easy to recognize from
the context.

Lemma 3.3. Let Sx and S∗x be as in (3.11) and (3.12). Then, for any γ > 0, S∗xSx + γI and SxS
∗
x + γI

are bijective. Meanwhile,

S∗x(SxS
∗
x + γI)−1 = (S∗xSx + γI)−1S∗x. (3.13)

For any c ∈ `2(x), we have

(S∗xSx + γI)−1S∗xc = (Qψ)T (γI +Q(ψ,ψ))−1c. (3.14)

Furthermore,

I − Sx(S∗xSx + γI)−1S∗x = γ(Q(ψ,ψ) + γI)−1. (3.15)
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Proof. We first show that S∗xSx + γI is invertible for any γ > 0. Let u, v ∈ UQ and S∗xSxu+ γu = v. Then,
according to (3.11) and (3.12), we have

[ψ, u]TQψ + γu = v. (3.16)

Acting ψ on both sides of (3.16), we get

Q(ψ,ψ)[ψ, u] + γ[ψ, u] = [ψ, v].

Since Q(ψ,ψ) is positive semi-definite, Q(ψ,ψ) + γI is invertible. Thus,

[ψ, u] = (γI +Q(ψ,ψ))−1[ψ, v]. (3.17)

We get from (3.16) and (3.17) that

u =
1

γ
v − 1

γ
[ψ, v]T (γI +Q(ψ,ψ))−1Qψ,

which implies that S∗xSx + γI is bijective. Furthermore,

(S∗xSx + γI)−1v =
1

γ
v − 1

γ
[ψ, v]T (γI +Q(ψ,ψ))−1Qψ,∀v ∈ UQ. (3.18)

Similarly, one can show that SxS
∗
x + γI is bijective.

To prove (3.13), we see that

(S∗xSx + γI)S∗x(SxS
∗
x + γI)−1 =(S∗xSxS

∗
x + γS∗x)(SxS

∗
x + γI)−1

=S∗x(SxS
∗
x + γI)(SxS

∗
x + γI)−1 = S∗x,

which yields (3.13).
For any c ∈ `2(x), using (3.18) and (3.12), we get

(S∗xSx + γI)−1S∗xc =
1

γ
cTQψ − 1

γ
[ψ, cTQψ](γI +Q(ψ, ,ψ))−1Qψ

=
1

γ
cTQψ − 1

γ
cTQ(ψ,ψ)(γI +Q(ψ,ψ))−1Qψ

=
1

γ
cTQψ − 1

γ
cT (Q(ψ,ψ) + γI − γI)(γI +Q(ψ,ψ))−1Qψ

=cT (γI +Q(ψ,ψ))−1Qψ,

which concludes (3.14).
For any c ∈ `2(x), we use (3.14) and obtain

(I − Sx(S∗xSx + γI)−1S∗x)c =c− Sx((Qψ)T (γI +Q(ψ,ψ))−1c)

=c−Q(ψ,ψ)(γI +Q(ψ,ψ))−1c

=c− (γI +Q(ψ,ψ)− γI)(γI +Q(ψ,ψ))−1c

=γ(γI +Q(ψ,ψ))−1c.

(3.19)

Since (3.19) holds for any c ∈ `2(x), we conclude (3.15). �

The following theorem gives the existence of minimizers to (3.10).

Theorem 3.4. Let Sx and S∗x be defined in (3.11) and (3.12). Given γ > 0, the system (3.10) admits a
solution

u† = Lz†, L := (S∗xSx + γI)−1S∗x, (3.20)
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where z† is a solution to min
z∈RR

zT (Q(ψ,ψ) + γI)−1z

s. t. F (z) = y,
(3.21)

where R is given in (3.8).

Proof. In (3.10), given z ∈ RR, we first consider the minimization problem over u

min
u∈UQ

|[ψ, u]− z|2 + γ‖u‖2UQ . (3.22)

By the definition of Sx in (3.11), we get

|[ψ, u]− z|2 + γ‖u‖2UQ =〈Sxu− z, Sxu− z〉`2(x) + γ〈u, u〉UQ
=〈S∗xSxu− 2S∗xz + γu, u〉UQ + |z|2.

(3.23)

Taking the function derivative w.r.t. u, we obtain from (3.23) that

S∗xSxu− S∗xz + γu = 0,

which implies that the minimizer u† of (3.22) satisfies

u† = (S∗xSx + γI)−1S∗xz. (3.24)

Thus, using (3.23) and (3.24), we have

|[ψ, u†]− z|2 + γ‖u†‖2UQ =〈S∗xSxu† − 2S∗xz + γu†, u†〉UQ + |z|2

=〈S∗xSx(S∗xSx + γI)−1S∗xz − 2S∗xz + γ(S∗xSx + γI)−1S∗xz, u
†〉UQ + |z|2

=〈(S∗xSx − 2(S∗xSx + γI) + γI)(S∗xSx + γI)−1S∗xz, u
†〉UQ + |z|2

=− 〈S∗xz, u†〉UQ + |z|2 = −〈z, Sxu†〉`2(x) + |z|2

=〈(I − Sx(S∗xSx + γI)−1S∗x)z, z〉`2(x)

=γzT (γI +Q(ψ,ψ))−1z,

(3.25)

where the last equality results from (3.15). Thus, (3.25) implies that (3.10) is equivalent to (3.21). Using
a similar compactness argument as in the proof of Theorem 1.1 in [1], one can show that (3.21) admits a
minimizer z†. Therefore, we conclude (3.20) by (3.24). �

Remark 3.5. Theorem 3.4 implies that in order to find the solution u∗ of the PDE system (3.5), we need
to solve (3.21). To handle the constraints of (3.21), we use the methods of eliminating variables or relaxation
described in Subsection 3.3 of [1] when necessary.

Remark 3.6. To compute the inversion of Q(ψ,ψ) + γI, we use the techniques introduced in Subsection
2.2 and Remark 2.2.

Next, we estimate the error between the approximation solution u† given in (3.20) and the strong solution
u∗ of (3.5).

Theorem 3.7. Let u∗ be the strong solution of (3.5). Given γ > 0, let (u†, z†) be a solution of (3.10),

where u† is given in (3.20), and z† solves (3.21). Define the sampling operator Ŝx : U 7→ `2(x) by

Ŝx = [ψ, u].

Denote Ŝ∗x as the adjoint of Ŝx. Then,

Ŝ∗xc = cTKψ,∀c ∈ `2(x). (3.26)
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Define

λx = inf
v∈U
‖Ŝxv‖`2(x)/‖v‖U . (3.27)

Then,

‖u† − u∗‖U 6
γ‖u∗‖U
λ2
x + γ

+
√

3|z†|
√
‖(γI +Q(ψ,ψ))−1 − (γI +K(ψ,ψ))−1‖

+

√
(z† − [ψ, u∗])TK(ψ,ψ)(z† − [ψ, u∗])

λ2
x + γ

.

(3.28)

Proof. Since Ŝ∗x is the adjoint of Ŝx, for each c ∈ `2(x), we have

〈Ŝ∗xc, u〉 = 〈Ŝxu, c〉`2(x) = cT [ψ, u] = 〈cTK(ψ), u〉,∀u ∈ U .

Thus, we conclude (3.26). Meanwhile, for γ > 0, by the same arguments as the proof of Lemma 3.3, Ŝx
admits similar properties to those of Sx, i.e.,

Ŝ∗x(ŜxŜ
∗
x + γI)−1 = (Ŝ∗xŜx + γI)−1Ŝ∗x, (3.29)

and

(Ŝ∗xŜx + γI)−1Ŝ∗xc = (Kψ)T (γI +K(ψ,ψ))−1c,∀c ∈ `2(x). (3.30)

We define the operator

L̂ := (Ŝ∗xŜx + γI)−1Ŝ∗x. (3.31)

Given γ > 0, let u† be as in (3.20) and z† be a solution to (3.21). We first bound u† − L̂z† in U . Letting

v := L̂z† and using (3.20), we have {
S∗xSxu

† + γu† = S∗xz
†,

Ŝ∗xŜxv + γv = Ŝ∗xz
†.

(3.32)

which yields {
Sxu

† = (SxS
∗
x + γI)−1SxS

∗
xz
†,

Ŝxv = (ŜxŜ
∗
x + γI)−1ŜxŜ

∗
xz
†.

(3.33)

Taking the difference of the two equations in (3.32) and using (3.33), we get

γ(u† − v) =S∗x(z† − Sxu†)− Ŝ∗x(z† − Ŝxv)

=γS∗x(SxS
∗
x + γI)−1z† − γŜ∗x(ŜxŜ

∗
x + γI)−1z†.

(3.34)

By (3.13), (3.14), (3.29), (3.30), and (3.34), we have

u† − v =(S∗xSx + γI)−1S∗xz
† − (Ŝ∗xŜx + γI)−1Ŝ∗xz

†

=(Qψ)T (γI +Q(ψ,ψ))−1z† − (Kψ)T (γI +K(ψ,ψ))−1z†.

We have

‖u† − v‖2U =(z†)T (γI +Q(ψ,ψ))−1z† − (z†)T (γI +K(ψ,ψ))−1z†

+ 2γ(z†)T (γI +Q(ψ,ψ))−1(γI +K(ψ,ψ))−1z†

− γ(z†)T (γI +Q(ψ,ψ))−2z† − γ(z†)T (γI +K(ψ,ψ))−2z†

63‖(γI +Q(ψ,ψ))−1 − (γI +K(ψ,ψ))−1‖|z†|2,

(3.35)
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where we use ‖(γI +Q(ψ,ψ))−1‖ 6 1/γ and ‖(γI +K(ψ,ψ))−1‖ 6 1/γ in the last inequality. Thus, (3.35)
gives

‖u† − v‖U 6
√

3|z†|
√
‖(γI +Q(ψ,ψ))−1 − (γI +K(ψ,ψ))−1‖. (3.36)

Next, we bound L̂z†− L̂Ŝxu∗. Using (3.27) and the same arguments as in the proof of Proposition 1 in [27],
we conclude

‖(Ŝ∗xŜx + γI)−1‖ 6 1

λ2
x + γ

. (3.37)

Then,

‖L̂z† − L̂Ŝxu∗‖U =‖(Ŝ∗xŜx + γI)−1(Ŝ∗xz
† − Ŝ∗xŜxu∗)‖U

6‖(Ŝ∗xŜ∗x + γI)−1‖‖Ŝ∗xz† − Ŝ∗xŜxu∗‖U 6 ‖Ŝ∗xz† − Ŝ∗xŜxu∗‖U/(λ2
x + γ).

(3.38)

We have

〈Ŝ∗xz† − Ŝ∗xŜxu∗, Ŝ∗xz† − Ŝ∗xŜxu∗〉

=〈z† − Ŝxu∗, ŜxŜ∗x(z† − Ŝxu∗)〉`2(x)

=(z† − [ψ, u∗])TK(ψ,ψ)(z† − [ψ, u∗]).

(3.39)

Thus, combining (3.38) and (3.39), we obtain

‖L̂z† − L̂Ŝxu∗‖U 6
√

(z† − [ψ, u∗])TK(ψ,ψ)(z† − [ψ, u∗])

λ2
x + γ

. (3.40)

Finally, we bound L̂Ŝxu
∗ − u∗. Using the definition of L̂ in (3.31) and (3.37), we have

‖L̂Ŝxu∗ − u∗‖U =‖(Ŝ∗xŜx + γI)−1Ŝ∗xŜxu
∗ − u∗‖U

=‖(Ŝ∗xŜx + γI)−1(Ŝ∗xŜx + γI − γI)u∗ − u∗‖U
=γ‖(Ŝ∗xŜx + γI)−1u∗‖U 6 γ‖(Ŝ∗xŜx + γI)−1‖‖u∗‖U

6
γ‖u∗‖U
λ2
x + γ

.

(3.41)

Therefore, (3.36), (3.40), (3.41), and the triangle inequality imply that (3.28) holds. �

Remark 3.8. The term λx in (3.27) is a straightforward extension of Definition 1 in [27] and takes into
account the information about values of linear operators evaluated at sample points. Similar to [27], we say
that the set x consisting of samples provides rich data if λx > 0 and it provides poor data if λx = 0.
Indeed, when we use the uniform sampling and the number of samples N is large enough, we will have

λx > 0. To see this, we suppose that Ŝxv contains the values of v evaluated at the sample points for v ∈ U .
Then,

λx = inf
v∈U
‖v‖U=1

‖Ŝxv‖`2(x) > inf
v∈U
‖v‖U=1

√∑
x∈x

|v(x)|2 > inf
v∈U
‖v‖U=1

sup
x∈x
|v(x)|.

When N → +∞, we have

inf
v∈U
‖v‖U=1

sup
x∈x
|v(x)| → inf

v∈U
‖v‖U=1

sup
x∈Ω

|v(x)| > 0.

Thus, as N → +∞ and γ → 0, the first term of (3.28) tends to 0.

Remark 3.9. The magnitudes of the last two terms of (3.28) depend on how well Q(ψ,ψ) approximates
K(ψ,ψ). Indeed, when Q(ψ,ψ) = K(ψ,ψ), the second term of (3.28) equals 0 and z† converges to [ψ, u∗]
as N goes to infinity and γ → 0 by Theorem 3.3 of [1].
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3.3. The Nyström Approximation Error. As discussed in Remark 3.9, the upper bound in (3.28) is small
when Q(ψ,ψ) approximates K(ψ,ψ) well. In this subsection, we bound the spectral norm of K(ψ,ψ) −
Q(ψ,ψ), denoted by ‖K(ψ,ψ)−Q(ψ,ψ)‖.

We recall that Q(ψ,ψ) = K(ψ,φ)(K(φ,φ))−1K(φ,ψ). Thus, we can view Q(ψ,ψ) as the Nyström
approximation to K(ψ,ψ). Hence, we call ‖K(ψ,ψ) − Q(ψ,ψ)‖ the Nyström approximation error in the
SGP method. A typical Nyström approximation approximates a symmetric positive semi-definite matrix
G ∈ Rn×n, n ∈ N, by sampling m columns from G and does not assume that columns of G have close
relations with each other. The authors in [3] show that for any m uniformly sampled columns, with a
high probability, the approximation error is O(n/

√
m). Later, [10] improves the bound from O(n/

√
m) to

O(n/m1−ρ) for ρ ∈ (0, 1/2) under the assumption that the eigenvalues of G have a big eigengap. In our
setting, since ψ has linear operators corresponding to the same sample points, the columns of K(ψ,ψ) are
highly correlated. Thus, we approximate K(ψ,ψ) using a small number of inducing points instead of using
columns from K(ψ,ψ). In general, instead of being taken from the samples, inducing points can be selected
anywhere in the input space [4]. The error analysis has been thoroughly studied in [37], which indicates
that the approximation error in the matrix Frobenious norm has an upper bound that is influenced by the
quantization error defined in [37]. Since that quantization error is the objective function in the k-means
clustering [6], k-means algorithm is typically used for the initialization of inducing inputs. In our settings,
we assume that the inducing points are sampled from the set of samples. We adapt the framework in [10] to
our settings and show that the Nyström approximation error has an upper bound that depends only on the
numbers of samples and inducing points. In other words, though the dimension of K(ψ,ψ) is proportional
to the product of the size of samples and the number of linear operators, the error bound is not influenced
by the size of linear operators.

Following [10], we turn ‖K(ψ,ψ)−K(ψ,φ)(K(φ,φ))−1K(φ,ψ)‖ into a functional approximation problem.
Define the sets

Ha = span{Kφ} and Hb = {βTKψ, |β| 6 1}. (3.42)

For h ∈ Hb, we define

E(h,Ha) = min
v∈Ha

‖v − h‖2U .

Then, E(h,Ha) is the minimum error for approximating a function h ∈ Hb by functions in Ha. Meanwhile,
define E(Ha) as the worst error in approximating any function h ∈ Hb by functions in Ha, i.e.

E(Ha) = max
h∈Hb

E(h,Ha). (3.43)

The next proposition shows the equivalence of ‖K(ψ,ψ)−K(ψ,φ)(K(φ,φ))−1K(φ,ψ)‖ and E(Ha).

Proposition 3.10. Let E(Ha), ψ, and φ be as in (3.43), (3.9), and (3.6), separately. Then,

‖K(ψ,ψ)−K(ψ,φ)(K(φ,φ))−1K(φ,ψ)‖ = E(Ha). (3.44)

Proof. Let h ∈ Hb and v ∈ Ha. Then, there exists α and β such that v = αTKφ and h = βTKψ. We have

E(h,Ha) = min
α
αTK(φ,φ)α− 2αTK(φ,ψ)β + βTK(ψ,ψ)β

=βT (K(ψ,ψ)−K(ψ,φ)(K(φ,φ))−1K(φ,ψ))β.

Hence, we obtain

E(Ha) = max
h∈Hb

E(h,Hb)

= max
|β|61

βT (K(ψ,ψ)−K(ψ,φ)(K(φ,φ))−1K(φ,ψ))β

=‖K(ψ,ψ)−K(ψ,φ)(K(φ,φ))−1K(φ,ψ)‖,

which concludes (3.44). �
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Next, we estimate the upper bound for E(Ha). For simplification, we write ψ := (ψΩ,ψ∂Ω), where
ψΩ represents the collection of linear operators for interior points and ψ∂Ω consists of linear operators for
boundary samples. We write x := (x1,x2), where we recall that x contains all the sample points, x1 is the
set of interior points in Ω, and x2 stands for the collection of boundary points. We define the operators Lx1

and Lx2 such that for any function v ∈ U ,

Lx1
[v] =

1

NΩ
(KψΩ)T [ψΩ, v] and Lx2

[v] =
1

N∂Ω
(Kψ∂Ω)T [ψ∂Ω, v], (3.45)

where NΩ is the size of x1 and N∂Ω is the length of x2. The next proposition connects the eigenvalues and
the eigenfunctions of Lx1

and Lx2
to the eigenvalues and the eigenvectors of K(ψΩ,ψΩ) and K(ψ∂Ω,ψ∂Ω).

Proposition 3.11. Let R1 = NΩ(D − Db) and R2 = (N − NΩ)Db, where D and Db are given in (3.5).

Let {λj}R1
j=1 be the set of eigenvalues of K(ψΩ,ψΩ), which are ranked in the descending order. Define the

operator Lx1 as in (3.45). Then, the eigenvalues of Lx1 are {λj/NΩ}R1
j=1. Moreover, let ϕ1, . . . , ϕR1 be the

corresponding eigenfunctions of Lx1
that have normalized functional norms, i.e. 〈ϕi, ϕj〉 = δij , 1 6 i, j 6 R1.

Let V = [v1, . . . ,vR1
] be the orthonormal eigenvector matrix of K(ψΩ,ψΩ). Then, we have√

λjvj = [ψΩ, ϕj ],∀1 6 j 6 R1, (3.46)√
λjϕj = vTj KψΩ,∀1 6 j 6 R1, (3.47)

KψΩ = V [
√
λ1ϕ1, . . . ,

√
λR1

ϕR1
]T , (3.48)

and

K(ψΩ,j , ψΩ,j) =

R1∑
i=1

[ψj , ϕi]
2,∀1 ≤ j 6 R1, (3.49)

where ψΩ,j is the jth component of ψΩ. Similarly, let {τj}R2
j=1 be the set of eigenvalues of K(ψ∂Ω,ψ∂Ω)

sorted in the descending order and let Lx2 be as in (3.45). Then, the eigenvalues of Lx2 are {τj/N∂Ω}R2
j=1.

Meanwhile, let ζ1, . . . , ζR2
be the eigenfunctions of Lx2

that have normalized functional norms. Let W =
[w1, . . . ,wR2 ] be the orthonormal eigenvector matrix of K(ψ∂Ω,ψ∂Ω). Then, we obtain

√
τjwj = [ψ∂Ω, ζj ],∀1 6 j 6 R2, (3.50)

√
τjζj = wT

j Kψ∂Ω,∀1 6 j 6 R2, (3.51)

Kψ∂Ω = W [
√
τ1ζ1, . . . ,

√
τR2ζR2 ]T , (3.52)

and

K(ψ∂Ω,j , ψ∂Ω,j) =

R2∑
i=1

[ψj , ζi]
2,∀1 6 j 6 R2, (3.53)

where ψ∂Ω,j is the jth element of ψ∂Ω.

Proof. We only give proofs related to Lx1 since the arguments for Lx2 are similar. Let λ̃j be jth eigenvalue
of Lx1

and let ϕj be the corresponding eigenfunction with a normalized norm. Then, we have

Lx1
[ϕj ] =

1

NΩ
(KψΩ)T [ψΩ, ϕj ] = λ̃jϕj . (3.54)

Acting ψΩ on both sides of (3.54), we get

K(ψΩ,ψΩ)[ψΩ, ϕj ] = NΩλ̃j [ψΩ, ϕj ], (3.55)
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which implies that NΩλ̃j is the jth eigenvalue of K(ψΩ,ψΩ) and [ψΩ, ϕj ] is the corresponding eigenvector.

Hence, we confirm that if {λj}R1
j=1 contains the eigenvalues of K(ψΩ,ψΩ), {λj/NΩ}R1

j=1 is the set of the

eigenvalues of Lx1
. Furthermore, let V = [v1, . . . ,vR1

] be the orthonormal eigenvector matrix of K(ψΩ,ψΩ).
Then, (3.55) implies that

vj =
[ψΩ, ϕj ]

|[ψΩ, ϕj ]|
. (3.56)

From (3.54), we get

(KψΩ)T [ψΩ, ϕj ] = λjϕj , (3.57)

which yields

〈(KψΩ)T [ψΩ, ϕj ], (KψΩ)T [ψΩ, ϕj ]〉 = λ2
j 〈ϕj , ϕj〉. (3.58)

Since ϕj is normalized, we obtain from (3.57) and (3.58) that

λj |[ψΩ, ϕj ]|2 = [ψΩ, ϕj ]
TK(ψΩ,ψΩ)[ψΩ, ϕj ] = λ2

j ,

which gives

|[ψΩ, ϕj ]| =
√
λj . (3.59)

Hence, (3.56) and (3.59) imply that
√
λjvj = [ψΩ, ϕj ], which confirms (3.46). Then, the equality (3.47)

follows directly from (3.57) and (3.46). Meanwhile, (3.48) results from (3.47) and the fact that V is or-
thonormal.

Let ψΩ,j be the jth element of ψΩ. Denote by Vji the component of V at the jth row and the ith column.
From (3.48), we get

KψΩ,j =

R1∑
i=1

Vji
√
λiϕi. (3.60)

Thus, we get from (3.60) that

[ψΩ,j ,KψΩ,j ] = 〈KψΩ,j ,KψΩ,j〉 =

R1∑
i=1

λiV
2
ji =

R1∑
i=1

[ψΩ,j , ϕi]
2,

where the last equality follows (3.46). Thus, we conclude (3.49). �

Using (3.48) and (3.52), Hb in (3.42) can be rewritten in the basis of the eigenfunctions {ϕi}R1
i=1 and

{ζi}R2
i=1, i.e.,

Hb =

{
f =

R1∑
i=1

b1,i
√
λiϕi +

R2∑
i=1

b2,i
√
τiζi,

R1∑
i=1

b21,i +

R2∑
i=1

b22,i 6 1

}
. (3.61)

For any r := (r1, r2) ∈ [R1]× [R2], we define

Hrb =

{
f =

r1∑
i=1

b1,i
√
λiϕi +

r2∑
i=1

b2,i
√
τiζi,

r∑
i=1

b21,i + b22,i 6 1

}
,

Hrb =

{
f =

R1−r1∑
i=1

b1,i
√
λi+r1ϕi+r1 +

R2−r2∑
i=1

b2,i
√
τi+r2ζi+r2 ,

R1−r1∑
i=1

b21,i +

R2−r2∑
i=1

b22,i 6 1

}
.

(3.62)

Define

E(Ha, r) = max
h∈Hr

b

E(h,Ha), (3.63)

which is the worst error in approximating any h ∈ Hrb by functions in Ha. The next proposition bounds
E(Ha) by E(Ha, r).
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Proposition 3.12. Let r := (r1, r2) ∈ [R1] × [R2] and E(Ha, r) be as in (3.63). Under the conditions of
Proposition 3.11, for any r ∈ [R1]× [R2], we have

E(Ha) 6 2E(Ha, r) + 4λr1+1 + 4τr2+1, (3.64)

with the convention that λR1+1 = 0 and τR2+1 = 0.

Proof. Let Hrb and Hrb be defined in (3.62). For any h ∈ Hb, there exist h1 ∈ Hrb and h2 ∈ H
r

b such that
h = h1 + h2. Thus, we have

E(Ha) = max
h1∈Hr

b

h2∈H
r
b

min
v∈Ha

‖v − h1 − h2‖2U

62 max
h1∈Hr

b

min
v∈Ha

‖v − h1‖2U + 2 max
h2∈H

r
b

‖h2‖2U 6 2E(Ha, r) + 4λr1+1 + 4τr2+1,

which concludes (3.64). �

The above proposition implies that it is sufficient to bound E(Ha, r) in order to estimate the Nyström
approximation error. To proceed with the argument, we make the following assumptions about the inducing
points and the kernel associated with the RKHS U .

Assumption 1. Assume that the inducing points are uniformly sampled from the collection of sample
points. More precisely, let x := (x1,x2), where x1 is the set of interior sample points in Ω and x2 is the
collection of boundary samples, and let x̂ := (x̂1, x̂2) be the set of inducing points. Assume that x̂1 and x̂2

are uniformly sampled from x1 and x2, separately.

Assumption 2. Let ψ be as in (3.9). Denote by ψx := (δx ◦L1, . . . , δx ◦LD) the vector of linear operators
in ψ that is associated with the sample point at x ∈ x. Assume that there exists a constant C > 0 such that

D∑
i=1

[ψxi ,Kψxi ] 6 C.

Remark 3.13. We note that if the kernel K in (3.1) generated by K is smooth enough and the domain Ω
is compact, Assumption 2 holds.

Let φ be as in (3.6). For clarification, we denote by φ := (φΩ,φ∂Ω), where φΩ represents the set of
linear operators for interior points and φ∂Ω includes boundary linear operators. Let x̂ := (x̂1, x̂2) be as in
Assumption 1, let MΩ be the size of x̂1, and let M∂Ω be the length of x̂2. We define the operators Lx̂1

and
Lx̂2

such that for any function v ∈ U ,

Lx̂1
[v] =

1

MΩ
(KφΩ)T [φΩ, v] and Lx̂2

[v] =
1

M∂Ω
(Kφ∂Ω)T [φ∂Ω, v]. (3.65)

The following proposition provides upper bounds for the Hilbert–Schmidt norms of Lx1 −Lx̂1
and Lx2 −

Lx̂2
. We recall that for any linear operator L : H 7→ H, where H is a Hilbert space, we denote by ‖L‖HS

and ‖L‖2 the Hilbert–Schmidt norm and the spectral norm, respectively, i.e.

‖L‖HS =

√∑
i,j

〈ei, Lej〉2H and ‖L‖2 = max
‖v‖H61

‖Lv‖H. (3.66)

where {ei, i = 1, . . . } is a complete orthogonal basis of H. We note that for any linear operator L : H 7→ H,
‖L‖2 6 ‖L‖HS .
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Proposition 3.14. Suppose that Assumptions 1 and 2 hold. Let Lx1
, Lx2

be as in (3.45) and let Lx̂1
, Lx̂2

be given in (3.65). Then, with a probability 1− δ, 0 < δ < 1, there exists a constant C > 0 such that

‖Lx1 − Lx̂1
‖HS 6

4C ln(2/δ)√
MΩ

and ‖Lx2 − Lx̂2
‖HS 6

4C ln(2/δ)√
M∂Ω

. (3.67)

Proof. Here, we adapt the proof of Corollary 8 in [10]. Let ψx be given in Assumption 2 for x ∈ x. For any
v ∈ U , we define

ξ(x)[v] =

D∑
i=Db+1

Kψxi [ψxi , v],∀x ∈ x1, and ξ̂(x)[v] =

Db∑
i=1

Kψxi [ψxi , v],∀x ∈ x2.

Then, Lx̂1
= 1

MΩ

∑MΩ

i=1 ξ(x̂i), and Lx̂2
= 1

M∂Ω

∑M
i=MΩ+1 ξ̂(x̂i). According to Assumption 1, E[ξ(x)] = Lx1

and E[ξ̂(x)] = Lx2 . Denote by H1 the span of {ϕi}R1
i=1 and by H2 the span of {ζi}R2

i=1, which are endowed
with the norm of U . Under Assumption 1, we observe that Lx1

and Lx̂1
map H1 to H1, and that Lx2

and
Lx̂2

map H2 to H2. Thus, by the definition of the Hilbert–Schmidt norm in (3.66), there exists a constant
C such that

‖ξ(x)‖HS =

√√√√ R1∑
j,k

〈 D∑
i=Db+1

Kψxi [ψxi , ϕj ], ϕk

〉2

=

√√√√ R1∑
j,k

( D∑
i=Db+1

[ψxi , ϕj ][ψ
x
i , ϕk]

)2

6C

√√√√ R1∑
j,k

D∑
i=Db+1

[ψxi , ϕj ]
2[ψxi , ϕk]2 = C

√√√√ D∑
i=Db+1

( R1∑
j

[ψxi , ϕj ]
2

)2

6C
D∑

i=Db+1

R1∑
j=1

[ψxi , ϕj ]
2 = C

D∑
i=Db+1

[ψxi ,Kψxi ] 6 C,

(3.68)

where the last equality follows by (3.49) and we use Assumption 2 in the last inequality. Similarly, we get

‖ξ̂(x)‖HS 6 C
Db∑
i=1

[ψxi ,Kψxi ] 6 C. (3.69)

Hence, using (3.68), (3.69), and Proposition 1 of [28] (see also Proposition 6 of [10]), we conclude (3.67).
�

The following proposition gives an upper bound for E(Ha, r).

Proposition 3.15. Suppose that Assumptions 1 and 2 hold. Let E(Ha, r) be as in (3.63). Let M∂Ω =
M −MΩ and let N∂Ω = N −NΩ. Then, for any r := (r1, r2) ∈ [R1]× [R2], with a probability at least 1− δ,
0 < δ < 1, there exists a constant C such that

E(Ha, r) 6max

{
CN2

Ω ln2(2/δ)

λr1MΩ
,
CN2

∂Ω ln2(2/δ)

τr2M∂Ω

}
. (3.70)

Proof. The proof is an adaption of the arguments of Theorem 7 in [10]. Let {λi}R1
i=1, {τi}R2

i=1, {ϕi}R1
i=1, and

{ζi}R2
i=1 be the eigenvalues and the eigenfunctions in Proposition 3.11. Given δ ∈ [0, 1] and r := (r1, r2) ∈

[R1]× [R2], we define

Hrc,δ =

{
h =

r1∑
i=1

c1,i
√
λiϕi,

1

N2
Ω

r1∑
i=1

c21,iλ
2
i 6 δ

}
and Hrc,δ =

{
h =

r2∑
i=1

c2,i
√
τiζi,

1

N2
∂Ω

r2∑
i=1

c22,iτ
2
i 6 1− δ

}
,

Hrd,δ ={v ∈ U , ‖v‖2U 6 δN2
Ω/λr1}, and Hrd,δ = {v ∈ U , ‖v‖2U 6 (1− δ)N2

∂Ω/τr2}.
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Thus, Hrc,δ ⊂ Hrd,δ and Hrc,δ ⊂ H
r

d,δ. Meanwhile, for h1 ∈ Hrc,δ and h2 ∈ H
r

c,δ, using Proposition 3.11, we
have

Lx1
[h1] + Lx2

[h2] =
1

NΩ

r1∑
i=1

c1,i
√
λi(KψΩ)T [ψΩ, ϕi] +

1

N∂Ω

r2∑
i=1

c2,i
√
τi(Kψ∂Ω)T [ψ∂Ω, ζi]

=
1

NΩ

r1∑
i=1

c1,iλi(KψΩ)Tvi +
1

N∂Ω

r2∑
i=1

c2,iτi(Kψ∂Ω)Twi

=
1

NΩ

r1∑
i=1

c1,iλi
√
λiϕi +

1

N∂Ω

r2∑
i=1

c2,iτi
√
τiζi.

(3.71)

Thus, (3.71) implies that for any h ∈ Hrb , there exist δ ∈ [0, 1], h1 ∈ Hrc,δ, and h2 ∈ H
r

c,δ such that

h = Lx1 [h1] + Lx2 [h2]. Hence, we have

E(Ha, r) = max
h∈Hrb

E(g,Ha) = max
h1∈Hr

c,δ

h2∈H
r
c,δ

min
v∈Ha

‖Lx1
[h1] + Lx2

[h2]− v‖2U

6 max
h1∈Hr

d,δ

h2∈H
r
d,δ

min
v∈Ha

‖Lx1 [h1] + Lx2 [h2]− v‖2U .

By the definitions of Lx̂1
and Lx̂2

, we have Lx̂1
[h1] + Lx̂2

[h2] ∈ Ha. Thus, we get

E(Ha, r) 6 max
h1∈Hr

d,δ

h2∈H
r
d,δ

min
v∈Ha

‖Lx1 [h1] + Lx2 [h2]− v‖2U

6 max
h1∈Hr

d,δ

h2∈H
r
d,δ

‖Lx1 [h1] + Lx2 [h2]− Lx̂1
[h1]− Lx̂2

[h2]‖2U

6 max
δ∈[0,1]

{
2δN2

Ω

λr1
‖Lx1 − Lx̂1

‖22 +
2(1− δ)N2

∂Ω

τr2
‖Lx2 − Lx̂2

‖22
}

6max

{
2N2

Ω

λr1
‖Lx1 − Lx̂1

‖2HS ,
2N2

∂Ω

τr2
‖Lx2 − Lx̂2

‖2HS
}
.

(3.72)

Thus, (3.72) together with Proposition 3.14 implies that (3.70) holds. �

Finally, we are ready to give a bound for E(Ha) in the following theorem.

Theorem 3.16. Suppose that Assumptions 1 and 2 hold. Let E(Ha) be as in (3.43). With a probability at
least 1− δ, δ ∈ (0, 1), for any r := (r1, r2) ∈ [R1]× [R2], we have

E(Ha) 6max

{
CN2

Ω ln2(2/δ)

λr1MΩ
,
CN2

∂Ω ln2(2/δ)

τr2M∂Ω

}
+ 4λr1+1 + 4τr2+1, (3.73)

with the convention that λR1+1 = 0 and τR2+1 = 0.

Proof. The inequality (3.73) follows directly from Propositions 3.12 and 3.15. �

Remark 3.17. Proposition 3.10 and Theorem 3.16 imply that ‖K(ψ,ψ) − K(ψ,φ)(K(φ,φ))−1K(φ,ψ)‖
admits an upper bound that depends only on the size of sample points and is not influenced by the number
of linear operators in the PDE.

4. Numerical Results

In this section, we demonstrate the efficacy of the SGP method by solving a nonlinear elliptic equation
in Subsection 4.1, Burger’s equation in Subsection 4.2, and a parabolic equation in Subsection 4.3. For
all the experiments, we take N samples in the domain in a way such that NΩ samples are in the interior.
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Besides, we randomly choose M points from the samples and treat them as inducing points. To show the
performance of the SGP method, we first plot samples, inducing points, loss histories of the Gauss–Newton
iterations, and contours of pointwise solution errors for fixed values of N and M . Though we solve an
equation at a collection of uniform random samples, we compute the solution error by reevaluating the
numerical approximation function at a 100 × 100 equally spaced grid using (3.20) and by comparing the
results with the values of the true solution. Then, we record the L∞ errors of the GP method in [1] and the
SGP algorithm for different values of N and M . Results are averaged over 10 realizations of random sample
points.

Our implementation is based on the code† of [1], which leverages Python with the JAX package for
automatic differentiation. Our experiments are conducted only on CPUs. Additional performance speedups
can be obtained by considering accelerated hardware such as Graphics Processing Units (GPU).

4.1. A Nonlinear Elliptic Equation. In this example, we reconsider the nonlinear elliptic equation in
Section 3.5 of [1] on a larger domain. More precisely, we consider (2.1) with d = 2, Ω = (0, 3)2, τ(u) = u3, and
g(x) = 0. We prescribe the solution u to be sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2) for x := (x1, x2) ∈ Ω

and compute f accordingly. We use the Gaussian kernel K(x,y) = exp(− |x−y|
2

2σ2 ) with the lengthscale
parameter σ = 0.2. Given N and M , we set NΩ = 0.75 × N and MΩ = 0.75 ×M . In this example, we
choose γ = η = 10−12 (see Subsection 2.2 and Remark 2.2). The algorithm stops once the error between two
successive steps is less than 10−5.

Figure 1 shows the numerical results for N = 4800 and M = 1200. We choose γ = η = 10−12. The
uniform sample points used are plotted in Figure 1a, from which we randomly choose M including points
shown in Figure 1b. We solve the unconstrained minimization problem in (2.5). The convergence history
of the Gauss–Newton iteration in 1c shows that the SGP method converges in 5 iterations. In Figure 1d,
we plot the contour of pointwise errors between the numerical approximation and the true solution on a
100× 100 equally spaced grid.

To further explore the efficacy of our algorithm. We compare the L∞ errors of the SGP method and the
GP algorithm in [1] for different numbers of sample points and inducing points in Table 1. We see that
when N = M , both algorithms achieve the accuracy of the same magnitude. Meanwhile, when N >> M ,
the SGP method with N sample points and M inducing points is more accurate than the GP method with
M sample points. Furthermore, the SGP method with N sample points, half of which are used as inducing
points, achieves comparable accuracy to the GP method with the same number of sample points. Hence, by
using (2.9), the size of the matrix needed to be inverted in the SGP method can be significantly reduced. In
other words, the SGP approach consumes much less computational time while retaining desirable accuracy
compared to the GP method.

N 1200 2400 4800 9600
GP, L∞ error 1.60× 10−1 1.42× 10−3 4.31× 10−5 4.37× 10−6

SGP(M = 600), L∞ error 8.30× 10−1 5.42× 10−2 2.48× 10−2 2.25× 10−2

SGP(M = 1200), L∞ error 1.33× 10−1 2.00× 10−3 1.79× 10−4 8.63× 10−5

SGP(M = 2400), L∞ error N/A 2.10× 10−3 4.13× 10−5 1.02× 10−5

SGP(M = 4800), L∞ error N/A N/A 3.14× 10−5 7.11× 10−6

Table 1. The elliptic equation: L∞ errors of the SGP method and the GP algorithm for
different numbers of sample points and inducing points. The N/A means not available. We
set γ = η = 10−12.

†https://github.com/yifanc96/NonlinearPDEs-GPsolver.git
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(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

Fig. 1. Numerical results for the nonlinear elliptic equation: (a) a set of sample points; (b)
a collection of inducing points; (c) the convergence history of the Gauss–Newton iterations;
(d) contours of pointwise errors. The regularization parameters γ = η = 10−12. N =
9600, NΩ = 0.75×N , M = 1200,MΩ = 0.75×M .

4.2. Burgers’ equation. In this example, we consider the same Burger’s equation as in [1]. More precisely,
given ν = 0.02, we seek to find u solving

∂tu+ u∂xu+ ν∂2
xu = 0,∀(t, x) ∈ (0, 1]× (−1, 1),

u(0, x) = − sin(πx),∀x ∈ [−1, 1],

u(t,−1) = u(t, 1) = 0,∀t ∈ [0, 1].

We uniformly sample N points in the space-time domain, from which M samples are randomly chosen as
inducing points. All experiments in this example use a fixed ratio of interior points, NΩ/N = MΩ/M = 5/6.
To take into consideration the space and time variability of the solution to Burger’s equation, as in [1], we
choose the anisotropic kernel

K((t, x), (t′, x′)) = exp(−(t− t′)2/σ2
1 − (x− x′)2/σ2

2), (4.1)

with (σ1, σ2) = (0.3, 0.05). For comparison, as in [1], the true solution is calculated from the Cole–Hopf
transformation and the numerical quadrature. We use the technique of eliminating variables to deal with
the constraints in (3.21) (see Subsection 3.3 in [1]) and use the Gauss–Newton method to solve the resulting
unconstrained minimization problem. All the experiments in this example stop once the errors between two
successive steps are less than 10−5.

Figure 2 shows the numerical results for N = 2400 and M = 600 with parameters γ = η = 10−6. The
samples and the inducing points are given in Figures 2a and 2b. The history of Gauss–Newton iterations
is plotted in Figure 2c, which implies the fast convergence of the SGP method. The absolute values of the
pointwise errors between the numerical solution and the true solution are shown in Figure 2d. Similar to the
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results of the GP method given in [1], the maximum errors occurred close to the shock. In Figures 2e-2g, we
compare the numerical and true solutions at times t = 0.25, 0.5, 0.75 to highlight the accuracy of our SGP
method.

In Table 2, we present the L∞ errors of the SGP method and the GP algorithm in [1] for different choices
of N and M . Similar to the nonlinear elliptic example, the SGP algorithm yields comparable accurate
numerical solutions to the GP method by using less than half of the samples as inducing points.

(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

(e) u† v.s. u∗ at t = 0.25. (f) u† v.s. u∗ at t = 0.5. (g) u† v.s. u∗ at t = 0.75.

Fig. 2. Numerical results for the Burger’s equation: (a) a set of sample points; (b) a
collection of inducing points; (c) the convergence history of the Gauss–Newton iterations;
(d) contours of pointwise errors; (e)-(g) time slices of the numerical approximation u† and the
true solution u∗ at t = 0.25, 0.5, 0.75. The parameters γ = η = 10−6, N = 2400, NΩ = 5N/6,
M = 600, and MΩ = 5M/6.
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N 600 1200 2400 4800
GP, L∞ error 6.29× 10−1 4.66× 10−2 4.92× 10−3 4.60× 10−4

SGP(M = 300), L∞ error 6.80× 10−1 7.10× 10−2 1.72× 10−2 1.15× 10−2

SGP(M = 600), L∞ error 7.15× 10−1 7.56× 10−2 4.60× 10−3 1.30× 10−3

SGP(M = 1200), L∞ error N/A 5.83× 10−2 4.24× 10−3 1.13× 10−3

SGP(M = 2400), L∞ error N/A N/A 3.53× 10−3 4.47× 10−4

Table 2. Burger’s equation: L∞ errors of the SGP method and the GP algorithm for
different numbers of sample points and inducing points. The N/A means not available. We
set γ = η = 10−6 for N 6 1200 and choose γ = η = 10−8 for N = 2400.

4.3. A Nonlinear Parabolic Equation. We consider the numerical solution of the parabolic equation
∂tu− ∂2

xu+ 1
2 |∂xu|

2 + u+ x∂ux = f, ∀(t, x) ∈ (0, 1]× (0, 3/2),

u(0, x) = g(x),∀x ∈ (0, 3/2),

u(t,−1) = h1(x), u(t, 1) = h2(x),∀t ∈ (0, 1).

We prescribe the true solution u(t, x) = (sin(πx) + 2 cos(2πx))e−t and compute f , g, h1, and h2 accordingly.
We fix the ratios NΩ/N = MΩ/M = 6/7. Meanwhile, we use the anisotropic kernel in (4.1) with the
same lengthscales, i.e., (σ1, σ2) = (0.3, 0.05). We use the technique of eliminating variables to handle the
constraints in (3.21) (see Subsection 3.3 of [1]). All the experiments in this example stop once the errors
between two successive steps are less than 10−5 or the iteration numbers exceed 20.

Figure 3 plots the numerical results when N = 2800, M = 700, and γ = η = 10−10. Figures 3a and 3b
depict the samples and the inducing points. The history of Gauss–Newton iterations is plotted in Figure 3c,
which shows that the algorithm converges within 6 iterations. The absolute values of the pointwise errors
between the numerical solution and the true solution are given in Figure 3d. Table 3 records the L∞ errors
of the SGP method and the GP algorithm in [1] for different values of N and M , which justifies the efficacy
of the SGP method.

N 700 1400 2800 5600
GP, L∞ error 2.75× 10−1 6.42× 10−3 5.13× 10−4 7.25× 10−5

SGP(M = 350), L∞ error 3.09× 10−1 2.92× 10−2 2.67× 10−2 3.63× 10−3

SGP(M = 700), L∞ error 2.79× 10−1 1.50× 10−2 6.93× 10−4 1.00× 10−4

SGP(M = 1400), L∞ error N/A 9.47× 10−3 5.22× 10−4 4.70× 10−5

SGP(M = 2800), L∞ error N/A N/A 3.36× 10−4 4.32× 10−5

Table 3. The parabolic PDE: L∞ errors of the SGP method and the GP algorithm for
different numbers of sample points and inducing points. The N/A means not available. We
set γ = η = 10−10.

5. Conclusion and Future Work

In this paper, we present a SGP framework to solve nonlinear PDEs. The SGP method finds a numerical
solution to a PDE in the RKHS associated with a low-rank kernel generated by inducing points. Mean-
while, the approximation solution can be viewed as a maximum a posteriori probability estimator of a SGP
conditioned a noisy observation of values of linear operators satisfying the PDE at a finite set of samples.
Our numerical experiments imply that the SGP algorithm consumes less computational time than the GP
method in [1] without losing much accuracy when both methods use uniform samples. We notice that the
positions of inducing points greatly influence the performance of our algorithm. Hence, a potential future
work is to investigate a better way to put inducing points. Meanwhile, the choice of hyperparameters has a
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(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

Fig. 3. Numerical results for the parabolic equation: (a) a set of sample points; (b) a
collection of inducing points; (c) the convergence history of the Gauss–Newton iterations;
(d) contours of pointwise errors. The regularization parameters γ = η = 10−10. N =
2800, NΩ = 6/7×N , M = 700,MΩ = 6/7×M .

profound impact on the performance of our method. The probabilistic interpretation of the SGP approach
in Subsection 2.3 provides a way for hyperparameter learning in future work.
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