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Abstract

Symmetry protected topological (SPT) states have boundary ’t Hooft anomalies that ob-
struct an effective boundary theory realized in its own dimension with UV completion and
with an on-site G-symmetry. In this work, yet we show that a certain anomalous non-on-site
G symmetry along the boundary becomes on-site when viewed as an extended H symmetry,
via a suitable group extension 1 → K → H → G → 1. Namely, a non-perturbative global
(gauge/gravitational) anomaly in G becomes anomaly-free in H. This guides us to construct
exactly soluble lattice path integral and Hamiltonian of symmetric gapped boundaries, always
existent for any SPT state in any spacetime dimension d ≥ 2 of any finite symmetry group,
including on-site unitary and anti-unitary time-reversal symmetries. The resulting symmet-
ric gapped boundary can be described either by an H-symmetry extended boundary of bulk
d ≥ 2, or more naturally by a topological emergent K-gauge theory with a global symmetry G
on a 3+1D bulk or above. The excitations on such a symmetric topologically ordered bound-
ary can carry fractional quantum numbers of the symmetry G, described by representations
of H. (Apply our approach to a 1+1D boundary of 2+1D bulk, we find that a deconfined
gauge boundary indeed has spontaneous symmetry breaking with long-range order. The de-
confined symmetry-breaking phase crosses over smoothly to a confined phase without a phase
transition.) In contrast to known gapped boundaries/interfaces obtained via symmetry breaking
(either global symmetry breaking or Anderson-Higgs mechanism for gauge theory), our approach
is based on symmetry extension. More generally, applying our approach to SPT states, topolog-
ically ordered gauge theories and symmetry enriched topologically ordered (SET) states, leads
to generic boundaries/interfaces constructed with a mixture of symmetry breaking, symmetry
extension, and dynamical gauging.
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1 Introduction

After the realization that a spin-1/2 antiferromagnetic Heisenberg chain in 1+1 dimensions (1+1D)
admits a gapless state [1,2] that “nearly” breaks the spin rotation symmetry (i.e. it has “symmetry-
breaking” spin correlation functions that decay algebraically), many physicists expected that spin
chains with higher spin, having less quantum fluctuations, might also be gapless with algebraic long-
range spin order. However, Haldane [3] first realized that antiferromagnetic Heisenberg spin chains
in 1+1D with integer spins have a gapped disordered phase with short-range spin correlations. At
first, it was thought that those states are trivial disordered states, like a product state of spin-0
objects. Later, it was discovered that they can have degenerate zero-energy modes at the ends of
the chain [4], similar to the gapless edge states of quantum Hall systems. This discovery led to a
suspicion that these gapped phases of antiferromagnetic integer spin chains might be topological
phases.

Are Haldane phases topological or not topological? What kind of “topological” is it? That was
the question. It turns out that only odd-integer-spin Haldane phases (each site with an odd-integer
spin) are topological, while the even-integer-spin Haldane phases (each site with an even-integer
spin) are really trivial (a trivial vacuum ground state like the product state formed by spin-0’s). The
essence of nontrivial odd-integer-spin Haldane phases was obtained in Ref. [5], based on a tensor
network renormalization calculation [6], where simple fixed-point tensors characterizing quantum
phases can be formulated. It was discovered that the spin-1 Haldane phase is characterized by a
non-trivial fixed-point tensor – a corner-double-line tensor. The corner-double-line structure implies
that the spin-1 Haldane phase is actually equivalent to a product state, once we remove its global
symmetry. However Ref. [5] showed that the corner-double-line tensor is robust against any local
perturbations that preserve certain symmetries (namely, SO(3) symmetry in the case of the integer
spin chain), but it flows to the trivial fixed point tensor if we break the symmetry. This suggests
that, in the presence of symmetry, even a simple product state can be non-trivial (i.e. , distinct
from the product state of spin-0’s that has no corner-double-line structure), and such non-trivial
symmetric product states were named Symmetry Protected Topological states (SPTs). (Despite
its name, an SPT state has no intrinsic topological order in the sense defined in Ref. [7, 8]. By
this definition, an SPT state with no topological order cannot be deformed into a trivial disordered
gapped phase in a symmetry-preserving fashion.)

Since SPT states are equivalent to simple product states if we remove their global symmetry,
one quickly obtained their classification in 1+1D [9–11], in terms of projective representations [12]
of the symmetry group G. As remarked above, one found that only the odd-integer-spin Haldane
phases are non-trivial SPT states. The even-integer-spin Haldane phases are trivial gapped states,
just like the disordered product state of spin-0’s [13]. Soon after their classification in 1+1D, bosonic
SPT states in higher dimensions were also classified based on group cohomology Hd+1(G,U(1)) and
Hd+1(G× SO(∞), U(1)) [14–17], 1 or based on cobordism theory [18–20]. In fact, SPT states and

1 For d + 1D SPT states (possibly with a continuous symmetry), here we use the Borel group cohomology
Hd+1(G,U(1)) or Hd+1(G × SO(∞), U(1)) to classify them [14, 17]. Note that Hd+1(G,U(1)) = Hd+2(BG,Z),
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Dijkgraaf-Witten gauge theories [21] are closely related: Dynamically gauging the global symmetry
[22,23] in a bosonic SPT state leads to a corresponding Dijkgraaf-Witten bosonic topological gauge
theory.

To summarize, SPT states are the simplest of symmetric phases and, accordingly, have another
name Symmetry Protected Trivial states. They are quantum-disordered product states that do
not break the symmetry of the Hamiltonian. Naively, one would expect that such disordered
product states all have non-fractionalized bulk excitations. What is nontrivial about an SPT
state is more apparent if one considers its possible boundaries. For any bulk gapped theory with G
symmetry, a G-preserving boundary is described by some effective boundary theory with symmetry
G. However, the boundary theories of different SPT states have different ’t Hooft anomalies in
the global symmetry G [24–27]. A simple explanation follows: While the bulk of SPT state of a
symmetry group G has an onsite symmetry, the boundary theory of SPT state has an effective non-
onsite G-symmetry. Non-onsite G-symmetry means that the G-symmetry does not act in terms of a
tensor product structure on each site, namely the G-symmetry acts non-locally on several effective
boundary sites. Non-onsite symmetry cannot be dynamically gauged — because conventionally the
gauging process requires inserting gauge variables on the links between the local site variables of
G-symmetry. Thus the boundary of SPT state of a symmetry G has an obstruction to gauging, as
’t Hooft anomaly obstruction to gauging a global symmetry [28]. Such an anomalous boundary is
the essence of SPT states: Different boundary anomalies characterize different bulk SPT states. In
fact, different SPT states classify gauge anomalies and mixed gauge-gravity anomalies in one lower
dimension [25–27].2

From the above discussion, we realize that to understand the physical properties of SPT states
is to understand the physical consequence of anomalies in the global symmetry G on the boundary
of SPT states, somewhat as in work of ’t Hooft on gauge theory dynamics in particle physics [28].
For a 1+1D boundary, it was shown that the anomalous global symmetry makes the boundary
gapless and/or symmetry breaking [14]. However, in higher dimensions, there is a third possibility:
the boundary can be gapped, symmetry-preserving, and topologically ordered. (This third option
is absent for a 1+1D boundary roughly because there is no bosonic topological order in that dimen-
sion.3) Concrete examples of topologically ordered symmetric boundaries have been constructed
in particular cases [30–38]. In this paper, we give a systematic construction that applies to any
SPT state with any finite4 symmetry group G, for any boundary of bulk dimension 2 + 1 or more.
Namely, we show that symmetry-preserving gapped boundary states always exist for any d + 1D
bosonic SPT state with a finite symmetry group G when d ≥ 3. We also study a few examples, but
less systematically, when SPT states have continuous compact Lie groups G, and we study their
symmetry-preserving gapped boundaries, which may or may not exist.

where Hd+2(BG,Z) is the topological cohomology of the classifying space BG of G. When G is a finite group, we
have only the torsion part Hd+1(G,U(1)) = Hd+2(BG,Z) = Hd+1(BG,U(1)).

2 Thus, more precisely, as explained above, different SPT states have different ’t Hooft anomalies on the boundary.
In this article, when we say gauge anomalies and mixed gauge-gravity anomalies on the boundaries of SPT states,
we mean the ’t Hooft anomalies of global symmetries or spacetime diffeomorphisms, coupling to non-dynamical
background probed field or background probed gravity. So the gauge anomalies and mixed gauge-gravity anomalies
(on boundaries of SPTs) mean to be the background gauge anomalies and mixed background gauge-gravity anomalies:
Both the gauge fields and gravitational fields are background non-dynamical probes.

3 Here we mean that there is no intrinsic 1+1D topological order in bosonic systems, neither in its own dimension
nor on the boundary of any 2+1D bulk short-range entangled state. (Namely, we may say that there is no 1+1D
bosonic topological quantum field theory robust against any local perturbation.) However, the 1+1D boundary of a
2+1D bulk long-range entangled state may have an intrinsic topological order. Moreover, in contrast, in a fermionic
system, there is a 1+1D fermionic chain [29] with an intrinsic fermionic topological order.

4The symmetries may be ordinary unitary symmetries, or may include anti-unitary time-reversal symmetries.
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Symmetry-breaking gives a straightforward way to construct gapped boundary states or inter-
faces, since SPT phases are completely trivial if one ignores the symmetry. For topological phases
described by group cocycles of a group G, the symmetry-breaking mechanism can be described
as follows. It is based on breaking the G to a subgroup G′ ⊆ G, corresponding to an injective
homomorphism ι as

G′
ι→ G. (1.1)

Here G′ must be such that the cohomology class inHd+1(G,U(1)) that characterizes the d+1D SPT
or SET state becomes trivial when pulled back (or equivalently restricted) to G′. The statement
that the class is “trivial” does not mean that the relevant G-cocycle is 1 if we restrict its argument
from G to G′, but that this cocycle becomes a coboundary when restricted to G′.

Our approach to constructing exactly soluble gapped boundaries does not involve symmetry
breaking but what one might call symmetry extension:

1→ K → H
r→ G→ 1. (1.2)

Here we extend G to a larger group H, such that G is its quotient group, K is its normal subgroup,
and r is a surjective group homomorphism, more or less opposite to the injective homomorphism
ι related to symmetry breaking (eqn. (1.1)). H and r must be such that the cohomology class in
Hd+1(G,U(1)) that characterizes the SPT or SET state becomes trivial when pulled back to H.
For any finite G and any class in Hd+1(G,U(1)), we show that suitable choices of H and r always
exist, when the bulk space dimension d ≥ 1. Physically the gapped phases that we construct in
this way have the property that boundary degrees of freedom transform under an H symmetry.
However, in condensed matter applications, one should usually5 assume that the subgroup K of
H is gauged, and then (in the SPT case) the global symmetry acting on the boundary is G, just
as in the bulk. So in that sense, when all is said and done the boundary states that we construct
simply have the same global symmetry as the bulk, and the boundaries become topological since
K is gauged. For 2+1D (or higher dimensional) boundaries, such symmetry preserving topological
boundaries may have excitations with fractional G-symmetry quantum numbers. The fact that the
boundary degrees of freedom are in representations of H rather than G actually describes such a
charge fractionalization.

The idea behind this work was described in a somewhat abstract way in Sec. 3.3 of Ref. [40],
and a similar idea was used in Ref. [41] in examples. In the present paper, we develop this idea
in detail and in a down-to-earth way, with both spatial lattice Hamiltonians and spacetime lattice
path integrals that are ultraviolet (UV) complete at the lattice high energy scale. We also construct
a mixture combining the symmetry-breaking and symmetry-extension mechanisms.

We further expand our approach to construct anomalous gapped symmetry-preserving inter-
faces (i.e. domain walls) between bulk SPT states, topological orders (TO) and symmetry enriched
topologically ordered states (SETs). 6 We will recap the terminology for the benefit of some read-
ers. SPTs are short-range entangled (SRE) states, which can be deformed to a trivial product
state under local unitary transformations at the cost of breaking some protected global symme-
try. Examples of SPTs include topological insulators [42–44]. Topological orders are long-range

5See Sec. 3.2 for an example in which it is natural in condensed matter physics to treat K as a global symmetry.
See also a more recent work Ref. [39] applying the idea to 1+1D bosonic/spin chains or fermionic chains.

6We remark that our approach to constructing gapped boundaries may not be applicable to some invertible
topological orders (iTO, or the invertible topological quantum field theory [TQFT]) protected by no global symmetry.
However, the gapped boundaries of certain iTO can still be constructed via our approach: For example, the 4+1D
iTO with a topological invariant (−1)

∫
w2w3 has a boundary anomalous 3+1D Z2 gauge theory. Here wi ≡ wi(TM)

is the i-th Stiefel-Whitney class of a tangent bundle TM over spacetime M .
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entangled (LRE) states, which cannot be deformed to a trivial product state under local unitarity
transformations even if breaking all global symmetries. SETs are topological orders – thus LRE
states– but additionally have some global symmetry. Being long-range entangled, TOs and SETs
have richer physics and mathematical structures than the short-range entangled SPTs. Examples
of TOs and SETs include fractional quantum Hall states and quantum spin liquids [45]. In this
work, for TOs and SETs, we mainly focus on those that can be described by Dijkgraaf-Witten
twisted gauge theories, possibly extended with global symmetries. We comment on possible appli-
cations and generalizations to gapped interfaces of bosonic/fermionic topological states obtained
from beyond-group cohomology and cobordism theories in Sec. 6-7.

1.1 Summary of physical results

In this article, we study a certain type of boundaries for G-SPT states with a G-symmetry. This
type of boundary is obtained by adding new degrees of freedom along the boundary that transform
as a representation of a properly extended symmetry group H via a group extension 1 → K →
H → G → 1 with a finite K. Such an H-symmetry extended (or symmetry enhanced) boundary
can be fully gapped with an H-symmetry, but without any topological order on the boundary. The
last column in Tables 1-4 describes such symmetry extension.

Moreover, there is another type of boundary, obtained by gauging the normal subgroup K of H.
This type of boundary is described by a deconfined K-gauge theory and has the same G-symmetry
as the bulk. We have constructed exactly soluble model to realize such type of boundaries for any
SPT state with a finite group G symmetry, and for some SPT states with a continuous group G
symmetry. Tables 1, 2, 3 and 4 summarize physical properties of this type of boundaries obtained
from exactly soluble models for various G-SPT states in various dimensions.

Symm. group
1+1D SPT Bulk inv.

(d-cocycle ωd)
End-point states 1→ K → H → G→ 1

Z2
2 :

D.12
D.13

ω2, II , exp(iπ
∫
a1a2)

2-dim Rep(Q8)
2-dim Rep(D4)

1→ Z2 → Q8 → (Z2)2 → 1
1→ Z2 → D4 → (Z2)2 → 1

SO(3) : D.23
Haldane phase

for odd-integer-spin

Odd-integer AF
Heisenberg spin chain

2-dim Rep(SU(2)) 1→ Z2 → SU(2)→ SO(3)→ 1

Table 1: The 1+1D G-SPT states and their 0+1D degenerate states at the open chain end. The
first column is the symmetry group G. The second column is the G-cocycle (i.e. the SPT invariant)
that characterizes the SPT state. The third column is the ground state degeneracy (GSD) of end-
point states and their H-representation. The four column is the group extension that trivialize the
cocycle in the second column, which is used to construct the end states (that give rise to group H).
Note that only Haldane phase for odd-integer-spin chain corresponds to an SPT state.

For 1+1D SPT states, their degenerate end states are described by a representation of H, called
Rep(H). The Rep(H) is also a projective representation of G when K is Abelian (see Table 1).

For a 2+1D SPT state, the boundary K-gauge deconfined phase corresponds to a gapped
spontaneously symmetry breaking boundary (breaking a part of G-symmetry), which is described
by an unbroken edge symmetry group Gedge ⊂ G (see Table 2). (However, if we consider this
boundary as an H-symmetry extended 1+1D gapped boundary of the 2+1D bulk G-SPT state,
then the boundary has no spontaneous symmetry breaking. The full H symmetry is preserved.)
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Symm. group
2+1D SPT Bulk inv.

(d-cocycle ωd)
Unbroken

edge symm.
GSD

on D2 1→ K → H → G→ 1

Z2: D.4/5.2 ω3, I , exp(iπ
∫

(a1)3) Gedge = 1 2 1→ Z2 → Z4 → Z2 → 1
D.9 Gedge = 1 2N 1→ Z2N→Z4N→Z2 → 1
D.10 Gedge = 1 4 1→ Z4 → Q8 → Z2 → 1

Z2
2 : D.11 ω3, II , exp(iπ

∫
a1βa2) Gedge = Z2 2 1→ Z2 → D4 → (Z2)2 → 1

D.16 Gedge = Z2 4 1→ (Z2)2 → D4 × Z2 → (Z2)2 → 1

Z3
2 : D.14 ω3, III , exp(iπ

∫
a1a2a3) Gedge = (Z2)2 2 1→ Z2 → D4 × Z2 → (Z2)3 → 1

U(1) o ZT2 :
BTI

D.21 exp(iπ
∫
w1c1) Gedge = U(1) 2

1→ Z2 → G→ G→ 1,
G = U(1) o ZT2

Z2 o ZT2 :
BTSC

D.21 exp(iπ
∫
w1(a1)2) Gedge = Z2 2

1→ Z2 → G→ G→ 1,
G = Z2 o ZT2

Table 2: The 2+1D G-SPT states, and their 1+1D gapped spontaneously symmetry breaking edge
states (or gapped symmetry extended edge states if we interpret the H as an extended symmetry in
any (artificial) model similar to Sec. 3.2 described later). The first column is the symmetry group G.
The second column is the G-cocycle (i.e. the SPT invariant) that characterizes the SPT state. The
β is the Bockstein homomorphism. The third column is the unbroken symmetry group on the edge.
The fourth column is GSD of the system on D2 (the edge is a single S1). The fifth column is the
group extension that we use to construct the exactly soluble edge (that give rise to above results).
Often we can construct many different exactly soluble edges (with different physical properties)
for the same bulk SPT state. “BTI” stands for bosonic topological insulator. “BTSC” stands for
bosonic topological superconductor. (Here we intentionally omit gapless symmetry preserving edge
states [e.g. edge cannot be gapped enforced by symmetry and perturbative anomalies], see Table
4, 6 and 10 for such examples.) Here wi ≡ wi(TM) is the i-th Stiefel-Whitney class of a tangent
bundle TM over spacetime M .

For a 3+1D SPT state, the boundary K-gauge deconfined phase corresponds to a gapped
symmetry preserving topologically ordered boundary described by a K gauge theory (see Table 3).
Higher or arbitrary dimensional results are gathered in Table 4. Note that the d-cocycle ωd for a
finite Abelian group G with its type Roman numeral index follows the notation defined in Ref. [27].

The symmetry preserving gapped boundary has topological excitations that carry fractional
quantum numbers of the global symmetry G. Such a symmetry fractionalization is actually de-
scribed by Rep(H) in our theory (see Table 3). In the following we will explain such a result.

1. First of all, we know that the K-gauge theory has gauge charges (point particles) carrying the
representation, Rep(K), of its gauge group K. Each distinct representation Rep(K) labels
distinct gauge-charged particle excitations.

2. Second, if the K-gauge theory has a global G-symmetry, one may naively think that a gauge
charged excitation can be labeled by a pair (Rep(K), Rep(G)), a representation Rep(K)
from the gauge group K and a representation Rep(G) from the symmetry group G. The
label (Rep(K), Rep(G)) is equivalent to Rep(K × G). If gauge charged excitations can be
labeled by Rep(K ×G), this will implies that the gauge charged excitations do not carry any
fractionalized quantum number of the symmetry G (i.e. no fractionalization of the symmetry
G).

3. However, for the boundary K-gauge theory (e.g. the 2+1D surface) of G-SPT state, the gauge
charge excitations are in general labeled by Rep(H) with H/K = G, instead of Rep(K ×G).
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Symm. group
3+1D SPT Bulk inv.

(4-cocycle ω4)
Gauge
K

GSD on
D2 × S1

Symm. frac. of
gauge charge

Rep(H)
H/K = G

ZT2 : BTSC
D.6/5.3

exp(iπ
∫

(w1)4) Z2 4
Rep(ZT4 )

Kramer doublet
ZT4 /Z2 = ZT2

D.8 exp(iπ
∫

(w2)2) Z2 4 Rep(ZT2 ) Pin+(∞)
Z2

= O(∞)

D.8 exp(iπ
∫

(w1)4 + (w2)2) Z2 4 Rep(ZT4 ) Pin−(∞)
Z2

= O(∞)

U(1)× ZT2 :
BTP

exp(iπ
∫
w2

1c1) Z2 4
Rep(Ũ(1)× ZT2 )

1
2U(1)-charge

Ũ(1)×ZT2
Z2

= U(1)× ZT2

Z2 4
Rep(U(1)× ZT4 )
Kramer doublet

U(1)×ZT4
Z2

= U(1)× ZT2

Z2 4
Rep(U(1)× ZT4 )
1
2U(1)-charge is
Kramer doublet

U(1)×ZT4
Z2

= U(1)× ZT2

Z2
2 : D.17

ω4, II ,
exp(iπ

∫
a1a2βa2)

Z2 4 Rep(D4) D4/Z2 = (Z2)2

Z3
2 : D.18

ω4, III ,
exp(iπ

∫
a1a2βa3)

Z2 4 Rep(D4 × Z2) D4×Z2
Z2

= (Z2)3

Z4
2 : D.15

ω4, IV ,
exp(iπ

∫
a1a2a3a4)

Z2 4 Rep(D4 × (Z2)2) D4×(Z2)2

Z2
= (Z2)4

Table 3: The 3+1D G-SPT states and their 2+1D gapped symmetry preserving topologically
ordered boundaries (or gapped symmetry extended boundary states if we interpret the H as an
extended symmetry). The first column is the symmetry group G. The second column is the G-
cocycle (i.e. the SPT inv.) that characterizes the SPT state. The third column is the gauge
group K for the boundary topologically ordered gauge theory. The fourth column is GSD of the
system on the space D2 × S1. The fifth column is the symmetry fractionalization of quasiparticle
excitations on the boundary. The sixth column is the group extension that we use to construct the
exactly soluble boundary (that give rise to above results). “BTSC” stands for bosonic topological
superconductor. “BTP” stands for bosonic topological paramagnet. The Ũ(1) is a double-covering
U(1). Here wi ≡ wi(TM) is the Stiefel-Whitney class of a spacetime tangent bundle TM .

H is a “twisted” product of K and G, which is the so-called projective symmetry group (PSG)
introduced in Ref. [46]. When a gauge charged excitation is described by Rep(H) instead
of Rep(K × G), it implies that the particle carries a fractional quantum number of global
symmetry G. We say there is a fractionalization of the symmetry G.

4. Continued from the previous remark, if the gauge group K is ZN or U(1), then Rep(H) is
also called the projective representation of G, named Proj.Rep(G). Projective representation
of G also corresponds to a fractionalization of the symmetry G.

5. The quantum dimension dα (i.e. the internal degrees of freedom) of a gauge-charged excitation
α labeled by Rep(H) is given by the dimension of the Rep(H): dα = Dim[Rep(H)]. For our
gauge theoretic construction, because the Rep(H) always has an integer dimension, thus
the corresponding gauge charge always has an integer quantum dimension d. More general
topological order may have an anyon excitation α′ that has a non-integer or irrational quantum
dimension dα′ .

The first three rows in Table 3 are for the three 3+1D time-reversal SPT states. The first one is
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Symm. group
SPT Bulk inv.
(cocycle ωd+1)

Gauge
K

GSD on
D2 × (S1)d−2

Symm. frac. of
gauge charge

Rep(H)
H/K = G

U(1) : D.20
6 + 1/5 + 1D

exp(iπ
∫
w2w3c1) Z2 32

Rep(Ũ(1))
1
2U(1)-charge

Ũ(1)×SO(∞)
Z2

= U(1)× SO(∞)

Z2 : D.5
d+ 1/dD
(even d)

ωd+1, I ,
exp(iπ

∫
(a1)d+1)

Z2 2d−1 Rep(Z4)
1
2 Z2-charge

Z4/Z2 = Z2

ZT2 : D.7
d+ 1/dD

BTSC (odd d)

ZT2 -cocycle,
exp(iπ

∫
(w1)d+1)

Z2 2d−1 Rep(ZT4 )
Kramer doublet

ZT4 /Z2 = ZT2

(Z2)d+1 : D.15
d+ 1/dD

ωd+1,Top,

exp(iπ
∫
∪d+1
i=1 ai)

Z2 2d−1 Rep(D4 × (Z2)d−1) D4×(Z2)d−1

Z2
= (Z2)d+1

Table 4: Other/higher d + 1D G-SPT states and their G-symmetry preserving boundaries, or
their H-symmetry extended boundaries if we interpret the H as an extended symmetry. The
caption follows the same set-up as in Table 3. The fourth column is GSD of the system on space
D2×(S1)d−2. The fifth column is the symmetry fractionalization of quasiparticle excitations on the
boundary. All examples here have non-perturbative global anomalies allow symmetry-preserving
gapped boundaries. “BTSC” stands for bosonic topological superconductor. (However, there are
other examples that enforce a gapless boundary with GSD=∞, such as U(1)-SPT states of d+ 1D
of an even d that has boundary perturbative Adler-Bell-Jackiw anomalies. See also Table 10 and
Appendix D for further discussions.) Here wi ≡ wi(TM) is the Stiefel-Whitney class of a spacetime
tangent bundle TM .

within group cohomology [16] H4(ZT2 , U(1)), the second one is beyond group cohomology [30], and
the third one the stacking of the previous two. The fourth rows in Table 3 describes three different
boundaries of the same U(1)× ZT2 -SPT states (also known as bosonic topological insulator). Here
we like to comment about the quantum number on the symmetry preserving topological boundary
of those SPT states.

1. When a particle carries the fundamental Rep(ZT4 ), it means that the particle is a Kramer
doublet (since T 2 6= +1). The ZT4 -symmetry is related to Pin−(∞) where the time reversal
square to −1, say T 2 = −1. This corresponds to the first and the third rows in Table 3, where
boundary excitations carry various representations of ZT4 , including Kramers doublets.

2. When a particle carries the fundamental Rep(ZT2 ), it means that the particle is a Kramer
singlet (since T 2 = +1). The ZT2 -symmetry is related to Pin+(∞) where the time reversal
(i.e. the reflection) square to the identity. This corresponds to the second row in Table 3 which
has no time-reversal symmetry fractionalization. But the boundary topological particles in
the boundary Z2-gauge theory are all fermions [30].

1.2 Notations and conventions

Our notations and conventions are partially summarized here. SPTs stands for Symmetry Protected
Topological state, TOs stands for topologically ordered state, and SETs stands for Symmetric-
Enriched Topologically ordered state. In addition, aSPT and aSET stand for the anomalous
boundary version of an SPT or SET state. Also “TI,” “TSC,” and “TP” stand for topological
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insulator, topological superconductor and topological paramagnet respectively. We may append
“B” in front of “TI,” “TSC” and “TP” as “BTI,” “BTSC” and “BTP” for their bosonic ver-
sions, where underlying UV systems contain only bosonic degrees of freedom. A proper theoretical
framework for all these aforementioned states (SPTs, SETs, etc) is beyond the Ginzburg-Landau
symmetry-breaking paradigm [47,48].

When we refer to “symmetry,” we normally mean the global symmetry. The gauge symmetry
should be viewed as a gauge redundancy but not a symmetry.

The boundary theories of SPTs have anomalies [25–27]. The possible boundary anomalies of
SPTs include perturbative anomalies [49] and non-perturbative global anomalies [50, 51]. The ob-
struction of gauging the global symmetries (on the SPT boundary) is known as the ’t Hooft anoma-
lies [28]. Although SPTs can have both perturbative and non-perturbative anomalies, our construc-
tion of symmetric gapped interfaces is only applicable to SPTs with boundary non-perturbative
anomalies.7

We may use the long/short-range orders (LRO/SRO) to detect Ginzburg-Landau order param-
eters. In particular, the LRO captures the two-point correlation function decaying to a constant
value at a large distance or power-law decaying, that detects the spontaneous symmetry breaking
or the gapless phases.

On the other hand, we may use short/long-range entanglement (SRE/LRE) to describe the
gapped quantum topological phases. LUT stands for local unitary transformation. A short-range
entangled (SRE) state is a gapped state that can be smoothly deformed into a trivial product
state by LUT without a phase transition (some global symmetries may be broken during the
deformation). A long-range entangled (LRE) state is a gapped state that is not any SRE state,
namely that cannot be smoothly deformed into a trivial product state by LUT without a phase
transition (even by breaking all global symmetries during the deformation). What are examples of
SRE and LRE states? SPTs are SRE states, which at low energy are closely related to invertible
topological quantum field theories, with an additional condition that there is no perturbative or
non-perturbative pure gravitational anomalies8 on the boundary (e.g. for a 1+1D boundary, the
chiral central charge c− = 0, or the thermal Hall conductance vanishes σH = 0). TOs and SETs
are LRE states.

The d + 1D means the d + 1 dimensional spacetime. We may denote the (d − 1)D boundary
of a dD manifold Md as ∂Md ≡ ∂(Md) ≡ (∂M)d−1. We denote Borel group cohomology of a
group G with U(1) coefficients as Hd(G,U(1)) for the d-th cohomology group, which is equivalent
to a topological cohomology of classifying space BG of G as Hd+1(BG,Z), regardless whether the
G is a continuous or a discrete finite group. The d-cocycles ωd are the elements of a cohomology
group Hd(G,U(1)) and satisfy a cocycle condition δωd = 1. The above statements are true for both

7We note that there is a terminology clash between condensed matter and high energy/particle physics literature on
“Adler-Bell-Jackiw (ABJ) anomaly [52,53].” In condensed matter literature [25], the phrase “ABJ anomaly [52,53]”
refers to “perturbative” anomalies (with Z classes, captured by the free part of cohomology/cobordism groups),
regardless of further distinctions (e.g. anomalies in dynamical gauge theory, or anomalies in global symmetry currents,
etc.). In condensed matter terminology, the ABJ anomaly is captured by a 1-loop diagram that only involves a fermion
Green’s function (with or without dynamical gauge fields). Thus, the 1-loop diagram can be viewed as a property
of a free fermion system even without gauge field. On the other hand, in high energy/particle physics literature, the
perturbative anomaly without dynamical gauge field captured by a 1-loop diagram is referred to as a perturbative ’t
Hooft anomaly, instead of the ABJ anomaly. Here we attempt to use a neutral terminology to avoid any confusion.

8 We note that the definitions of gravitational anomalies in [17, 54] and [18] are different. This leads to different
opinions, between [17,54] and [18], whether SPT states allow non-perturbative global gravitational anomalies or not
along their boundaries, especially for SPT states with time reversal symmetries.
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continuous and discrete finiteG. WhenG is a continuous group, we can either view the cocycle ωd(g)
as a measurable function on Gd which gives rise to Borel group cohomology, or alternatively, view
the cocycle ωd(g) as continuous around a trivial g = 1 but more generally may contain branch cuts.
When G is a finite group, we further have Hd+1(G,U(1)) = Hd+2(BG,Z) = Hd+1(BG,U(1)). The
β denotes the Bockstein homomorphism. GSD stands for ground state degeneracy, which counts
the number of the lowest energy ground states (so called the zero energy modes).

In a d-dimensional spacetime, we write νd for homogenous cocycles, and µd for homogenous
cochains. We also write ωd for inhomogeneous cocycles, and βd for inhomogeneous cochains. We
write Vd for homogenous cocycles or cochains with both global symmetry variables and gauge
variables, and Ωd for inhomogeneous cocycles or cochains with both global symmetry variables
and gauge variables. Homogeneous cochains/cocycles are suitable for SPTs and SETs that have
global symmetries, while the inhomogeneous cochains/cocycles are suitable for TOs that have only
gauge symmetries with no global symmetries. The ci is the ith Chern class and the wi is the
ith Stiefel-Whitney (SW) class. We generically denote the cyclic group of order n as Zn, but we
write Zn when we are referring to the distinct classes in a classification of topological phases or
in a cohomology/bordism group. When convenient, we use notation such as ZKn , ZGn and ZHn to
identify a particular copy of Zn. We denote i for the imaginary number where i2 = −1.

1.3 The plan of the article

We aim to introduce a systematic construction of various gapped boundaries/interfaces for bulk
topological states based on the group extension. We had mentioned many examples with various
bulk SPT states and different boundary states in any dimension, in Table 1 (1+1D bulk/0+1D
boundary), Table 2 (2+1D bulk/1+1D boundary), Table 3 and Table 4 (3+1D bulk/2+1D bound-
ary and higher dimensions). Their properties are summarized in Table 5 (for a finite discrete
symmetry group G) and Table 6 (for a continuous symmetry group G), and their constructions are
summarized in Table 7 . Furthermore, we can formulate more general gapped interfaces including
not only our proposal on symmetry-extension, but also symmetry-breaking and dynamically gauging
of topological states, in a framework, schematically shown in Table 8. We will provide both the
spacetime lattice path integral (partition function) definition and the wavefunction (as a solution
to a spatial lattice Hamiltonian) definition, see Table 9, for our generic construction.

We begin in Sec. 2, by reviewing a model that realizes the 2+1D Z2 SPT state, the CZX model.
Then in Sec. 3, we construct various boundaries, both gapless and gapped, for the CZX model. In
the process, we illustrate some of the main ideas of this paper. In Appendix A, we examine various
low-energy effective theories for the boundaries of CZX model. Among the new phenomena, we find
that in Appendix A.2.4 the 1+1D boundary deconfined and confined ZK2 -gauge states belong to
the same phase, namely they are both spontaneous symmetry breaking states related by a crossover
without phase transition. In Appendix B, we study the fermionic version of CZX model, then
we find anomalous boundary with emergent ZK2 -gauge theory and anomalous global symmetry in
Appendix C. We expect that our approach can apply to other generic fundamentally fermionic
many-body systems.

All these analyses have the advantage of illustrating our constructions in a completely explicit
way, but they have a drawback. The deconfined gapped boundary state that we construct for the
CZX model (in the usual case that the global symmetry is not extended along the boundary) is
not really a fundamentally new state with 1+1D topological order, but rather it can be interpreted
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in terms of broken global symmetry.9 This is consistent with the common lore that “there is no
true topological order in 1+1D that is robust against any local perturbation.” However, we start
with the CZX model because in that case everything can be stated in a particularly simple and
clear way. Models in higher dimension ultimately realize the ideas of the present paper in a more
satisfying way – as the phases we construct are essentially new – but in higher dimension, it is hard
to be equally simple.

Nevertheless, the extrapolation from our detailed treatment of the CZX model to a general
discussion in higher dimensions is fairly clear. In Sec. 4, we distill the essence of the non-on-site
boundary symmetry of a generic SPT state in any dimension. One key message of this section is the
following: The symmetry-extended gapped boundary construction of a bulk G-SPTs relies on the
fact that its boundary has a non-perturbative global G-anomaly (probed by gauge or gravitational
fields, as a non-perturbative global gauge/gravitational anomalies) which becomes an H-anomaly-
free by pulling G back to H.

In Sec. 4.7.1, we introduce the concept of “soft gauge theory” and introduce the cochains
that encode the soft gauge degree of freedom. We consider an emergent soft gauge theory on
the boundary, associated to a suitable group extension as eqn. (1.2), as a way to construct a
symmetric gapped boundary state. (The “soft gauge theory” and the usual “hard gauge theory”
are contrasted later in Sec. 9.) In Sec. 5, we provide a method, in the context of an arbitrary
SPT phase with symmetry G, to search for an H-extension of G that trivializes the G-cocycle. We
provide valid examples of symmetric gapped boundaries for SPTs with onsite unitary symmetry
(Sec. 5.2) and anti-unitary time reversal symmetry (Sec. 5.3) in 2+1D and 3+1D, more examples
for any dimensions are given in Appendix D.

In Sec. 6 and Sec. 7, we comment on the application of our approach for gapped interfaces of
topological states obtained from beyond-symmetry-group cohomology and cobordism approach, for
both bosonic and fermionic systems.

In Sec. 8, we consider generic gapped boundaries and gapped interfaces (Sec. 8.3) with mixed
symmetry-breaking (Sec. 8.1 and Appendix E), symmetry-extension and dynamically-gauging mech-
anisms (Sec. 8.2). Dynamically gauged gapped interfaces of topologically ordered gauge theories
are explored in Sec. F (more examples are relegated to Appendix F.1).

We also describe two different techniques to obtain symmetry-extended gapped boundaries /
interfaces. One technique is in Sec. 5: For a given symmetry (quotient) group G and its G-cocycle,
we can determine the finite (normal subgroup) K and then deduce the total group H, in order to
obtain the trivialization of G-topological state via the exact sequence 1 → K → H → G → 1 in
eqn. (1.2). Another technique in Appendix D.3 is based on Lydon-Hochschild-Serre (LHS) spectral
sequence method. Given the symmetry group G and its G-cocycle, and suppose we assume the
possible H and K within 1 → K → H → G → 1, the LHS method helps to construct an exact
analytic function of the split H-cochain from the given G-cocycle and from the exact sequence
eqn. (1.2). In short, both techniques have their own strengths: The first technique in Sec. 5 has
the advantage to search K and H, for a given G and a G-cocycle, The second LHS’s technique in
Appendix D.3 has the further advantage to construct the exact analytic split H-cochain.

In Sec. 9, we provide a systematic general construction of lattice path integrals and Hamilto-

9 More generally, we find that, various 1+1D deconfined gauge theories (on the boundaries of 2+1D SPT states)
are the spontaneous global symmetry breaking states with either unitary-symmetry or anti-unitary time reversal
ZT2 -symmetry broken, see Sec. 4.8 and Appendices A.2.4 and D.22.
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nians for gapped boundaries/interfaces for topological phases in any dimension. More examples of
symmetry-extended gapped interfaces in various dimensions are provided in Appendix D. Many ex-
amples of gauge symmetry-breaking gapped boundaries/interfaces via Anderson-Higgs mechanism
are derived based on our framework, and compared to the previous known results in the literature,
in Appendix F.1. We conclude in Sec. 10.

1.4 Tables as the guide to the article

Readers can either find the following Tables 5, 6, 7, 8 and 9 and Fig. 1 as a quick tabular summary
of partial results of the article, or find them as a useful guide or menu to the later Sections. Readers
may freely skip the entire Sec. 1.4 and Tables, then proceed to Sec. 2 directly, and come back to
these Tables later after visiting related materials in the later Sections.

A (partial) summary of our constructions based on Table 5, 6, 7, 8, 9, and Fig. 1:

In Table 5 and 6, we discuss various boundary properties of a finite group symmetry G-SPTs
(Table 5) and a continuous group symmetry G-SPTs (Table 6). The discussions here parallel to
the topological phase constructions in Table 7 and 8, and we enumerate the items in the similar
orderings shown there.

A schematic physical picture is shown in Fig. 1. Conceptually, we could ask how a phase
diagram of the Hamiltonian’s coupling space in a symmetry G (the left figure of Fig. 1) evolves if
we consider the phase diagram of the Hamiltonian’s coupling space in a larger symmetry H (the
left figure of Fig. 1). The effective Hilbert space for the whole system in the H-symmetry may be
larger than that in the G-symmetry. Thus one may need to modify Hamiltonians as well as Hilbert
spaces to consider such a phase-diagram evolution, which is difficult in practice. But as a thought
experiment, we could expect that several distinct SPT states in G may become the same trivial
insulator/vacuum in H. Those G-SPT states contain certain non-perturbative global G-anomalies
along physical boundaries, that become anomaly-free in H. We note that the phase boundaries
in the phase diagrams shown in Fig. 1 are schematic only and are not equivalent to the physical
boundaries to a trivial vacuum in the spacetime.

In Table 7 and 8, we show various gapped boundaries (bdry) and interfaces of topological states
in d-dimensional spacetime with their interfaces in (d− 1)-dimensions:

In Table 7 (i), G-SPTs has an anomalous boundary with an anomalous non-onsite symmetry in
G (Sec. 4.3). However, the non-onsite G-symmetry can be made to be onsite in H, thus the G-
anomaly becomes anomaly free (denoted as anom. free) in H (Sec. 4.5). This also gives us a way
to obtain a H-symmetry-extended gapped boundary of G-SPTs.

In Table 7 (ii), G-SPT state’s above boundary in (i) can be dynamically gauged on its normal
subgroup K on the boundary. We denote such a boundary state as H/K-aSETs, which means that
it has a full group H, a dynamical gauge group K, and with a G-anomaly.
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Figure 1: The schematic phase diagram of a symmetry G (left) in the Hamiltonian H(λi, λj , . . . )’s
coupling space {λi, λj , . . . }, and the schematic phase diagram of a symmetry H (right) in the
Hamiltonian H(λ′i, λ

′
j , . . . )’s coupling space {λ′i, λ′j , . . . }. Many G-SPT states may be trivialized

to an H-trivial vacuum/insulator, by pulling G back to H. Some SPT states in G (here G-
SPTs1 and G-SPTs2) may be symmetry-enforced gapless on the physical boundary (that may have
either perturbative anomalies or non-perturbative global anomalies). Other SPT states in G (here
G-SPTs2 and G-SPTs4) may have symmetry-preserving gapped boundaries (that must have non-
perturbative global anomalies) by pulling G back to a larger symmetry group (say H2 and H4,
where H2 6= H4 in general). We could consider the effective schematic phase diagram in a certain
larger H. (We may choose H ⊇ H2 and H ⊇ H4.) The effective Hilbert space for the whole
systems in the H-symmetry may be different/larger than that in the G-symmetry. The “. . . . . . ”
in the schematic H phase diagram, implies other possible new phases that occur in a larger H-
symmetry but do not occur in a G-symmetry. The phase boundaries shown are schematically only,
which could be the first order, second order or any continuous higher order phase transitions.

In Table 7 (iii), G-gauge means a generic twisted G-gauge theory (possibly with a Dijkgraaf-Witten
cocycle). The H-aGauge on the boundary means that it has a full dynamical gauge group H on the
boundary. But the boundary theory is not the usual gauge theory in its own dimensions described
by (d − 1)-cocycles, but by special (d − 1)-cochains with additional gauge holonomy conservation
constraints.
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Symmetry extension construction: 1→ K → H
r→ G→ 1, with G,H and K finite groups.

A G-topological state (e.g. G-cocycle νGd or G−bundle) is trivialized in H. For a bulk G-SPTs, its boundary has
a non-perturbative global G-anomaly from Hd(G,U(1)) = Hd+1(BG,Z) = Hd(BG,U(1)) (for a finite G, containing
only the torsion), which becomes an H-anomaly free by pulling G back to H. Formally, we can prove that, given a
G-cocycle νGd ∈ Hd(G,U(1)), certain finite K and H exist, so r∗νGd = νHd = δµHd−1 ∈ Hd(H,U(1)), split to H-cochains µHd−1.

The first gapless boundary :
Non-universal complicated dynamics.

G is a global symmetry for
the whole bulk and boundary.

Sec. 3.1, 4.2, 4.3.

• The bulk+boundary theory has an on-site G-symmetry.
• The effective boundary theory has a local Hilbert space,
but has a non-on-site G-symmetry (4.3.2).

The second gapped boundary :
G global symmetry

is extended to
H symmetry

on the boundary.
Sec. 3.2, 4.4.
Table 7 (i).

• The bulk+boundary theory has an on-site symmetry.
• The effective boundary theory has a local Hilbert space, and has an
on-site H-symmetry (4.4.2).
• The boundary G-anomaly becomes H-anomaly free (4.4.2).
Interpretation:
• (i) Extending G to H-symmetry only on the boundary, but the model is
artificial in condensed matter (3.2, D.23).
• (ii) A nontrivial bulk G-SPTs becomes a trivial bulk H-SPTs (trivial
vacuum), when pulling G back to H (4.3.2).

The third gapped boundary :
G is a global symmetry, but

K is hard gauged
on the boundary.

Sec. 3.3, 4.6.
Table 7 (ii).

• The effective bound-
ary theory has a
non-local Hilbert
space, therefore its
on-site or non-on-site
symmetry is ill-defined
(4.6.2).

• For 2+1D bulk/1+1D boundary, a deconfined
boundary K-gauge theory has a spontaneous
symmetry breaking (SSB) long-range order in G,
either breaking unitary (e.g. Z2) or anti-unitary
ZT2 time reversal (Sec. 3.3, A.2.4, D.22) subgroup
in G. The SSB states smoothly cross over to
confined states. We find no robust intrinsic
topological order even on a 1+1D boundary of
SPTs.

• For 3+1D bulk/2+1D boundary or higher
dimensions, there always exists a symmetry-
preserving deconfined boundary K-gauge theory
with a robust intrinsic topological order. The
K-gauge charge carries a representation Rep(H).
The G-anomaly is a non-perturbative global
(gauge/gravitational) anomaly that becomes
absence in H. Given a finite G, we can find a
finite Abelian K to achieve this (Sec. 5).

The fourth gapped boundary :
G is a global symmetry, but

K is soft gauged
on the boundary.

Sec. 3.4, 4.7.

• The bulk+boundary
theory has an on-site
symmetry.

• The effective bound-
ary theory has a lo-
cal Hilbert space, but
has a non-on-site G-
symmetry (4.7.2).

The fifth gapped boundary :
G is partly/fully gauged in the bulk,
and H is partly/fully gauged on the

boundary. Sec. 8.4, 9.1.4
Table 7 (iii) and (iv).

• The effective boundary theory has a non-local Hilbert space, which
cannot be local even by soft-gauging, therefore its on-site or non-on-site
symmetry is ill-defined (for SETs). This relates to the fact that an intrin-
sic bulk topological order has long-range entanglements and gravitational
anomaly.

Table 5: Symmetry extended boundary construction of topological states in any dimension for
G,H and K all finite groups.
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Symmetry extension construction: 1 → K → H
r→ G → 1, with G and H as continuous groups (in particular

compact Lie groups) but K as a finite group. The finite group extension from a continuous G to a continuous H by
a finite K is the finite covering of G. For a bulk G-SPTs (classified by Hd(G,U(1)) ≡ Hd+1(BG,Z)), its boundary
may either have a perturbative G-anomaly from the free part of Hd(G,U(1)) (e.g. a perturbative anomaly with a
Z class), or a non-perturbative global G-anomaly from the torsion part of Hd(G,U(1)) (e.g. global anomaly with a
product of Zn classes). Only a non-perturbative global G-anomaly from the torsion part may become H-anomaly
free. Similarly, only the corresponding G-SPTs may be trivialized in H. Our approach suggests a method to find
a continuous H to construct symmetry-preserving gapped boundaries: either an H-symmetry extended gapped
boundary, or a deconfined finite K-gauge theory, for such as a G-SPTs.

G is a global
symmetry
(G-SPTs),
but there is

a K gauge theory
on the boundary,

for a total
group H.

The third/fourth
gapped boundary.

Sec. 3.3, 4.6.
Table 7 (ii).

• For 2+1D bulk/1+1D boundary, if a deconfined boundary K-gauge theory exists, it has
a spontaneous symmetry breaking long-range order in G, either breaking unitary (e.g. Z2

in Sec. 3.3, A.2.4, D.22) or anti-unitary ZT2 time reversal discrete finite subgroup in the full
G. We find no spontaneous global symmetry breaking for the continuous subgroup sector
in G on the 1+1D boundary, consistent with Coleman-Mermin-Wagner theorem. We also
find no robust intrinsic topological order on a 1+1D boundary of SPTs. (e.g. U(1) o ZT2
and Z2 o ZT2 in D.22)

• For 3+1D bulk/2+1D boundary or higher dimensions, there may or may not exist a
symmetry-preserving deconfined boundary K-gauge theory. Our construction depends on
the properties of continuous G and H:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
� When a continuous Lie group G is connected but not simply-connected, there exists a
finite extension of G as a finite covering of G from π1(G) 6= 0 (e.g. G = U(1), SO(n), etc.).
When G is disconnected, there may still exist a finite covering (e.g. G = O(n)). Two
scenarios:
(i). If G-anomaly is a perturbative anomaly, then the group extension of G to H cannot
make this H-anomaly free. There exists no boundary deconfined gauge theory with
topological orders for such a G-SPTs. (e.g. D.19’s U(1) chiral anomaly.)
(ii). If G-anomaly is a non-perturbative global anomaly, we can check whether the group
extension of G to H, by a finite K, makes it H-anomaly free. If yes, then deconfined-K
gauge theories exist with robust intrinsic topological orders. For examples, D.20’s U(1)-
global anomaly, D.8’s ZT2 -BTSC with G = O(∞), or 3+1D U(1)×ZT2 -BTP (shown in Table
3), which finite coverings are allowed from π1(U(1)) = Z or π1(SO(∞)) = π1(O(∞)) = Z2.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
� When a continuous Lie group G is simply-connected, then there is no finite extension
of G because there is no finite covering of G. (e.g. π1(SU(n)) = 0 for n ≥ 2.) Thus our
construction fails to construct symmetry-preserving gapped boundary of such a G-SPTs.
This implies either that boundary states must be symmetry-enforced gapless, or one needs
to seek other construction (different from ours) for symmetry-preserving gapped boundary.

• The properties of global symmetry (on-site or non-on-site) for continuous G and H still
follow the similar discussions as in Table 5.

Table 6: Symmetry extended boundary construction of topological states in any dimension for
G and H as continuous groups. We require a finite gauge group K for a deconfined K-gauge
theory. Through our construction, the G-SPTs of a connected but not simply-connected compact
Lie group G may have a symmetry-preserving surface deconfined boundary gauge theory, but that
of a simply-connected compact Lie group G cannot have such a boundary.
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(I). Systems (schematic)
Bulk|Boundary

Bulk|Interface|Bulk

(II). Description,
Cocycle/cochain expressions

(III). Realization
Criteria and Comments

(i)
ig i'h

G-SPTs
G-SPTs νGd in the bulk.
µHd−1 on the boundary.
Boundary G-anomaly

becomes H-anomaly-free.

Sec. 3.2, 4.4’s second boundary.
Sec. 8.2, 9.1.4, 9.2.3, and D.1.

1→ K → H
r→ G→ 1.

νGd (r(h)) = νHd (h) = δµHd−1(h).

(ii)
ig i'h

G-SPTs H-aSPTs

i'j'k

G-SPTs νGd in the bulk.

VH,Kd−1 on the boundary,

with a total H, a gauge K,
and a G-anomaly.

Sec. 3.3, 4.6’s third boundary,
Sec. 3.4, 4.7’s fourth boundary.
Sec. 8.2, 9.1.4, 9.2.3, and D.1.

1→ K → H
r→ G→ 1.

Gauge µHd−1(h) to VHd−1(h; k).

(iii)

ijg

G-SPTs H-aSPTs

i'j'h

G-TO ωGd in the bulk.
ΩH
d−1 on the boundary,

with a total gauge group H.

The fifth boundary.
Sec. 8.4, 9.1.4, 9.2.3, and D.1.

1→ K → H
r→ G→ 1.

ωGd (r(h)) = ωHd (h) = δΩH
d−1(h).

(iv)

ijn i'j'k

ig i'j'n
i'h

G/N -SETs VG,Nd in the bulk.

VH,N,Kd−1 on the boundary

with a total H, a gauge (N ×K),
and an H/(N ×K) = G/N -anomaly.

Sec. 8.2, 8.4,
9.1.4, 9.2.3 and D.1.

1→ N → G→ Q→ 1.
1→ K ×N → H → Q→ 1.

(v) Iig
i'h

IIig G I - and G II -SPTs

νG I
d and νG II

d in the bulk.
µHd−1 on the interface
with H-anomaly free.

Sec. 8.3, 9.1.5, 9.2.3 and D.2.
1→ K → H → G I ×G II → 1.

(vi)

Iijn
i'j'h

Iig
IIn
i'h

IIig

I n IIn
i'j' i'j'

ij

G I/N I - and G II/N II -SETs

VG I ,N I

d and VG II ,N II

d in the bulk.

VH,N I×N II ,K
d−1 on the interface,

a total H, a gauge (N I ×N II ×K),
and an H/(N I ×N II ×K)-anomaly.

Sec. 8.3, 8.4,
9.1.5, 9.2.3, and D.2.

1→ N I ×N II → G I ×G II → Q→ 1.
1→ K ×N I ×N II → H → Q→ 1.

Table 7: A quick guide for general constructions of symmetry-extended gapped interfaces for
symmetric-protected topological states (SPTs), topological orders (TOs), and symmetric-enriched
topologically ordered states (SETs) in dD spacetime, see the menu links to Sec. 8 and 9.
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(vii)

G I - and G II -topological states:

VG I
d and VG II

d in the bulk,
L-interfaces:

VLd−1 on the interface.

Sec. 8.2, 8.4,
and F.

L→ G I ×G II .

Table 8: The schematic figure shows a generic combined framework including not only symmetry-
extension, but also symmetry-breaking and dynamically gauging of topological states (e.g. SPTs,
TOs or SETs). The G I - and G II -topological states are described by some cocycle VG I

d (VG II
d )−1 (or

a nontrivial G I × G II -bundle, which can encode both global symmetry group and gauge group),
when pulling this cocycle back to L, it becomes a trivial coboundary in L. Here we only require
the map L → G I × G II to be group homomorphism, but not necessarily surjective nor injective.
Sec. 8.2 discusses the mixed mechanisms. Dynamically gauged gapped interfaces of topologically
ordered gauge theories are explored in Appendix F.

Dim Spacetime lattice (for path integral Z) Spatial lattice (for Hamiltonian Ĥ)

1+1D 1+1D . . .

2+1D 2+1D 2D

3+1D . . . 3D

. . . . . . . . .

Table 9: An introduction of spatial lattices and spacetime lattices based on packing of d-simplices,
suitable for the general construction in Sec. 9. The second column shows that the packing of
simplices can be used for defining the spacetime triangulation, in order to define the spacetime
path integral Z. The third column shows that, the spatial lattice for Hamiltonian systems on a
2D x-y plane is filled with 2-simplices, each vertex has 6 nearest neighbor vertices. (For instance,
the Hamiltonian Âv term in eqn. (9.23) thus contains a product of 6 of 3-cocycles.) The spatial
lattice on a 3D x-y-z space is filled with 3-simplices. (For instance, the Hamiltonian Âv term in
eqn. (9.23) thus contains a product of 24 of 4-cocycles)

In Table 7 (iv), G/N -SETs means a SET state with a full group G, a dynamical gauge group N ,
and a global symmetry G/N = Q. The H/(N ×K)-aSETs means a symmetry-enriched boundary
state with a full group H, a dynamical gauge group N×K and it has a boundary G-anomaly (from
anomalous non-onsite G-global symmetry transformation on the boundary).
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In Table 7 (v), G I - and G II -SPTs with non-onsite G I - and G II - symmetries can have an onsite
H-symmetry on the shared gapped interface. Thus the two topological states become anomaly free
by pulling them back to a certain larger H.

In Table 7 (vi), the G I/N I -SETs means a SET state with a full group G I , a dynamical gauge
group N I , and individually has a global symmetry G I/N I . The G II/N II -SETs means a SET state
with a full group G II , a dynamical gauge group N II , and individually has a global symmetry
G II/N II . A global symmetry on the whole system including the left and right sectors become
(G I ×G II )/(N I ×N II ) = Q. The H/(N I ×N II ×K) aSETs means a symmetry-enriched boundary
state, with a full groupH, a dynamical gauge group (N I×N II×K). The boundary has aQ-anomaly,
where Q = H/(N I ×N II ×K) (from an anomalous non-onsite Q-global symmetry transformation
on the boundary).

In Table 8 (vii), we consider generic G I topological state and G II topological state (of SPTs,
TOs or SETs), and construct generic gapped interfaces based on mixed mechanisms of symmetry-
extension, symmetry-breaking and dynamically gauging . The interface of L is found by trivializing
the nontrivial cocycle or bundle associated to G I ×G II via pulling back to L from a generic group
homomorphism L→ G I ×G II .

In Table 9, we show a schematic systematic lattice construction of the above systems, suitable
for spacetime path integrals and Hamiltonian/wavefunctions. Their details are in Sec. 9.

2 A model that realizes the 2+1D Z2 SPT state: CZX model

The first lattice model that realizes a 2+1D SPT state (the Z2-SPT state) was introduced by Chen-
Liu-Wen [14], and was named the CZX model. The CZX model is a model on a square lattice (Fig.
2), where each lattice site contains four qubits, or objects of spin-1/2. For each spin, we use a basis
| ↑〉 and | ↓〉 of σz eigenstates. Thus a single site has a Hilbert space of dimension 24.

Figure 2: The CZX model. Each site (a large disc) contains four qubits or objects of spin 1/2
(shown as small black dots). The squares, formed by red links, are plaquettes, introduced later.

Now let us introduce a Z2 symmetry transformation. An obvious choice is the operator that
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acts on each site s as

UX,s =

4∏
j=1

σxj , U2
X,s = 1, (2.1)

which simply flips the four spins in site s. However, to construct the CZX model, a more subtle
choice is made. In this model, in the basis | ↑〉, | ↓〉, the flip operator UX,s is modified with ± signs.
For a pair of spins i, j, we define an operator10 UCZ,ij that acts as −1 if spins i, j are both in state
| ↓〉, and otherwise acts as +1. There are various ways to describe UCZ,ij by a formula:

UCZ,ij =
1 + σzi + σzj − σzi σzj

2

= i (σzi +σzj−σzi σzj−1)/2. (2.2)

Now for a site s that contains four spins j = 1, . . . , 4 in cyclic order, we define

UCZ,s =
4∏
j=1

UCZ,j j+1. (2.3)

The Z ′2 symmetry of the spins at site s is defined as

UCZX,s = UX,sUCZ,s. (2.4)

By a short exercise, one can verify that UX,s and UCZ,s commute and accordingly that U2
CZX,s = 1.

The Z2 symmetry generator of the CZX model is defined as a product over all sites of UCZX,s:

UCZX =
∏
s

UCZX,s. (2.5)

Clearly this is an on-site symmetry, that is, it acts separately on the Hilbert space associated
to each site. Being onsite, the symmetry is gaugeable and anomaly-free. We have not yet picked
a Hamiltonian for the CZX model, but whatever UCZX -invariant Hamiltonian we pick, the Z2

symmetry can be gauged by coupling to a Z2 lattice gauge field that will live on links that connect
neighboring sites.

What we have done so far is trivial in the sense that, by a change of basis on each site, we could
have put UCZX,s in a more standard form. However this would complicate the description of the
Hamiltonian and ground state wavefunction of the CZX model, which we come to next.

It is easier to first describe the desired ground state wavefunction of the model and then describe
a Hamiltonian that has that ground state. In Fig. 2, we have drawn squares that contain four spins,
one from each of four neighboring sites. We call these squares “plaquettes.” For each plaquette p,
we define the wavefunction |Ψp〉 = 1√

2
(| ↑↑↑↑〉 + | ↓↓↓↓〉). The ground state of the CZX model in

the bulk is given by a product over all plaquettes of this wavefunction for each plaquette:

|Ψgs〉 =
∏
p

|Ψp〉 =
∏
p

1√
2

(| ↑↑↑↑〉+ | ↓↓↓↓〉). (2.6)

This state is UCZX -invariant,

UCZX |Ψgs〉 = |Ψgs〉, (2.7)
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Figure 3: A pair of adjacent spins: To preserve the symmetry UCZX , we choose a Hamiltonian
that only flips the spins in a plaquette if pairs of adjacent spins in neighboring plaquettes are equal.
Thus the spins shown here at the top of this plaquette are only flipped if the two spins just above
them are equal. Both the spins in the plaquette and the ones just above them are in different sites,
as shown.

if we define the whole system on a torus without boundary (i.e., with periodic boundary conditions).
But that fact is not completely trivial: It depends on cancellations among CZij factors for adjacent
pairs of spins, see Fig. 3.

Clearly, the entanglement in this wavefunction is short-range, and this wavefunction describes
a gapped state. Moreover, if we would regard the plaquettes (rather than the large discs in Fig.
2) as “sites,” then this wavefunction would be a trivial product state. But in that case the Z2

symmetry of the model would not be on-site. The subtlety of the model comes from the fact that
we cannot simultaneously view it as a model with on-site symmetry and a model with a trivial
product ground state.

(1)

Pp

Pp

Pp

Pp

H
p

l 0

u

r

d

(2)

1 2

34 4

12

σ i−1

σ i

σ i+1

σ i+2

Pp

Pp

Pp

P
p

Hp
l 0

u

r

d

Figure 4: Each plaquette Hamiltonian Hp acts on the spins contained in an octagon, as depicted
in dashed gray line in the left subfigure (1) and also in the lower left of the right subfigure (2).
In the subfigure (2), the octagon in the lower left contains the four spins in plaquette p and four
adjacent pairs of spins. In the case of a finite sample made of complete sites, as depicted here, most
of the spins can be grouped in plaquettes, but there is a row of spins on the boundary – shown here
on the right of the figure – that are not contained in any plaquette. However, the Hamiltonian acts
on these boundary spins through the projection operators Pαp from a neighboring plaquette.

The most obvious Hamiltonian with |Ψgs〉 as its ground state would be a sum over all plaquettes

10The name CZ is read “controlled Z” and is suggested by quantum computer science. The operator UCZ,ij
measures σz of spin j if spin i is in state | ↓〉 and otherwise does nothing.
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p of an operator H0
p that flips all spins in plaquette p:

H0 =
∑
p

H0
p , H0

p = −
(
|↑↑↑↑〉〈↓↓↓↓|+ |↓↓↓↓〉〈↑↑↑↑|

)
. (2.8)

This Hamiltonian commutes with the obvious Z2 symmetry that flips all the spins, but does not
commute with the more subtle symmetry UCZX . To commute with UCZX , we modify H0 to only
flip the spins in a plaquette if adjacent pairs of spins in the neighboring plaquettes are equal (Fig.
3). For a plaquette p, we define operators Pαp ≡ | ↑↑〉〈↑↑ | + | ↓↓〉〈↓↓ | that project onto states
in which the two spins adjacent to p in the α direction (where α equals up, down, left, or right,
denoted as u, d, l, or r) are equal. Then the CZX Hamiltonian is defined to be

H =
∑
p

Hp

Hp = −
(
|↑↑↑↑〉〈↓↓↓↓|+ |↓↓↓↓〉〈↑↑↑↑|

)
⊗α Pαp . (2.9)

Thus each Hp acts on the spins contained in an octagon (Fig. 4(1)), flipping the spins in a plaquette
if all adjacent pairs of spins are equal. This Hamiltonian is UCZX -invariant,

[UCZX , H] = 0, (2.10)

in the case of a system without boundary (an infinite system or a finite system with periodic
boundary conditions). The state |Ψgs〉 is a symmetry-preserving ground state with short-range
entanglement. However, it is a nontrivial symmetry-protected topological or SPT state. This
becomes clear if we examine possible boundaries of the CZX model.

3 Boundaries of the CZX model

3.1 The first boundary of the CZX model –
1+1D symmetry-preserving gapless boundary with a non-on-site global Z2-
symmetry

The boundary of the CZX model that was studied in the original paper is a very natural one in
which one simply considers a finite system with an integer number of sites (Fig. 4(2)). One groups
the spins into plaquettes, as before, but as shown in the figure, there is a row of spins on the
boundary that are not contained in any complete plaquette. We call these the boundary spins.

We define the Hamiltonian as in eqn. (2.9), where now the sum runs over complete plaquettes
only. Because the boundary spins are not contained in any complete plaquette, the system is no
longer gapped. However, the boundary spins are not completely free to fluctuate at no cost in
energy. The reason is that, to minimize the energy, a pair of boundary spins that are adjacent to
a plaquette p are constrained to be equal. This is because of the projection operators Pαp in the
definition of Hp.

Hence, in a state of minimum energy, the boundary spins are locked together in pairs. These
pairs are denoted as σi, σi+1, etc., in Fig. 4(2), and one can think of them as composite spins.

How does the Z2 symmetry generated by UCZX act on the composite spins? Evidently, UCZX
will flip each composite spin. However, UCZX also acts by a CZ operation on each adjacent pair
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of composite spins σi, σi+1. That is because, for example, in Fig. 4(2), the “upper” spin making
up the composite spin σi and the “lower” spin making up σi+1 are adjacent spins contained in the
same site s in the underlying square lattice. Accordingly, in the Z2 generator UCZX,s for site s,
there is a CZ factor linking these two spins.

Therefore, the effective Z2 generator for the composite spins on the boundary is

ÛZ2 =
∏
i

σxi UCZ,i i+1. (3.1)

The product runs over all composite spins σi; ÛZ2 is the product of operators σxi that flip σi and
operators UCZ,i i+1 that give the usual CZ sign factors for each successive pair of composite spins.
Clearly, this effective Z2 symmetry is not on-site. No matter how we group a finite set of composite
spins into boundary sites, the operator UZ2 will always contain CZ factors linking one site to the
next.11

With the Hamiltonian as we have described it so far, all states labeled by any values of the
composite spins σi, but with complete bulk plaquettes placed in their ground state |Ψp〉, are de-
generate. Of course, it is possible to add perturbations that partly lift the degeneracy. However,
it has been shown in Ref. [14] that the non-onsite nature of the effective Z2 symmetry gives an
obstruction to making the boundary gapped and symmetry-preserving.

3.2 The second boundary of the CZX model –
1+1D gapped boundary by extending the Z2-symmetry to a Z4-symmetry
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Figure 5: By omitting the right row of spins from the boundary of Fig. 4(2), we get an alternative
boundary of the CZX model. Now all spins are contained in plaquettes, but on the boundary there
are “incomplete sites,” shown as semicircles on the right of the figure, that contain only two spins
instead of four. The “upper” and “lower” spins of the ith boundary site have been labeled σi+ and
σi−.

The main idea of the present paper can be illustrated by a simple alternative boundary of the
CZX model. To construct this boundary, we simply omit the boundary spins from the previous

11In the case of a compact ring boundary, (ÛZ2)2 = +1 for an even-site boundary, while (ÛZ2)2 = −1 for an
odd-site boundary. To avoid the even or odd lattice site effect, from now on we assume the even-site boundary
system throughout our work for simplicity. If there are no corners or spatial defects or curvature – which would lead
to corrections in these statements – then the number of odd-site boundary components is always even, so overall
Û2
Z2

= 1.
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discussion. This means that now, the system is made of complete plaquettes, even along the
boundary (Fig. 5), but there is a row of boundary spins that are not in complete sites. As indicated
in the figure, we combine the boundary spins in pairs into boundary sites. Thus a boundary site
has only two spins while a bulk site has four. In the figure, we have denoted the “upper” and
“lower” spins in the ith boundary site as σi+ and σi−.

To specify the model, we should specify what the Hamiltonian looks like near the boundary and
how the global symmetry is defined for the boundary spins. First of all, now that all spins are in
complete plaquettes, we can look for a gapped system with the same ground state wave function
as in eqn. 2.6:

|Ψgs〉 =
∏
p

|Ψp〉 =
∏
p

1√
2

(|↑↑↑↑〉+ |↓↓↓↓〉). (3.2)

To get this ground state, we define the Hamiltonian by the same formula as in eqn. (2.9). Only
one very small change is required: A boundary plaquette is adjacent to only three pairs of spins
instead of four, so in the definition of Hp in eqn. (2.9), if p is a boundary plaquette, the product of
projection operators ⊗αPαp contains only three factors and not four.

The last step is to define the action of the global “Z2” symmetry for boundary sites. We
have put “Z2” in quotes for a reason that will be clear in a moment. Once we have chosen the
Hamiltonian as above, the choice of the global symmetry generator is forced on us. The symmetry
generator at the ith boundary site will have to flip the two spins σi+ and σi−, of course, but it also
needs to have a CZ factor linking these two spins. So the symmetry generator of the ith boundary
site will have to be

UCZX,i = σxi+σ
x
i−UCZ,i+ i−. (3.3)

The full symmetry generator is

UCZX =
∏
s

UCZX,s, (3.4)

where the product runs over all bulk or boundary sites s, and UCZX,s is defined in the usual way
for bulk sites, and as in eqn. (3.3) for boundary states.

We have found a gapped, symmetry-preserving boundary state for the CZX model. There is a
catch, however. The global symmetry is no longer Z2. Although the operator UCZX,s squares to 1
if s is a bulk site, this is not so for boundary sites. Rather, from (3.3), we find that for a boundary
site,

U2
CZX,i = −σzi+σzi−. (3.5)

This operator is −1 if the two spins σi+ and σi− in the ith boundary site are both up or both down,
and otherwise +1. Clearly U2

CZX,i 6= 1, so the full global symmetry generator UCZX does not obey

U2
CZX = 1 but rather

U4
CZX = 1. (3.6)

Thus, rather than the symmetry being broken by our choice of boundary state, it has been enhanced
from Z2 to Z4. But a Z2 subgroup of Z4 generated by U2

CZX acts only on the boundary, since
U2
CZX = 1 for bulk sites.

What we have here is a group extension

1→ K → H → G→ 1. (3.7)
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G = Z2 ≡ ZG2 is the global symmetry group of the bulk theory, H = Z4 ≡ ZH4 is the global
symmetry of the complete system including its boundary, and K = Z2 ≡ ZK2 (or a different Z ′2) is
the subgroup of H that acts only along the boundary. In this case, we denote the exact sequence
eqn.(3.7) also as

0→ ZK2 → ZH4 → ZG2 → 0.

As was explained from an abstract point of view in Sec. 3.3 of Ref. [40] and as we will explain
more concretely later in this paper, when certain conditions are satisfied, such a group extension
along the boundary gives a way to construct gapped boundary states of a bulk SPT phase. (As we
explain in detail later, the relevant condition is that the cohomology class of G that characterizes
the SPT state in question should become trivial if it is “lifted” or “pulled back” from G to H, or
more concretely if certain fields are regarded as elements of H rather than as elements of G.)

From a mathematical point of view, this gives another choice in the usual paradigm that says
that the boundary of an SPT phase either is gapless, has topological order on the boundary, or
breaks the symmetry. Another possibility is that the global symmetry of the bulk SPT phase might
be extended (or enhanced) to a larger group along the boundary, satisfying certain conditions. In
1 + 1 dimensions, this is a standard result: The usual symmetry-preserving boundaries of 1 + 1-
dimensional bulk SPT phases have a group extension along the boundary. The novelty is that a
gapped boundary can be achieved above 1 + 1 dimensions via such a group extension.

Let us pause to explain more fully the assertion that what we have just described extends a
standard 1 + 1-dimensional phenomenon to higher dimensions. In the usual formulation of the
1 + 1-dimensional Haldane or Affleck-Lieb-Kennedy-Tasaki (AKLT) spin chain, one considers a
chain of spin 1 particles with SO(3) symmetry. The boundary is not gapped and carries spin 1/2.
Alternatively, one could attach a spin 1/2 particle to each end of such a chain. Then the system
can be gapped, with a unique ground state, but the global symmetry is extended from SO(3) to
SU(2) at the ends of the chain. What we have described is an analog of such symmetry extension
in 2 + 1 dimensions.

In general, a bulk SPT state protected by a symmetry G, can also be viewed as a many-body
state with a symmetry H, where the subgroup K acts trivially in the bulk (i.e. the bulk degrees
of freedom are singlets of K). For example, we may view the CZX model to have a ZH4 symmetry
in the bulk. By definition, two states in two different G-SPT phases cannot smoothly deform into
each other via deformation paths that preserve the G-symmetry. However, two such G-SPT states
may be able to smoothly deform into each other if we view them as systems with the extended
H-symmetry and deform them along the paths that preserve the H-symmetry. For example, the
non-trivial ZG2 -SPT state of the CZX model can smoothly deform into the trivial ZG2 -SPT state
along a deformation path that preserves the extended ZH4 -symmetry. In other words, when viewed
as a ZH4 symmetric state, the ground state of the CZX model has a trivial ZH4 -SPT order. Since it
has a trivial ZH4 -SPT order, it is not surprising that the CZX model can have a gapped boundary
that preserves the extended ZH4 symmetry, as explicitly constructed above. In general, if two G-
SPT states are connected by an H-symmetric deformation path, then we can always construct
a H-symmetric domain wall between them by simply using the H-symmetric deformation path.
This is the physical meaning behind a G-SPT state having a gapped boundary with an extended
symmetry H.

From the point of view of condensed matter physics, however, the sort of gapped boundary
that we have described so far will generally not be physically sensible. Microscopically, condensed
matter systems generally do not have extra symmetries that act only along their boundary. (There
can be exceptions like the case just mentioned, which is conceivable in any dimension: a system
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that, in bulk, is made from particles of integer spin but has half-integer spin particles attached on
the surface. Then a 2π rotation of the spins is nontrivial only along the boundary.)

In a system microscopically without an extended symmetry along the boundary, one might be
tempted to interpret K as a group of emergent global symmetries, not present microscopically. But
there is a problem with this. In condensed matter physics, one may often run into emergent global
symmetries in a low-energy description. But these are always approximate symmetries, explicitly
broken by operators that are irrelevant at low energies in the renormalization group sense.

That is not viable in the present context. Since the global symmetry that is generated by
UCZX is supposed to be an exact symmetry, we cannot explicitly violate the boundary symmetry
group generated by U2

CZX . Obviously, any interaction that is not invariant under U2
CZX is also not

invariant under UCZX .

What we can do instead is to gauge the boundary symmetry group K. Then, the global
symmetry group that acts on gauge-invariant operators and on physical states is just the original
group H/K = G. This way, we do not break nor extend the symmetry on the boundary. Since
K is an on-site symmetry group, there is no difficulty in gauging it; we explain two approaches in
Sec. 3.3 and 3.4.

In 3 + 1 (or more) dimensions, a procedure along these lines starting with a bulk SPT phase
with symmetry group G and a group extension as in eqn. (3.7) that satisfies the appropriate
cohomological condition will lead to a gapped boundary state with topological order along the
boundary. The topological order is a version of gauge theory with gauge group K (possibly twisted
by a cocycle). We will give a general description of such gapped boundary states in Sec. 9. In 2 + 1
dimensions, the boundary has dimension 1 + 1 and one runs into the fact that topological order
is not possible in 1 + 1 dimensions. As a result, what we will actually get in the CZX model by
gauging the boundary symmetry K is not really a fundamentally new boundary state.

3.3 The third boundary of the CZX model – Lattice ZK
2 -gauge theory on the

boundary
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Figure 6: Gauging the boundary symmetry K = Z2 ≡ ZK2 of the boundary state of Fig. 5 is
accomplished by placing on each boundary link a Z2-valued gauge field. We label the link between
boundary sites i and i + 1 by the half-integer i + 1

2 . We associate to this link a new qubit with a
discrete holonomy (as discussed in the text) and a discrete electric field Ei+ 1

2
.

29



We will describe two ways to gauge the boundary symmetry K = Z2 ≡ ZK2 . The most straight-
forward way, although as we will discuss ultimately less satisfactory for condensed matter physics,
is to simply incorporate a boundary gauge field.

As indicated in Fig. 6, we label the link between boundary sites i and i+ 1 by the half-integer
i+ 1

2 . Placing a Z2-valued gauge field on this link means introducing a qubit associated to this link
with operators Vi+ 1

2
, Ei+ 1

2
that obey

V 2
i+ 1

2

= E2
i+ 1

2

= 1, Ei+ 1
2
Vi+ 1

2
= −Vi+ 1

2
Ei+ 1

2
. (3.8)

Here Vi+ 1
2

describes parallel transport between sites i and i+ 1 and Ei+ 1
2

is a discrete electric field

that flips the sign of Vi+ 1
2
.

Now let us discuss the gauge constraint at site i. A gauge transformation that acts at site i by
the nontrivial element in ZK2 is supposed to flip the signs of Vi± 1

2
, the holonomies on the two links

connecting to site i. To do this, it will have a factor Ei+ 1
2
Ei− 1

2
. It should also act on the spins as

U2
CZX,i = −σzi+σzi−. Thus the gauge generator on site i is

Ωi = Ei+ 1
2
Ei− 1

2
U2
CZX,i. (3.9)

A physical state |Ψ〉 in the gauge theory must be gauge-invariant, that is, it must obey

Ωi|Ψ〉 = |Ψ〉. (3.10)

However, as E2
i+ 1

2

= 1 for all i, if we take the product of Ωi over all boundary sites, the factors of

Ei+ 1
2

cancel out, and we get ∏
i

Ωi =
∏
i

U2
CZX,i. (3.11)

Hence eqn. (3.10) implies that a physical state |Ψ〉 satisfies∏
i

U2
CZX,i|Ψ〉 = |Ψ〉. (3.12)

But this precisely means that a physical state is invariant under the global action of K, so that the
global symmetry group that acts on the system reduces to the original global symmetry G.

The Hamiltonian H =
∑
Hp must be slightly modified to be gauge-invariant, that is, to com-

mute with Ωi. To see the necessary modification, let us look at the plaquette Hamiltonian Hp for the
boundary plaquette shown in the figure, which contains the boundary link labeled i+ 1

2 . Hp as de-
fined in eqn. (2.9) anticommutes with Ωi and Ωi+1 because the operator |↑↑↑↑〉〈↓↓↓↓|+|↓↓↓↓〉〈↑↑↑↑|
has that property. (It flips one of the spins at boundary site i and one at boundary site i+ 1, so it
anticommutes with U2

CZX,i = −σzi+σzi− and similarly with U2
CZX,i+1.) To restore gauge-invariance

is surprisingly simple: We just have to multiply Hp by Vi+ 1
2
, which also anticommutes with Ωi and

Ωi+1. So we can take the Hamiltonian for a boundary plaquette containing the boundary link i+ 1
2

to be
Hbdry

p,i+ 1
2

= −
(
|↑↑↑↑〉〈↓↓↓↓|+ |↓↓↓↓〉〈↑↑↑↑|

)
⊗ Vi+ 1

2
⊗α Pαp . (3.13)

For a gauge-invariant and G-invariant Hamiltonian, we can take the sum of all bulk and boundary
plaquette Hamiltonians.

This Hamiltonian H commutes with all the discrete gauge fields Vi+ 1
2
, so in looking for an eigen-

state of H (ignoring for a moment the gauge constraint), we can specify arbitrarily the eigenvalues
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of the V ’s. Let |vi+ 1
2
〉 be a state of the gauge fields with eigenvalue vi+ 1

2
for Vi+ 1

2
. (Of course these

eigenvalues are ±1 since V 2
i+ 1

2

= 1.) The ground state of H with these eigenvalues of the Vi+ 1
2

is

simply

⊗
bulk

|↑↑↑↑〉+ |↓↓↓↓〉√
2

⊗
bdry

|↑↑↑↑〉+ Vi+ 1
2
|↓↓↓↓〉

√
2

⊗ |vi+ 1
2
〉 (3.14)

Let us denote this state as ||vi+ 1
2
〉〉. If the boundary has L links, there are 2L of these states.

The states ||vi+ 1
2
〉〉 are degenerate, and these are the ground states of H. However, to make

states that satisfy the gauge constraint, we must take linear combinations of the ||vi+ 1
2
〉〉. Since a

gauge transformation at site i flips the signs of vi± 1
2
, the only gauge-invariant function of the vi+ 1

2

is their product. Assuming that the boundary is compact and thus is a circle, this product is the
holonomy of the ZK2 gauge field around the circle. (With periodic boundary conditions along the
boundary, there are no corners along the boundary circle; otherwise, our discussion can be slightly
modified to incorporate corners.) Thus there are two gauge-invariant ground states, depending on
the sign of the holonomy

∏
i vi+ 1

2
. They are

|Ψgs(+)〉 =
∑

{v
i+1

2
},
∏
i vi+1

2
=1

c{v
i+1

2
}||vi+ 1

2
〉〉 (3.15)

and

|Ψgs(−)〉 =
∑

{v
i+1

2
},
∏
i vi+1

2
=−1

c{v
i+1

2
}||vi+ 1

2
〉〉. (3.16)

(Here the signs c{v
i+1

2
} = ±1 are determined by the gauge constraints. With our choice of sign

in the gauge constraints Ωi, flipping two of the vi that are separated by n lattice states multiplies
the amplitude by (−1)n. This could be avoided by changing the sign of Ωi, but that creates
complications elsewhere.)

Now let us study the transformation of these states under the global symmetry group G =
Z2 ≡ ZG2 . When we apply UCZX to the states |Ψgs(±)〉, we find that all the sign factors CZij
cancel each other. This occurs by the same cancellation as in the original bulk version of the CZX
model. However, the wavefunction is no longer trivially invariant under flipping the spins; rather,
the wavefunction | ↑↑↑↑〉 + Vi+ 1

2
| ↓↓↓↓〉 for a boundary plaquette is multiplied by Vi+ 1

2
when the

spins in this plaquette are flipped. So taking into account all the boundary plaquettes,

UCZX |Ψgs(±)〉 = ±|Ψgs(±)〉. (3.17)

Thus, the transformation of a state under the global symmetry ZG2 is locked to its holonomy under
the gauge symmetry ZK2 .

The formula (3.17) has been written as if the boundary of the system consists of a single circle;
for example, the spatial topology may be a disc. More generally, we can consider a system whose
boundary consists of several circles. Each boundary component has its own ZK2 -valued holonomy,
and the action of UCZX on a ground state is the product of all of these holonomies.

Now let us look for a local operator with a nonzero matrix element between the two ground
states |Ψgs(±)〉. For this, we need first of all an operator that changes the sign of the holonomy
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around the boundary. The simplest operator with this property is simply Ei+1/2 (for some i).
Because it flips the sign of Vi+1/2, it reverses the sign of the holonomy. However, the operator

Ei+1/2 is invariant under the global symmetry group ZG2 , and therefore, it cannot possibly have
a nonzero matrix element between the two ground states, which transform oppositely under the
global symmetry.

Concretely, Ei+1/2 does not map |Ψgs(±)〉 to |Ψgs(∓)〉 because it anticommutes with Vi+1/2,
which appears in one factor in the definition of the state ||vi+1/2〉〉 in eqn. (3.14), namely

| ↑↑↑↑〉+ Vi+1/2| ↓↓↓↓〉. (3.18)

(Instead, Ei+1/2|Ψgs(+)〉 is a new state that has the same holonomy as |Ψgs(−)〉, but differs from

it by the presence of an additional quasiparticle carrying a nontrivial global ZG2 -charge localized
near the link at i + 1/2.) However, we can get a local operator that reverses the holonomy and
commutes with this Vi+1/2 if we just replace Ei+1/2 by

Xi+1/2 = Ei+1/2σ
z
i+. (3.19)

(We could equally well use σzi+1− instead of σzi+.) This operator leaves invariant the expression in
eqn. (3.18), and, accordingly, it simply exchanges the states |Ψgs(±)〉:

Xi+1/2|Ψgs(±)〉 = |Ψgs(∓)〉. (3.20)

The operator Xi+1/2 is odd under the global ZG2 symmetry, because of the factor of σzi+. This
of course is consistent with the fact that this operator exchanges the states |Ψgs(±)〉. However, the
existence of a ZG2 -odd local operator that exchanges the two ground states means that we must
interpret the boundary state that we have constructed as one in which the global ZG2 symmetry
is spontaneously broken along the boundary. Indeed, although 〈Ψgs(+)|Xi+1/2|Ψgs(+)〉 = 0, the
two-point function of the operator Xi+1/2 in the state |Ψgs(+)〉 exhibits the long-range order that

signals the ZG2 -spontaneous symmetry breaking. In fact,

〈Ψgs(+)|Xi+1/2Xj+1/2|Ψgs(+)〉 = 1 (3.21)

for any i, j. Similarly, 〈Ψgs(−)|Xi+1/2Xj+1/2|Ψgs(−)〉 = 1.

This result is somewhat disappointing, since it is certainly already known that any SPT phase
in any dimension can have a gapped boundary state in which the symmetry is explicitly or spon-
taneously broken. However, as we will see starting in Sec. 4, similar gapped boundary states can
be constructed for SPT phases in any dimension, and in 3 + 1 (or more) dimensions, the gapped
boundary states constructed this way are genuinely novel: They have topological order along the
boundary, rather than symmetry breaking. What we have run into here is that the 1+1-dimensional
boundary of a 2 + 1-dimensional system does not really support topological order. Discrete gauge
symmetry (such as the ZK2 considered here) can describe topological order in dimensions ≥ 2 + 1,
but not in 1 + 1 dimensions.

By contrast, the gapped boundary state described in Sec. 3.2, in which the symmetry is ex-
tended along the boundary rather than being spontaneously broken, is genuinely new even in 2 + 1
dimensions. But as we have noted, such a symmetry extension along the boundary is physically
sensible in condensed matter physics only in particular circumstances.

Going back to the case that the boundary symmetry is gauged, where does the state that we
have described fit into the usual classification of gapped phases of discrete gauge theories? Since the
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states |Ψgs(±)〉 with opposite holonomies are degenerate, this would usually be called a deconfined
phase. But it differs from a standard deconfined phase in the following way. Typically, in 1 + 1-
dimensional gauge theory with discrete gauge group, the degeneracy between states with different
holonomy can be lifted by a suitable perturbation such as

− u
∑
i

Ei+1/2, (3.22)

with a constant u (or more generally −
∑

i uiEi+1/2 with any small parameters ui; a small local

perturbation is enough). In an ordinary ZK2 gauge theory, such a term would induce an effective

Hamiltonian density −u
(

0 1
1 0

)
acting on the two states

(
Ψgs(+)
Ψgs(−)

)
. The ground state would

then be (for u > 0) a superposition of |Ψgs(+)〉 and |Ψgs(−)〉. A discrete gauge theory with a
non-degenerate ground state that involves such a sum over holonomies is said to be confining.

In the present context, the global ZG2 symmetry under which the states |Ψgs(±)〉 transform
oppositely prevents such an effect. On the contrary, it ensures that the degeneracy among these
two states cannot be lifted by any local perturbation that preserves the ZG2 symmetry. The above
remarks demonstrating the spontaneous breaking of the global ZG2 symmetry makes the issue clear.
The spontaneously broken symmetry leads to a two-fold degeneracy of the ground state that is
exact in the limit of a large system.

The remarks that we have just made have obvious analogs in the construction described in the
emergent gauge theory construction of Sec. 3.4, and they will not be repeated there.

3.4 The fourth boundary of the CZX model – Emergent lattice ZK
2 -gauge theory

on the boundary
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Figure 7: The filled dots are qubits (or spin-1/2’s). A (half-)circle (with dots inside) represents a
site. The dashed blue line connecting dots i, j represents the phase factor CZij in the ZG2 or ZH4
global symmetry transformation. The open dots on the boundary are the Z ′2 ≡ ZK2 -gauge degrees
of freedom Ei+ 1

2
.

The model constructed in Sec. 3.3 using lattice ZK2 gauge fields reduces the global symmetry
to the original ZG2 . However, it has one flaw from the point of view of condensed matter physics.
In condensed matter physics, not only are the symmetries on-site, but more fundamentally the
Hilbert space can be assumed to be on-site: that is, the full Hilbert space is a tensor product of
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local factors, one for each site. (In fact, the Hilbert space has to be on-site before it makes sense
to say that the symmetries are on-site.)

The purpose of the present section is to explain how to construct a model with on-site Hilbert
space and symmetries that has the same macroscopic behavior as found in Sec. 3.3.

The reason that the model in Sec. 3.3 does not have this property is that the variables Vi+ 1
2

and

Ei+ 1
2

are associated to boundary links, not to boundary sites. One could try to cure this problem

by associating these link variables to the site just above (or just below) the link in question.
The trouble with this is that then although the full Hilbert space is on-site, the gauge-symmetry
generators Ωi are not on-site (they involve operators acting at two adjacent sites). Accordingly the
space of physical states, invariant under the Ωi, is not an on-site Hilbert space.

By analogy with various constructions in condensed matter physics, one might be tempted to
avoid this problem by relaxing the physical state constraint Ωi|Ψ〉 = |Ψ〉 and instead adding to the
Hamiltonian a term

∆H = −c
∑
i

Ωi, (3.23)

with a positive constant c. Then minimum energy states satisfy the constraint Ωi|Ψ〉 = |Ψ〉 as
assumed in Sec. 3.3, and on the other hand the full Hilbert space and the global ZG2 symmetry are
on-site.

In the present context, this approach is not satisfactory. Once we relax the constraint that
physical states are invariant under Ωi, the global symmetry of the model is extended along the
boundary from G = ZG2 to H = ZH4 , and we have really not gained anything by adding the gauge
fields.

Instead what we have to do is to replace the “elementary” Z ′2 = ZK2 gauge fields of Sec. 3.3
by “emergent” gauge fields, by which we mean simply gauge fields that emerge in an effective low-
energy description from a microscopic theory with an on-site Hilbert space. There are many ways
to do this, and it does not matter exactly which approach we pick. In this section, we will describe
one simple approach.

We start with the boundary obtained in Sec. 3.2, and add to each boundary site a pair of qubits
described by Pauli matrices τ i± (see Fig. 7). Since each boundary site already contained the two
qubits σi±, this gives a total of four qubits in each boundary site, and a local Hilbert space H 0

i of
dimension 24. However, we define the Hilbert space Hi of the ith boundary site to be the subspace
of H 0

i of states that satisfy the local gauge constraint

Ûgauge
i |Ψ〉 = |Ψ〉, (3.24)

where

Ûgauge
i = −σzi+σ

z
i−τ

z
i+τ

z
i− . (3.25)

The constraint is on-site so Hi is on-site.

Now we add to the Hamiltonian a gauge-invariant boundary perturbation

−U
∑
i

τ zi+τ
z
(i+1)−

(3.26)
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with a large positive coefficient U . At low-energies, this will lock τ zi+ = τ z(i+1)−
. In this low-energy

subspace, τ zi+ = τ z(i+1)−
will play the role of Ei+ 1

2
in the last subsection. What will now play the

role of the conjugate gauge field is
Vi+ 1

2
= τxi+τ

x
(i+1)−

(3.27)

which anticommutes with τ zi+ = τ z(i+1)−
. The Hamiltonian for a boundary plaquette is defined as in

eqn. (3.13), but with this “composite” definition of Vi+ 1
2
, and commutes with the gauge constraint

operator (3.25).

The global Z2-symmetry generator on the ith boundary site is now given by

ÛZ2,i = σxi−σ
x
i+UCZ,i−,i+ e

i π
4
τzi− e

− i π
4
τzi+ . (3.28)

We find that

Û2
Z2,i = −σzi−σ

z
i+τ

z
i+τ

z
i− = Ûgauge

i . (3.29)

So Û2
Z2,i

= 1 on states that satisfy the gauge constraint. This is true for every bulk or boundary
state, so the full global symmetry generator, obtained by taking the product of the symmetry
generators over all bulk or boundary sites, generates the desired symmetry group ZG2 .

The low-energy dynamics can be analyzed precisely as in Sec. 3.3, and with the same results.
The first step is to observe that, even in the presence of the perturbation of eqn. (3.26), the
Hamiltonian commutes with the operators Vi+ 1

2
. Just as in Sec. 3.3, one diagonalizes these operators

with eigenvalues vi+ 1
2
, finds the ground state for given vi+ 1

2
, and then takes linear combinations of

these states to satisfy the gauge constraint.

We remind the readers that Appendix A of this paper contains more details on boundaries of
the CZX model and their 1+1D boundary effective theories. For a fermionic version of the CZX
model, see Appendix B. The boundary of the fermionic CZX model with emergent ZK2 -gauge theory
with anomalous global symmetry is detailed in Appendix C.

For the generalization of what we have done to arbitrary SPT phases in any dimension, we can
now proceed to Sec. 4.

4 Boundaries of generic SPT states in any dimension

What we have done for the CZX model in 2+1 dimensions has an analog for a general SPT state in
any dimension. To explain this will require a more abstract approach. We work in the framework of
the group cohomology approach to SPT states, with a Lagrangian on a spacetime lattice. So we first
introduce our notation for that subject. We generically write νd for a homogeneous d-cocycle, and
µd for a homogeneous d-cochain. We similarly write ωd for an inhomogeneous d-cocycle, and βd for
an inhomogeneous d-cochain. Finally, we write Vd for homogeneous d-cocycles or d-cochains with
both global symmetry variables and gauge variables, and denote Ωd as inhomogeneous d-cocycles
or d-cochains with both global symmetry variables and gauge variables.
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4.1 An exactly soluble path integral model that realizes a generic SPT state

A generic SPT state with a finite symmetry group G can be described by a path integral on a
space-time lattice, or more precisely, a space-time complex with a branching structure. A branching
structure can be viewed as an ordering of all vertices. It gives each link an orientation – which we
can think of as an arrow that runs from the smaller vertex on that link to the larger one, as in Fig.
8. More generally, a branching structure determines an orientation of each k-dimensional simplex,
for every k, including the top-dimensional ones that are glued together to make the full spacetime.

To each vertex i, we attach a G-valued variable gi. (Later we may also assign group elements
gij to each edges ij.) An assignment of group elements to vertices or edges will be called a coloring.
For a discrete version of the usual path integral of quantum mechanics, we will to sum over all
the colorings. (See Sec. 9.1.) On a closed oriented space-time, in the Euclidean signature, the
“integrand” of the path integral is given by

e−
∫
M3 LBulkd

3x =
∏
M3

ν
sijkl
3 (gi, gj , gk, gl). (4.1)

The argument of the path integral is a complex number with a nontrivial phase and thus it can
produce complex Berry phases. We have written this formula for the case of 2 + 1 dimensions,
but it readily generalizes to any dimension. Here, sijkl = ±1 for a given simplex with vertices ijkl
depending on whether the orientation of that simplex that comes from the branching structure
agrees or disagrees with the orientation of M . The symbol

∏
M3 represents a product over all

d-simplices.

Finally, and most importantly, the U(1)-valued νd(g0, · · · , gd) is a homogeneous cocycle repre-
senting an element of Hd(G,U(1)). This means νd(g0, · · · , gd) satisfy the cocycle condition δνd = 1,
where

(δνd)(g0, · · · , gd+1) ≡
∏
i=even νd(g0, · · · , ĝi, · · · , gd+1)∏
i=odd νd(g0, · · · , ĝi, · · · , gd+1)

. (4.2)

(The symbol ĝi is an instruction to omit gi from the sequence.)

We regard the complex phase νsd as a quantum amplitude assigned to a d-simplex in a d-
dimensional spacetime.

First, the path-integral model defined by the action amplitude eqn. (4.1) has a G-symmetry∏
M3

ν
sijkl
3 (gi, gj , gk, gl) =

∏
M3

ν
sijkl
3 (ggi, ggj , ggk, ggl), g ∈ G, (4.3)

since the homogeneous cocycle satisfies

ν3(gi, gj , gk, gl) = ν3(ggi, ggj , ggk, ggl). (4.4)

Second, because of the cocycle condition, one can show that

e−
∫
M3 LBulkd

3x =
∏
M3

ν
sijkl
3 (gi, gj , gk, gl) = 1, (4.5)

for any set of g’s, when the spacetime M3 is an orientable closed manifold. This implies that the
model is trivially soluble on a closed spacetime, and describes a state in which all local operators
have short-range correlations. This state is symmetric and gapped. It realizes an SPT state with
symmetry G. The state is determined up to equivalence by the cohomology class of ν3.
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Figure 8: The triangles with red (blue) loops have positive orientation sijk = 1 (negative orienta-
tion sijk = −1), with an outward (inward) area vector through the right-hand rule. The orientation
of a tetrahedron (i.e. the 3-simplex) is determined by the orientation of the triangle not containing
the first vertex. So (a) has a positive orientation s01234 = +1 and (b) has a negative orientation
s01234 = −1.
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Figure 9: The space-time D3, with a triangulation of the boundary and a construction of 3-
simplices (or 4-cells) in the bulk. Such a triangulation is used to construction a low-energy effective
path integral for the boundary.

4.2 The first boundary of a generic SPT state – A simple model but with
complicated boundary dynamics

So far, we have described a discrete system with G symmetry on a closed 3-manifold M3. What
happens if M3 is an open manifold that has a boundary ∂M3 = M2? The simplest path-integral
model that we can construct is simply to use all of the above formulas, but now on a manifold with
boundary. Thus, the argument of the path integral is still given by eqn. (4.1), but now, this is no
longer trivial:

e−
∫
M3 LBulkd

3x =
∏
M3

ν
sijkl
3 (gi, gj , gk, gl) 6= 1. (4.6)

Because of the properties of the cocycle, this amplitude only depends on the gi on the boundary,
so it can be viewed as the integrand of the path integral of a boundary theory.

To calculate the path integral amplitude of the boundary theory, we can simplify the bulk so
that it contains only one vertex g∗ (see Fig. 9). In this case, the effective boundary theory is
described by a path integral based on the following amplitude:

e−
∫
∂M3 LBdry,∂M3d2x =

∏
∂M3

ν
sijk
3 (gi, gj , gk, g

∗). (4.7)

This depends only on the boundary spins gi, gj , gk, · · · , and not on g∗ in the bulk. (This follows
from the cocycle condition for ν3. Readers who are not familiar with this statement can find the
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proof in Sec. 9.) Here, sijk = ±1 depending on whether the orientation of a given triangle that
comes from the branching structure agrees with the orientation that comes from the triangle as
part of the boundary of the oriented manifold M3. (Symbols like d3x and similar notation below
are shorthands for products over simplices, as written explicitly in the right hand side of eqn. (4.7).)

Since the path integral amplitude of the boundary theory is path dependent and not equal
to 1, the dynamics of the simple model is hard to solve, and we do not know if the boundary is
gapped, symmetry breaking, or topological. In fact, for cocycles ν3 that are in the same equivalence
class but differ by coboundaries, the boundary amplitudes are different, which may lead to different
boundary dynamics. In Sec. 3.1, for the case of the CZX model, we have chosen a particular cocycle
in an equivalence class. This choice of cocycle leads to a gapless boundary.

In general, given only a generic cocycle, the dynamics of this model is unclear and possibly
non-universal. We will describe more fully the anomalous symmetry realization in this boundary
state in Sec. 4.3, and then we will introduce alternative boundary states in Sec. 4.4.

4.3 Non-on-site (anomalous) G-symmetry transformation on the boundary ef-
fective theory

4.3.1 Symmetry transformation on a spacetime boundary in Lagrangian formalism

We continue to assume that the spacetime manifold M3 has a boundary ∂M3 = M2, which can
be regarded as a fixed-time slice on the closed space region ∂M3. The effective theory eqn. (4.7)
possesses the G symmetry:

e−
∫
∂M3 LBdry,∂M3d2x =

∏
∂M3

ν
sijk
3 (gi, gj , gk, g

∗)

=
∏
∂M3

ν
sijk
3 (ggi, ggj , ggk, g

∗). (4.8)

But this G symmetry in the presence of a boundary is in fact anomalous (i.e. non-on-site). The
anomalous nature of the symmetry along the boundary is the most important property of SPT
states.

To understand such an anomalous (or non-on-site) symmetry, we note that locally (that is, for
a particular simplex) the action amplitude is not invariant under the G-symmetry transformation:

ν3(ggi, ggj , ggk, g
∗) 6= ν3(gi, gj , gk, g

∗). (4.9)

Only the total action amplitude on the whole boundary (here the boundary ∂M3 = M2 of an open
manifold is a closed manifold) is invariant under the G-symmetry transformation. (Readers who
are not familiar with this statement can read the proof in Sec. 9.) Such a symmetry is an anomalous
(or non-on-site) symmetry.

Since the action amplitude is not invariant locally, but invariant on the whole boundary ∂M3 =
M2, thus under the symmetry transformation, the Lagrangian may change by a total derivative
term:

LBdry,∂M3 [gg(x)] = LBdry,∂M3 [g(x)] + dL′[g(x)]. (4.10)

38



−1g  g*

g

g

g
i

j

k

g*

Figure 10: Graphic representations of f2(gi, gj , gk) =
ν3(gi,gj ,gk,g

−1g∗)
ν3(gi,gj ,gk,g∗)

, which is actually a cobound-

ary. See eqn. (4.13).

The presence of dL′[g(x)] is another sign of the anomalous symmetry. To understand the symmetry
transformation on the boundary in more detail, we note that, in our case, dL′[g(x)] is given by

e−
∫
M2 dL′[g(x)]d2x =

∏
M2

ν
sijk
3 (gi, gj , gk, g

−1g∗)

ν
sijk
3 (gi, gj , gk, g∗)

. (4.11)

If we view

f2(gi, gj , gk) ≡
ν3(gi, gj , gk, g

−1g∗)

ν3(gi, gj , gk, g∗)
(4.12)

as a 2-cochain, it is actually a 2-coboundary (see Fig. 10):

f2(gi, gj , gk) =
ν3(gi, gj , gk, g

−1g∗)

ν3(gi, gj , gk, g∗)
(4.13)

=
ν3(gi, gj , g

∗, g−1g∗)ν3(gj , gk, g
∗, g−1g∗)

ν3(gi, gk, g∗, g−1g∗)
= df1

with a 1-cochain f1 as

f1(gi, gj) = ν3(gi, gj , g
∗, g−1g∗). (4.14)

Thus

e−
∫
M2 dL′[g(x)]d2x =

∏
M2

f
sijk
2 (gi, gj , gk) =

∏
∂M2

f
sij
1 (gi, gj). (4.15)

In some sense L′ is given by f1. When the spacetime boundary M2 = ∂M3, we have ∂M2 =
∂2M3 = ∅, and therefore eqn. (4.15) simplifies to

e−
∫
M2 dL′[g(x)]d2x = 1. (4.16)

Thus, globally there is a global symmetry, as was claimed in eqn. (4.8), though it holds only up to
a lattice version of a total derivative.

4.3.2 Symmetry transformation on a spatial boundary in Hamiltonian formalism

In the above, we have discussed the effective symmetry transformation on the spacetime boundary
in Lagrangian formalism. Now we will proceed with a Hamiltonian formalism.
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What we mean by a Hamiltonian formalism is to choose a fixed space M2, and use the path

integral on M2 × I to construct the imaginary-time evolution unitary operator e−ĤM2 , where
I = [0, 1] represents the time direction (see Fig. 11). The matrix elements of the imaginary-time

evolution operator is (e−ĤM2 ){g′′i ,...},{g′i,...}, where {g′i, ...} are the degrees of freedom on M2 × {0},
and {g′′i , ...} on M2 × {1}. We may choose M2 × I to represent just one time step of evolution, so
that there are no interior degrees of freedom to sum over. In this case, the unitary operator are

(e−ĤM2 ){g′′i ,...},{g′i,...} =
∏
M2×I

ν
sijkl
3 (gi, gj , gk, gl). (4.17)

When the space M2 has a boundary, then some degrees of freedom live on the boundary
∂M2 and others live in the interior of M2. We can ask about the properties of global symmetry
transformations in two scenarios: The first is the symmetry of the whole bulk and the boundary
included together, which is an on-site symmetry. The second is the symmetry of the effective
boundary theory only, which turns out to be a non-on-site symmetry.

1. For the first scenario, the symmetry of the whole bulk and the boundary together, we have

(e−ĤM2 ){gg′′i ,...},{gg′i,...} = (e−ĤM2 ){g′′i ,...},{g′i,...},

because every homogeneous cochain satisfies ν3(ggi, ggj , ggk, ggl) = ν3(gi, gj , gk, gl). If we

write the evolution operator e−ĤM2 explicitly, including the matrix elements and basis pro-
jectors, we see that

|{gg′′i , ...}〉(e−ĤM2 ){gg′′i ,...},{gg′i,...}〈{gg
′
i, ...}| = Û0(g)|{g′′i , ...}〉(e−ĤM2 ){g′′i ,...},{g′i,...}〈{g

′
i, ...}|Û

†
0(g),

where Û0(g) generates the usual on-site G-symmetry transformation |{gi, ...}〉 → |{ggi, ...}〉.
Thus, the G-symmetry transformation on the whole system (with bulk and boundary in-
cluded) is an on-site symmetry, as it reasonably should be as in condensed matter.

2. For the second scenario, to obtain the symmetry of the effective boundary theory, we can
simplify all the interior degrees of freedom into a single one g∗, then the degrees of freedom
on M2 are given by {g1, g2, · · · , g∗} where gi live on the boundary ∂M2 and g∗ lives in the
interior of M2 (see Fig. 11). Now the imaginary-time evolution operator is given by

(e−Ĥ∂M2 ){g′′i ,...},{g′i,...} =
∏
M2×I

ν
sijk∗
3 (gi, gj , gk, g

∗). (4.18)

which defines an effective Hamiltonian for the boundary. Now, we are ready to ask: What
is the symmetry of the effective boundary Hamiltonian, or effectively the symmetry of time

evolution operator e−Ĥ∂M2?

The analysis of global symmetry in Sec. 4.3.1 no longer applies. The discrete time evolution
operator does not have the usual global symmetry:

(e−Ĥ∂M2 ){gg′′i ,...},{gg′i,...} 6= (e−Ĥ∂M2 ){g′′i ,...},{g′i,...}, (4.19)

since∏
M2×I

ν
sijk∗
3 (ggi, ggj , ggk, g

∗) =
∏
M2×I

ν
sijk∗
3 (gi, gj , gk, g

−1g∗) 6=
∏
M2×I

ν
sijk∗
3 (gi, gj , gk, g

∗).

(4.20)
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Figure 11: M2 × I representing one step of imaginary time evolution, for the effective boundary
theory. The space M2 is given by the disk.

The difference between two matrix elements (e−Ĥ∂M2 ){gg′′i ,...},{gg′i,...} and (e−Ĥ∂M2 ){g′′i ,...},{g′i,...}
is just a U(1) phase factor∏

M2×I

ν
sijk
3 (gi, gj , gk, g

−1g∗)

ν
sijk
3 (gi, gj , gk, g∗)

=
∏

∂M2×I

f
sijk
2 (gi, gj , gk) =

∏
∂M2×∂I

f
sij
1 (gi, gj)

=
∏

∂M2×∂I

ν
sij
3 (gi, gj , g

∗, g−1g∗) =

∏
(ij) ν

sij
3 (g′′i , g

′′
j , g
∗, g−1g∗)∏

(ij) ν
sij
3 (g′i, g

′
j , g
∗, g−1g∗)

, (4.21)

where
∏
M2×I multiplies over all the 3-simplices in Fig. 11,

∏
∂M2×I over all the 2-simplices

on ∂M2 × I,
∏
∂M2×∂I over all the 1-simplices on the top and the bottom boundaries of

∂M2 × I. Note that many oppositely oriented ν3 terms are cancelled out in order to derive
the last form of the above eqn. (4.21). This means that the boundary time evolution operator
is invariant

|{gg′′i , ...}〉(e−Ĥ∂M2 ){gg′′i ,...},{gg′i,...}〈{gg
′
i, ...}| = Û(g)|{g′′i , ...}〉(e−Ĥ∂M2 ){g′′i ,...},{g′i,...}〈{g

′
i, ...}|Û †(g),

under a modified G-symmetry transformation

Û(g) ≡ Û0(g) U{gi,...}, (4.22)

where

U{gi,...} =
∏
(ij)

ν
sij
3 (gi, gj , g

∗, g−1g∗) (4.23)

and Û0(g) generates the usual on-site G-symmetry transformation |{gi, ...}〉 → |{ggi, ...}〉.
The phase factor U{gi,...} makes the G-symmetry to be non-on-site at the boundary.

We have written these formulas in 2+1 dimensions, but they all can be generalized. In d
dimensions, we have an effect boundary symmetry operator Û(g) acting on ∂Md−1 for the

effective boundary Hamiltonian e−Ĥ∂Md−1 :

Û(g) ≡ Û0(g) U{gi,...} = Û0(g)
∏

(ij···`)∈∂Md−1

ν
sij···`
d (gi, gj , · · · , g`, g∗, g−1g∗), (4.24)

4.4 The second boundary of a generic SPT state – Gapped boundary by ex-
tending the G-symmetry to an H-symmetry

In Sec. 3.1 and also in Sec. 4.2, we considered the path integral of a G-SPT state described by
a homogeneous cocycle νd ∈ Hd(G,U(1)). The path integral that we studied in that section
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remained G-symmetry invariant even on a manifold with boundary, where the G-symmetry is an
on-site symmetry in the bulk. However, if we integrate out the bulk degrees of freedom, the effective
boundary theory will have an effective G-symmetry, which must be non-on-site (i.e. anomalous) on
the boundary. This anomalous G-symmetry on the boundary forces the boundary to have some
non-trivial dynamical properties.

However, the simple model introduced in Sec. 4.2 has a complicated boundary dynamics, which
is hard to solve. There are several standard ways to modify the construction in Sec. 4.2 to get
a boundary that can be solved exactly. One way to do so is to constrain the group variables gi
on boundary sites to all equal 1, or at least to take values in a subgroup G′ ⊆ G such that the
cohomology class of νd becomes trivial when restricted to G′. Given this, after possibly modifying
νd by a coboundary, we can assume that νd = 1 when the group variables gi all belong to G′. In
this case, the action amplitudes for the boundary effective theory eqn. (4.7) are always equal to 1
(after choosing g∗ ∈ G′). So the boundary constructed in this way is exactly soluble, and is gapped.
This construction amounts to spontaneous or explicit breaking of the symmetry from G to G′.

In this section, we will explain another procedure to construct a model with the same bulk
physics and an exactly soluble gapped boundary. This will be accomplished by extending (rather
than breaking) the global symmetry along the boundary. Then, as in our explicit example of the
CZX model in Sec. 3.2, we get a boundary state that is gapped and symmetric, but the symmetry
along the boundary is enhanced relative to the bulk.

4.4.1 A purely mathematical setup on that G-cocycle is trivialized in H

To describe the symmetry extended boundary, let us introduce a purely mathematical result. We
consider an extension of G,

1→ K → H
r→ G→ 1 (4.25)

where K is a normal subgroup of H, and H/K = G. Here r is a surjective group homomorphism
from H to G. A “G-variable” G-cocycle νd(g0, · · · , gd) can be “pulled back” to an “H-variable”
H-cocycle νHd (h0, · · · , hd), defined by

νHd (h0, · · · , hd) = νd(r(h0), · · · , r(hd)) ≡ νGd (r(h0), · · · , r(hd)). (4.26)

The case of interest to us is that νHd is trivial in Hd(H,U(1)). This means νHd (h0, · · · , hd) can be
rewritten as a coboundary, namely

νHd (h0, · · · , hd) = δµHd−1(h0, · · · , hd) ≡
∏
i=even µ

H
d−1(h0, · · · , ĥi, · · · , hd)∏

i=odd µ
H
d−1(h0, · · · , ĥi, · · · , hd)

. (4.27)

(The symbol ĥi is an instruction to omit hi from the sequence.)

For the convenience and the preciseness of the notation, we can also shorten the above eqn. (4.27)
to

νGd (r(h)) = νHd (h) = δµHd−1(h), (4.28)

where the variable h in the bracket is a shorthand of many copies of group elements in a direct
product group of H. By pulling back a G-cocycle νGd back to H, it becomes an H-coboundary
δµHd−1. Formally, we mean that a nontrivial G-cocycle

νGd ∈ Hd(G,U(1)) (4.29)
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becomes a trivial element when it is pulled back (denoted as ∗) to H

r∗νGd = νHd = δµHd−1 ∈ Hd(H,U(1)). (4.30)

Saying that this element is trivial means that the corresponding cocycle is a coboundary.

Here µHd−1(h0, · · · , hd−1) is a homogeneous (d− 1)-cochain:

µHd−1(hh0, · · · , hhd−1) = µHd−1(h0, · · · , hd−1). (4.31)

The definition of νHd also ensures that

νHd (v0h0, · · · , vdhd) = νHd (h0, · · · , hd), vi ∈ K, (4.32)

since r(vi) = 1 is trivial in G for any vi ∈ K. In particular, νHd (v0, · · · , vd) = 1, vi ∈ K, and
therefore ∏

i=even µ
H
d−1(v0, · · · , v̂i, · · · , vd)∏

i=odd µ
H
d−1(v0, · · · , v̂i, · · · , vd)

= 1. (4.33)

Thus when we restrict toK, the cochain µHd−1(v0, · · · , vd−1) becomes a cocycle µKd−1 inHd−1(K,U(1)).

An important detail is that in general the cohomology class of µKd−1 is not uniquely determined by

the original cocycle νd. In general, it can depend on the choice of cochain µHd−1 that was used to

trivialize νHd .

In fact, let µHd−1 and µ̃Hd−1 be two cochains, either of which could be used to trivialize νHd :

νHd = δµHd−1 = δµ̃Hd−1. (4.34)

Then νHd−1 = µHd−1(µ̃Hd−1)−1 is a cocycle, δνHd−1 = 1. So νHd−1 has a class in Hd−1(H,U(1)). If

this class is nontrivial, the gapped boundary states that we will construct using µHd−1 and µ̃Hd−1

are inequivalent. Thus the number of inequivalent gapped boundary states that we can make
by the construction described below (keeping fixed H and K) is the order of the finite group
Hd−1(H,U(1)).12

A nontrivial class in Hd−1(H,U(1)) may or may not remain nontrivial after restriction from H
to K, so in general as stated above the cohomology class of νKd−1 can depend on the choice of µHd−1.

4.4.2 H-symmetry extended boundary — By extending G-symmetry to H-symmetry

To construct the second boundary of generic SPT state, we allow the degrees of freedom on the
vertices at the boundary to be labeled by hi ∈ H. This amounts to adding new degrees of freedom
along the boundary. The degrees of freedom on the vertices in the bulk are still labeled by gi ∈ G.
With this enhancement of the boundary variables, we can write down the action amplitude for the
second construction as

e−
∫
Md LBulkd

dx =

∏
Md ν

s01···d
d (g0, g1, · · · , gd)∏

∂Md(µHd−1)s01···(d−1)(h0, h1, · · · , hd−1)
(4.35)

12It is not true that these states can be classified canonically by Hd−1(H,U(1)), because there is no natural starting
point, that is, there is no natural choice of µHd−1 to begin with. Once one makes such a choice, the boundary states
that we will construct can be classified by Hd−1(H,U(1)).
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where νd and µHd−1 are the cochains introduced in the last section and Md may have a boundary.
Here, if a vertex in νd(g0, g1, · · · , gd) is on the boundary, the corresponding gi is given by gi = r(hi).

We note that, since r: H → G is a group homomorphism, the action h: H → H, hi → hhi,
induces an action r(h): G→ G, gi → r(h)gi. Therefore, the total action amplitude eqn. (4.35) has
H symmetry:∏

Md ν
s01···d
d (g0, g1, · · · , gd)∏

∂Md(µHd−1)s01···(d−1)(h0, h1, · · · , hd−1)
=

∏
Md ν

s01···d
d (r(h)g0, r(h)g1, · · · , r(h)gd)∏

∂Md(µHd−1)s01···(d−1)(hh0, hh1, · · · , hhd−1)
(4.36)

where h ∈ H. In the bulk, the symmetry is G, but along the boundary it is extended to H. Such
a total action amplitude defines our second construction of the boundary of a G-SPT state, which
has a symmetry extension G lifted to H on the boundary. We return to more details on this model
in Sec. 9.

The bulk of the constructed model is described by the same group cocycle νd, which give rise
to the G-SPT state. But the boundary has an extended symmetry H. In this case, we should view
the whole system (bulk and boundary) as having an extended H-symmetry, with the K subgroup
acting trivially in the bulk. So the effective symmetry in the bulk is G = H/K.

The dynamics of our second boundary is very simple, since the total action amplitude eqn. (4.35)
is always equal to 1 by construction:∏

Md

νs01···dd (g0, g1, · · · , gd) =
∏
Md

(νHd )s01···d(h0, h1, · · · , hd)

=
∏
∂Md

(µHd−1)s01···(d−1)(h0, h1, · · · , hd−1), (4.37)

where gi = r(hi). Thus, the ground state is always gapped and there is no ground state degeneracy
regardless of whether the system has a boundary or not. In other words, the second boundary of
the G-SPT state is gapped with H symmetry and no topological order. The gapped boundary with
H symmetry and no topological order is possible, since we have chosen H so that when we view
the G-SPT state as an H-SPT state, the non-trivial G-SPT state becomes a trivial H-SPT state.

4.5 On-site (anomaly-free) H-symmetry transformation on the boundary effec-
tive theory

Now we show that symmetry extension, as described in Sec. 4.4.2, gives a boundary state with
on-site (anomaly-free) H-symmetry, based on the Hamiltonian formalism on the boundary. This
section directly parallels the previous discussion in Sec. 4.3, where a non-trivial G-cocycle gives
rise to a non-on-site effective G-symmetry on the boundary. After extending the symmetry to H,
the non-trivial G-cocycle νd becomes a trivial H-cocycle νHd , which in turn gives rise to an on-site
effective H-symmetry for the boundary effective theory.

Taking d = 3 as an example, Eqns. (4.13), (4.14) and (4.15) of Sec. 4.3.1 still hold. Furthermore,
when hi, hj and hk are boundary degrees of freedom in H, eqn.(4.13) becomes

f2(hi, hj , hk) =
µH2 (hi, hj , h

−1h∗)µH2 (hj , hk, h
−1h∗)µH2 (hi, hk, h

−1h∗)
−1

µH2 (hi, hj , h∗)µH2 (hj , hk, h∗)µ
H
2 (hi, hk, h∗)

−1 = df1. (4.38)
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See Fig. 12 for an illustration. Here µH2 is a homogeneous 2-cochain that splits νH3 (or νG3 ({r(h)}))
and satisfies µH2 (hi, hj , h

−1h∗) = µH2 (hhi, hhj , h
∗). Now the split 2-cochain f1 in eqn.(4.14) has a

new form:

f1(hi, hj) =
µH2 (hi, hj , h

−1h∗)

µH2 (hi, hj , h∗)
. (4.39)

−1

i

j

k

h*

h

h

h

h

h*

Figure 12: Graphic representation of f2(hi, hj , hk) =
µH2 (hi,hj ,h

−1h∗)

µH2 (hi,hj ,h∗)

µH2 (hj ,hk,h
−1h∗)

µH2 (hj ,hk,h∗)

µH2 (hi,hk,h
∗)

µH2 (hi,hk,h−1h∗)

= df1, again as a coboundary. Each shaded blue triangle is assigned with a split cochain µH2 . See
eqns. (4.38) and (4.39).

j k
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h h
h*
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Figure 13: Geometric picture to explain the calculation from eqn. (4.42) to eqn. (4.43) (for
the d = 3 case).

∏
(ij···`)∈∂Md−1(νHd )sij···`(hi, hj , · · · , h`, h∗, h−1h∗) in eqn. (4.42) is a prod-

uct over all the 3-simplices in the figure.
∏

(ij···`)∈∂Md−1(µHd−1)sij···`(hhi, hhj , · · · , hh`, h∗) =∏
(ij···`)∈∂Md−1(µHd−1)sij···`(hi, hj , · · · , h`, h−1h∗) is a product over all the 2-simplices on the top

surface, and
∏

(ij···`)∈∂Md−1(µHd−1)sij···`(hi, hj , · · · , h`, h∗) is a product over all the 2-simplices on the
bottom surface.

To show more clearly that H-symmetry can be made on-site and anomaly-free in any dimension
d, we note that the action amplitude eqn. (4.35) can be rewritten as

e−
∫
Md LBulkd

dx =

∏
Md(νHd )s01···d(h0, h1, · · · , hd)∏

∂Md(µHd−1)s01···(d−1)(h0, h1, · · · , hd−1)
. (4.40)

Each local term (µHd−1)s01···(d−1)(h0, h1, · · · , hd−1) is already invariant under H-symmetry transfor-

mation on the boundary. So we will drop it. The term (νHd )s01···d(h0, h1, · · · , hd) may not be invari-
ant underH-symmetry transformation on the boundary, although their product

∏
Md(νHd )s01···d(h0, h1, · · · , hd)

is. This may lead to a non-on-site H-symmetry. Repeating the calculation in Sec. 4.3, we found

that the discrete time evolution operator e−Ĥ∂Md−1 does not have the usual global symmetry, where
their matrix elements follow:

(e−Ĥ∂Md−1 ){hh′′i ,...},{hh′i,...} 6= (e−Ĥ∂Md−1 ){h′′i ,...},{h′i,...}. (4.41)

But it is invariant

|{hh′′i , ...}〉(e−Ĥ∂Md−1 ){hh′′i ,...},{hh′i,...}〈{hh
′
i, ...}| = Û(h)|{h′′i , ...}〉(e−Ĥ∂Md−1 ){h′′i ,...},{h′i,...}〈{h

′
i, ...}|Û †(h),
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under a modified symmetry transformation operator

Û(h) ≡ Û0(h)
∏

(ij···`)∈∂Md−1

(νHd )sij···`(hi, hj , · · · , h`, h∗, h−1h∗), (4.42)

which appears to be non-on-site. However, since νHd = δµHd−1 is a coboundary, the above can be
rewritten as (see Fig. 11 and 13)

Û(h) = Û0(h)

∏
(ij···`)∈∂Md−1(µHd−1)sij···`(hhi, hhj , · · · , hh`, h∗)∏

(ij···`)∈∂Md−1(µHd−1)sij···`(hi, hj , · · · , h`, h∗)
. (4.43)

After a local unitary transformation |{hi}〉 →W ({hi})|{hi}〉 ≡ |{hi}′〉 with

W ({hi}) ≡
∏

(ij...)∈∂Md−1

µHd−1(hi, hj , ..., h
∗),

we can change the above H-symmetry transformation to

Û(h)→W †Û(h)W = Û0(h) (4.44)

which indeed becomes on-site. The on-site symmetry Û0(h) makes the time evolution operator
invariant under

|{hh′′i , ...}′〉(e−Ĥ∂Md−1 ){hh′′i ,...},{hh′i,...}〈{hh
′
i, ...}′| = Û0(h)|{h′′i , ...}′〉(e−Ĥ∂Md−1 ){h′′i ,...},{h′i,...}〈{h

′
i, ...}′|Û

†
0(h).

The subtle difference between Sec. 4.3 and Sec. 4.5 is that the νd(gi, gj , · · · , g`, g∗, g−1g∗) cannot
be absorbed through local unitary transformations, but its split form µHd−1(hi, hj , ..., h

∗) can be

absorbed. Namely, one can think of µHd−1 as an output of a local unitary matrix acting on local
nearby sites with input data hi, hj , . . . in a quantum circuit.

To summarize what we did in Sec. 4.3 and 4.5, the G-symmetry transformation on the boundary
was non-on-site thus anomalous. The H-symmetry transformation on the boundary is now made
to be on-site, by pulling back G to H, thus, it is anomaly-free in H.

4.6 The third boundary of a generic SPT state: A gapped symmetric boundary
that violates locality with (hard) gauge fields

In the last section, we constructed a gapped symmetric boundary of an SPT state such that the
global symmetry is extended from G to H along the boundary. Such boundary enhancement of
the symmetry is usually13 not natural in condensed matter physics. Just as in our discussion of
the CZX model in Sec. 3.3, 3.4, the way to avoid symmetry extension is to gauge the boundary
symmetry K, giving a construction in which the full global symmetry group is G (or G′ in the more
general mixed breaking and extension construction described in Sec. 8.2).

As in the CZX model, there are broadly two approaches to gauging the K symmetry. One may
use “hard gauging” in which one introduces (on the boundary) elementary fields that gauge the
K symmetry, or “soft gauging” in which the boundary gauge fields are emergent. Hard gauging
is generally a little quicker to describe, so we begin with it, but soft gauging, which will be the
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Figure 14: A boundary of a G-SPT state. A vertex i on the boundary carries hi ∈ H, and a link
(ij) carries vij ∈ K.

topic of Sec. 4.7, is more natural in condensed matter physics because it can be strictly local or
“on-site.” Our discussion here and in the next section is roughly parallel to Sec. 3.3 and 3.4 on the
CZX model.

To construct a new boundary, let us consider a system on a d-dimensional space-time manifold
Md, with a triangulation that has a branching structure. A vertex i inside Md carries a degree of
freedom gi ∈ G. A vertex i on the boundary ∂Md carries a degree of freedom hi ∈ H. A link (ij)
on the boundary ∂Md carries a degree of freedom vij ∈ K. See Fig. 14

We choose the action amplitude of our new model to be

e−
∫
Md Lddx =

∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid)× (4.45)

∏
(i0···id−1)∈∂Md

(VH,Kd−1 )−si0···id−1 (hi0 , · · · , hid−1
; vi0i1 , vi0i2 , · · · )

where
∏

(i0···id) is a product over d-dimensional simplices (i0 · · · id) in the bulk, and
∏

(i0···id−1) is

a product over (d − 1)-dimensional simplices (i0 · · · id−1) on the boundary. si0···id = ±1 is the
orientation of the d-simplex (i0 · · · id), and si0···id−1

= ±1 is the orientation of the (d − 1)-simplex

(i0 · · · id−1). Finally, VH,Kd−1 will be defined in Sec. 4.6.1, using µHd−1 introduced in Sec. 4.4.1, as well
as “hard gauge fields” vij along boundary links.

In the action amplitude eqn. (4.45), νd ∈ Hd(G,U(1)) is the cocycle describing the G-SPT state.
We have assumed that if a vertex i in νd(g0, · · · , gd) is on the boundary, then the corresponding gi
is given by gi = r(hi).

4.6.1 A cochain that encodes “hard gauge fields”

The generalized cochain VH,Kd−1 (hi0 , · · · , hid−1
; vi0i1 , vi0i2 , · · · ) will be defined for boundary simplices.

It will depend on H-valued boundary spins hi as well as K-valued boundary link variables vij . As
usual in lattice gauge theory, we can regard vij as a K gauge connection on the link ij.

First, we assume that VH,Kd−1 (hi0 , · · · , hid−1
; vi0i1 , vi0i2 , · · · ) = 0 for any configurations vij that do

13In Sec. 3.2, we described a situation in which it is natural.
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not satisfy vi1i2vi2i3 = vi1i3 , for some i1, i2, i3. So only the vij configurations that satisfy

vi1i2vi2i3 = vi1i3 , (4.46)

on every triangle can contribute to the path integral. This means that only flat K gauge fields are
allowed.

For a flat connection on a simplex with vertices i0, . . . , id−1, all of the vijik can be expressed in

terms of v01, v12, v23, · · · , vd−2,d−1. So likewise VH,Kd−1 (h0, · · · , hd−1; v01, v02, v12, · · · ) can be expressed

as VH,Kd−1 (h0, · · · , hd−1; v01, v12, · · · , vd−2,d−1). We define VH,Kd−1 in terms of the homogeneous cochain

µHd−1 of Sec. 4.4.1 by

VH,Kd−1 (h0, · · · , hd−1; v01, v02, v12, · · · )

= VH,Kd−1 (h0, · · · , hd−1; v01, v12, · · · , vd−2,d−1)

= µHd−1(h0, v01h1, v01v12h2, · · · ). (4.47)

In other words

VH,Kd−1 (h0, · · · , hd−1; v01, v12, · · · , vd−2,d−1) = µHd−1(h̃0, h̃1, h̃2, · · · ). (4.48)

where h̃i is given by hi parallel transported from site-i to site-0 using the connection vij :

h̃i = v01v12 · · · vi−1,ihi. (4.49)

We note that VH,Kd−1 has a local K-symmetry generated by v0, v1, · · · ∈ K:

VH,Kd−1 (v0h0, · · · , vd−1hd−1; v01, v12, · · · , vd−2,d−1)

= VH,Kd−1 (h0, · · · , hd−1; v−1
0 v01v1, v

−1
1 v12v2, · · · ). (4.50)

Next we will view such a boundary local symmetry as a K-gauge redundancy by viewing two
boundary configurations (hi, vij) and (h′i, v

′
ij) as the same configuration if they are related by a

gauge transformation

h′i = vihi, v′ij = vivijv
−1
j , vi ∈ K. (4.51)

Eqn. 4.50 ensures the gauge-invariance of the boundary action.

Now that we have gauged the K symmetry, the global symmetry of the full system, including
its boundary, is G. However, viewing two boundary configurations (hi, vij) and (h′i, v

′
ij) as the

same configuration makes the gauged theory no longer a local bosonic system. This is because
the number of different (i.e. gauge inequivalent) configurations on the space-time boundary ∂Md

is given by14

|H|Nv |K|Nl
|K|Nv

|K||π0(∂Md)|, (4.52)

where Nv is the number of vertices, Nl is the number of links on the boundary ∂Md, and |Set|
is the number of elements in the Set. Here we count all the distinct configurations of vertex

14The formula works when all groups are Abelian. For non-Abelian groups, there could be additional constraints
on this formula, for example, in terms of conjugacy classes.
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variables of H and link variables of K, identifying them up to K-gauge transformations on the
vertices. We consider all higher energetic configurations, which include both flat and locally non-
flat configurations, much more than just ground state sectors. Constant gauge transformations
yield an additional factor |K||π0(∂Md)|. The appearance of the factor |K||π0(∂Md)| whose exponent is
not linear in Nv and Nl implies a non-local system. So the third boundary is no longer local in that
strict sense. In subsection 4.6.2, we show that this non-local boundary is gapped and symmetric.
In Sec. 4.7, we will replace hard gauging with soft gauging and thereby get a boundary that is fully
local and on-site, while still gapped and symmetric.

4.6.2 A model that violates the locality for the boundary theory

In the path integral, we only sum over gauge distinct configurations:

Z =
∑

{gi,[hi,hij ]}

∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid)× (4.53)

∏
(i0···id−1)∈∂Md

(VH,Kd−1 )si0···id−1 (hi0 , · · · , hid−1
; vi0i1 , vi1i2 , · · · )

where [hi, vij ] represents the gauge equivalence classes. (Equivalently, we can sum over all config-
urations and divide by the number of equivalent configurations in each gauge equivalence class.)

We emphasize:

“Since the boundary theory is non-local respect to the boundary sites, it is no longer meaningful
to distinguish on-site from non-on-site symmetry, or anomaly-free from anomalous symmetry.”

However, this system does have a global G symmetry. To see this, let us consider a transfor-
mation generated by h ∈ H given by

(hi, vij)→ (hhi, hvijh
−1) (4.54)

if i is on the boundary, and

gi → r(h)gi (4.55)

if i is in the bulk. Clearly, such a transformation is actually a G transformation in the bulk. On the
boundary, since (hi, vij) and (vhi, vvijv

−1) are gauge equivalent for v ∈ K, h and hv generate the
same transformation. So the transformation on the boundary is given by the equivalence class [h]
under the equivalence relation h ∼ hv, v ∈ K. Since K is a normal subgroup of H, the equivalence
classes form a group H/K = G. Thus, the transformation is also a G transformation on the
boundary. Such a transformation is a symmetry of the model since

VH,Kd−1 (hhi0 , · · · , hhid−1
;hvi0i1h

−1, hvi1i2h
−1, · · · ) = VH,Kd−1 (hi0 , · · · , hid−1

; vi0i1 , vi1i2 , · · · ), (4.56)

where we have used the definition eqn. (4.47). We note that hvijh
−1 ∈ K since K is a normal

subgroup of H. So the partition function eqn. (4.53) gives us a boundary effective theory that still
has the G global symmetry.

Now we can ask whether the ground state at the boundary breaks the G-symmetry or not.
More generally, what is the dynamical property of such a boundary? Is it gapped? To answer such
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a question, we note that on a triangulated Md, in general∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid) 6= 1 (4.57)

since Md has a boundary. But we can show that if the boundary is simply-connected, then

e−
∫
Md Lddx =

∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid)× (4.58)

∏
(i0···id−1)∈∂Md

(VH,Kd−1 )−si0···id−1 (hi0 , · · · , hid−1
; vi0i1 , vi1i2 , · · · ) = 1.

To show this, we first recall that only flat connections on the boundary contribute to the path
integral. If the boundary is simply-connected, this means that we can assume that vij is pure
gauge. So by a gauge transformation eqn. (4.50), we can set all vij to 1 on the boundary:∏

(i0···id)

ν
si0···id
d (gi0 , · · · , gid)

∏
(i0···id−1)

(VH,Kd−1 )−si0···id−1 (hi0 , · · · , hid−1
; vi0i1 , vi1i2 , · · · )

=
∏

(i0···id)

ν
si0···id
d (gi0 , · · · , gid)

∏
(i0···id−1)

(VH,Kd−1 )−si0···id−1 (h̃i0 , · · · , h̃id−1
; 1, 1, · · · )

=
∏

(i0···id)

ν
si0···id
d (gi0 , · · · , gid)

∏
(i0···id−1)

(µHd−1)−si0···id−1 (h̃i0 , · · · , h̃id−1
) (4.59)

where h̃i is obtained from hi by the gauge transformation that sets the vij to 1. But this is 1 by
virtue of eqn. (4.37).

The fact that the action amplitude of our theory on Md is always one if the boundary of Md

is simply-connected is enough to show that the system on Md is in a gapped phase both in the
bulk and on the boundary. Such a gap state is the K-gauge deconfined state, described by the
flat K-connection vij ∈ K on each link. Also hi and gi are strongly fluctuating and are quantum-
disordered as well. This is because the action amplitude is always equal to 1 regardless the values
of hi and gi (say, in the vij = 1 gauge discussed above). So the partition function eqn. (4.53) gives
us a boundary of the SPT state that is in the deconfined phase of K-gauge theory, and does not
break the G symmetry.

4.7 The fourth boundary of a generic SPT state: A gapped symmetric bound-
ary that preserves locality with emergent (soft) gauge fields

In the last section, we constructed a gapped symmetric boundary of an SPT state by making its
boundary non-local. In this section, we are going to fix this problem, by constructing the fourth
gapped symmetric boundary of an SPT state without changing the symmetry and without destroy-
ing the locality. The new gapped symmetric boundary has emergent gauge fields and topological
order on the boundary. By this explicit construction, we show that:

“In 3+1D and any higher dimensions, an SPT state with a finite group symmetry, regardless
unitary or anti-unitary symmetry, always15 has a gapped local boundary with the same symmetry.”

15To complete the argument, we need to know that for every SPT phase with G symmetry, a suitable extension
1→ K → H

r→ G→ 1 exists. This is shown in Sec. 5.
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Figure 15: A boundary of G-SPT state. A vertex i on the boundary carries hi ∈ H, and a link
(ij) carries hij and hji. The degrees of freedom in a circle, hi, hij , hil, · · · , belong to the same site
labeled by i.

The construction in this section is a generalization of the construction in Sec. 3.4.

To construct a local boundary, we replace vij on a link by two degrees of freedom hij ∈ H and
hji ∈ H. In other words, a link (ij) on the boundary ∂Dd now carries two degrees of freedom
hij ∈ H and hji ∈ H (see Fig. 15). We regard hi, hij , hil, · · · as the degrees of freedom on site-i of
the boundary (see Fig. 15). In the bulk, a site-i only carries a degree of freedom described by gi.

We choose the action amplitude for our fourth boundary to be

e−
∫
Dd
Lddx =

∏
(i0···id)∈Dd

ν
si0···id
d (gi0 , · · · , gid)× (4.60)

∏
(i0···id−1)∈∂Dd

(VH,Kd−1 )−si0···id−1 (hi0 , · · · , hid−1
;hi0i1 , hi1i0 , · · · ).

In the following, we will define VH,Kd−1 . We introduce a new form of cochain VH,Kd−1 encoding “soft
gauge fields” emergent from the local boundary sites that we prescribe below.

4.7.1 A new cochain that encodes “emergent soft gauge fields”

First, we assume that VH,Kd−1 (hi0 , · · · , hid−1
;hi0i1 , hi1i0 , · · · ) = 0 for any configurations hij that do

not satisfy

vij ≡ hijh−1
ji ∈ K (4.61)

for every link or do not satisfy

vi1i2vi2i3 = vi1i3 , (4.62)

for every triangle. So only the hij configurations that satisfy

vi1i2vi2i3 = vi1i3 , vij = hijh
−1
ji ∈ K (4.63)

on every triangle contribute to the path integral. Here vij corresponds to the K-gauge connection
introduced in the last section.
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The K-gauge symmetry will impose the equivalence relation

(hi, hij) ∼ (kihi, kihij), (4.64)

for any ki ∈ K. The total number of inequivalent configurations on space-time boundary ∂Md is
given by

|H|Nv+2Nl

|K|Nv
. (4.65)

The exponent in the number of configurations is linear in Nv and Nl, implying that the system is
local.

Let us further assume that VH,Kd−1 (h0, · · · , hd−1;h01, h10, · · · ) depends on hij only via vij =

hijh
−1
ji . So we can express VH,Kd−1 (h0, · · · , hd−1;h01, h10, · · · ) as VH,Kd−1 (h0, · · · , hd−1; v01, v02, v12, · · · ).

We can simplify this further: The non-zero VH,Kd−1 (h0, · · · , hd−1; v01, v02, v12, · · · ) can be expressed

via VH,Kd−1 (h0, · · · , hd−1; v01, v12, · · · , vd−2,d−1). In other words, vij on all the links of a (d−1)-simplex
can be determined from a subset v01, v12, · · · , vd−2,d−1.

At this stage, we simply define VH,Kd−1 via eqn. (4.47), but using the effective gauge fields vij
defined in eqn. (4.63) to replace the hard gauge fields that were assumed previously. The result-
ing model is manifestly gauge invariant, just as it was before. However, hard gauging has now
been replaced with soft gauging, making the model completely local, both in the bulk and on the
boundary. In this case, the global symmetry G is on-site for the whole system (including bulk
and boundary). But if we integrate out the gapped bulk, and consider only the effective boundary
theory, we would like to ask if the effective global symmetry G on the boundary is on-site or not?
Since this point is important, we elaborate on it in the next section.

4.7.2 The locality and effective non-on-site symmetry for the boundary theory

We have shown that the model obtained by soft gauging is local both in the bulk and on the
boundary. If we integrate out the bulk degrees of freedom, we get an effective boundary theory,
whose action amplitude is given by a product of terms defined for each boundary simplex. The total
boundary action amplitude is invariant under the G-symmetry transformation on the boundary,
but each local term on a single boundary simplex may not be. This leads to a possibility that
the effective boundary G-symmetry is not on-site. We have constructed two boundaries that are
local in Sec. 4.2 and 4.4. The first boundary in Sec. 4.2 has a non-on-site effective G-symmetry on
the boundary, while the second boundary in Sec. 4.4 has an on-site effective H-symmetry on the
boundary.

In the path integral, we only sum over gauge distinct configurations:

Z =
∑

{gi,[hi,hij ]}

∏
(i0···id)∈Dd

ν
si0···id
d (gi0 , · · · , gid)× (4.66)

∏
(i0···id−1)∈∂Dd

(VH,Kd−1 )si0···id−1 (hi0 , · · · , hid−1
;hi0i1 , hi1i0 , · · · )

where [hi, hij ] represents the gauge equivalence classes.
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Such a lattice gauge theory with soft gauging will have an on-site global symmetry G. To see
this, let us consider a transformation generated by h ∈ H on site i. It is given by, if i is on the
boundary,

(hi, hij)→ (hhi, hhij) (4.67)

and, if i is in the bulk,

gi → r(h)gi. (4.68)

Such a transformation is a G transformation in the bulk. On the boundary, since (hi, hij) and
(vhi, vhij) are gauge equivalent for v ∈ K, h and hv generate the same transformation. So the
transformation on the boundary is given by the equivalence class [h] under the equivalence re-
lation h ∼ hv, v ∈ K. Since K is the normal subgroup of H, the equivalence classes form a
group H/K = G. Thus, the transformation is also a G transformation on the boundary. Such a
transformation is on-site, and is a symmetry of the model since each term in the action amplitude,
such as ν

si0···id
d (gi0 , · · · , gid) and (VH,Kd−1 )si0···id−1 (hi0 , · · · , hid−1

;hi0i1 , hi1i0 , · · · ), is invariant under the

G-symmetry transformation: ν
si0···id
d (ggi0 , · · · , ggid) = ν

si0···id
d (gi0 , · · · , gid) and

VH,Kd−1 (hhi0 , · · · , hhid−1
;hhi0i1 , hhi1i0 , · · · )

= VH,Kd−1 (hhi0 , · · · , hhid−1
;hvi0i1h

−1, hvi1i2h
−1, · · · ) [used the definition eqn. (4.61)]

= VH,Kd−1 (hi0 , · · · , hid−1
; vi0i1 , vi1i2 , · · · ) [used the definition eqn. (4.47)]

= VH,Kd−1 (hi0 , · · · , hid−1
;hi0i1 , hi1i0 , · · · ). (4.69)

To see if the effective boundary G-symmetry is on-site or not, we first note that the term in
the total action amplitude,

∏
(i0···id−1)∈∂Dd(V

H,K
d−1 )si0···id−1 (hi0 , · · · , hid−1

;hi0i1 , hi1i0 , · · · ), is purely a
boundary term. Each contribution from a single boundary simplex is already invariant under the
G-symmetry transformation (see eqn. (4.69)). So, such a term will not affect the on-site-ness of the
effective boundary symmetry, and we can ignore it in our discussion.

The other term
∏

(i0···id)∈Dd ν
si0···id
d (gi0 , · · · , gid) may lead to non-on-site effective boundary sym-

metry. But the calculation is identical to that in Sec. 4.3. We find that the resulting effective
boundary G-symmetry is indeed non-on-site if the G-cocycle νd(gi0 , · · · , gid) is not a coboundary.

So the partition function eqn. (4.66) gives us a boundary effective theory that still has the
G symmetry, as well as a local Hilbert space. (The boundary does not break or extend the G-
symmetry.) But the effective G symmetry on the boundary is non-on-site (i.e. anomalous).

The dynamical properties of the soft gauging model in Sec. 4.7 are the same as in the hard
gauging case in Sec. 4.6, since the two path integrals are manifestly the same. In particular, this
is a physically satisfactory construction of a symmetry-preserving gapped boundary of a bulk SPT
phase with global symmetry G. The boundary is topologically ordered with emergent K-gauge
symmetry. The K-gauge theory is in a deconfined phase, which we discuss further in Sec. 4.8. The
boundaries of the CZX model discussed in Sec. 3.4 and Appendix A.2 are examples of this general
construction.
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4.8 Gapped boundary gauge theories: G-symmetry preserving (2+1D bound-
ary or above) or G-spontaneous symmetry breaking (1+1D boundary)

To identify the boundary K-gauge theory, we look more closely at the boundary factors in the path
integral (4.45). To understand the boundary theory in isolation, it is convenient to consider the
case that all gi are equal to 1, which ensures that the boundary spins are K-valued. The boundary
theory is now just a theory of K-valued variables with an action amplitude that is given by the
product over all boundary simplices of the generalized cochain VH,Kd−1 that was defined in eqn. (4.47).

If we choose the spacetime to be a d-ball Dd, then the action amplitude in eqn. (4.66) is always
equal to one regardless the values of {gi} in the bulk and {hi, hij}’s on the boundary (that satisfy
eqn. (4.63)). Thus the system on a spacetime Dd is in a gapped phase both in the bulk and
on the boundary. Such a gapped state is the K-gauge deconfined state, since the K-connections
vij = hijh

−1
ji ∈ K are always flat thus vijvjkvki = 1.

Does such a K-gauge deconfined state spontaneously break the G-symmetry? We note that,
except the combinations vijvjkvki that are not fluctuating, other combinations of hij ’s are strongly
fluctuating and quantumly disordered. Also hi and gi are strongly fluctuating and quantumly
disordered. In fact, the model described by eqn. (4.66) has a local G symmetry16: The ac-
tion amplitude for configuration (gi, hi, hij) is the same as the action amplitude for configuration
(g′i, h

′
i, h
′
ij) = (r(h̃i)gi, h̃ihi, h̃ihij) where h̃i ∈ H generate the local G-symmetry on gauge-invariant

states. This is because the action amplitude is always equal to 1 regardless of the values of hi, gi
and hij on a spacetime Dd (as long as vijvjkvki = 1 is satisfied). This local G-symmetry allows us
to show that any G-symmetry breaking order parameter that can be expressed as a local function
of (gi, hi, hij) will have a short-range correlation.

However, such a result is not enough for us to show all G-symmetry breaking order parameters
that are local operators to have short-range correlations. This is because some local operators are
not local functions of (gi, hi, hij), such as the operator that corresponds to a breakdown of the
flat-connection condition vijvjkvki = 1. On a 1+1D boundary, such kinds of local operators can
change the holonomy of the K-gauge field around the space S1 of the boundary. As discussed in
Sec. 3.4, it is the order parameter that changes the holonomy that acquires a long-range correlation.

Therefore, we need to find a more rigorous way to test the spontaneous breaking of the G-
symmetry. One way to do so is to calculate the partition function eqn. (4.53) on a spacetime
Md, which is given by the number of configurations that satisfy that the flat-connection condition
vijvjkvki = 1 and the condition vij ∈ K. When K is Abelian, we find the partition function to be17

Z(Md) =
|G|NBulk

v |H|N
Bdry
v

|K|NBdry
v

|H|N
Bdry
l

|K|N
Bdry
v

|K||π0(∂Md)| |Hom[π1(∂Md),K]|. (4.70)

Let us explain the above result. The gi’s on the vertices in the bulk contribute the factor |G|NBulk
v

to the total configurations, where NBulk
v is the number of vertices in the bulk (not including the

16Here the local G symmetry does not mean the gauge symmetry. On one hand, the local G symmetry is that
physically distinct configurations [note that in the main text discussion, two distinct configurations are (gi, hi, hij)
and (g′i, h

′
i, h
′
ij)] have the same action amplitude. On the other hand, the gauge symmetry is not a (global) symmetry

but indeed a gauge redundancy. The gauge symmetry is a gauge redundancy that two (redundant) configurations
are indeed the same equivalent physical configuration, and are related to each other through gauge transformations.

17 Here let us focus on the case that K is Abelian (while H and G may be non-Abelian), for the simplicity of the
formulas. One may generalize the situation to non-Abelian groups as well.
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boundary). The hi’s on the vertices on the boundary contribute the factor |H|N
Bdry
v to the total

configurations, where NBdry
v is the number of vertices on the boundary. The (hij , hji) of the link

on the boundary can be labeled by (hij , vij), where hij ∈ H and vij ∈ K. The hij ’s contribute the

factor |H|N
Bdry
l , where NBdry

l is the number of links on the boundary. The vij ∈ K needs to satisfy
flat-connection condition vijvjkvki = 1, and the counting is complicated. When K is Abelian,

vij ’s contributes to a factor |K|N
Bdry
v

|K||π0(∂Md)| which comes from vij of the form vij = viv
−1
j , vi, vj ∈ K.

But those are only contributions from the “pure gauge” configurations. There is another factor
|Hom[π1(∂Md),K]| which is the number of inequivalent K-gauge flat connections on ∂Md. Last,

we need to divide out a factor |K|N
Bdry
v due to the K-gauge redundancy eqn. (4.64).

The volume-independent partition function is given by

Ztop(Md) =
|Hom[π1(∂Md),K]|
|K||π0(∂Md)| , (4.71)

which is a topological invariant on spacetime with a vanishing Euler number [54]. If we choose
Md = S1 × Dd−1, then Ztop(S1 × Dd−1) will be equal to the ground state degeneracy on Dd−1

space:

GSD(Dd−1) = Ztop(S1 ×Dd−1) =

{
|K|, if d = 3 (2+1D);

1, if d > 3.
(4.72)

Our strategy here is to test the ground state degeneracy caused by spontaneous symmetry
breaking, based on the degeneracy of a spatial sphere Sd−2 on the boundary of a spatial bulk Dd−1.
Namely, we compute GSD(Dd−1) = Ztop(S1 ×Dd−1). Our argument relies on

“No ground state degeneracy on a spatial boundary sphere Sd−2 means no spontaneous symmetry
breaking.”

Here we show that on a 1+1D spatial boundary S1 of a 2+1D bulk, the GSD is |K|, and we
cannot exclude the possibility of spontaneous G-symmetry breaking. On a 2+1D spatial boundary
S2 of a 3+1D bulk, or any higher dimensions, the GSD is 1, and there is no spontaneousG-symmetry
breaking.

We note our result here on the spontaneous symmetry breaking of 1+1D deconfined K-gauge
theory is consistent with other independent checks from a Hamiltonian approach of Sec. 3.3 and
Appendix A.2.4, and a field theory approach of Appendix D.22.

As explained in Sec. 4.4.1, once all the variables are K-valued, µHd−1 reduces to a cocycle µKd−1

appropriate for a K gauge theory. As a result, the boundary factor in the path integral in eqn. (4.53)
or eqn. (4.66), when the gi are 1, is just the action amplitude of a K-gauge theory deformed with
the cocycle µKd−1, as in Dijkgraaf-Witten theory. This is the boundary state that has been coupled
to the bulk G-SPT phase to give a gapped symmetric boundary.

In general, not all variants of K gauge theory can occur in this way, because there may be some
µKd−1 that do not come from any µHd−1. Restriction from H to K gives a map s : Hd−1(H,U(1))→
Hd−1(K,U(1)). The versions of K-gauge theory that arise in our construction are the ones asso-
ciated to classes that are in the image of s. In general, if a given version of K-gauge theory can
arise by our construction as the gapped boundary of a given G-SPT state, it can arise in more than
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one way. The number of ways that this can happen is the kernel of s, which equals the number of
classes in Hd−1(H,U(1)) that map to a given class in Hd−1(K,U(1)).

5 Find a group extension of G that trivializes a G-cocycle
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Figure 16: On the boundary, we can split gi on each vertex into several g1
i , g

2
i , · · · , etc., one for

each attached simplex.

5.1 Proof: Existence of a finite K-extension trivializing any finite G’s d-cocycle
in H for d ≥ 2

The construction in the last section gives a symmetric gapped boundary for the G-SPT state
associated to a G-cocycle νd ∈ Hd(G,U(1)), provided that we can find an extension of G,

1→ K → H
r→ G→ 1, (5.1)

such that the G-cocycle νd becomes trivial when pulled back to an H-cocycle by r. In this section,
we will give an explicit construction of such an extension for any finite group G, and for any G-
cocycle νd when d ≥ 2. This approach works for d-cocycles with d ≥ 2, thus the bulk dimension of
G-SPT state has to be greater than or equal to 1 + 1D. Based on this method, below we show that
a suitable group extension always exists, thus we prove that within group cohomology construction,

Statement 1: “Any bosonic SPT state with a finite onsite symmetry group G, including both
unitary and anti-unitary symmetry, can have an H-symmetry-extended (or G-symmetry-preserving)
gapped boundary via a nontrivial group extension by a finite K, given the bulk spacetime dimension
d ≥ 2.”

To motivate the construction, we start with the non-on-site symmetry discussed in Sec. 4. We
can make the non-on-site symmetry to be on-site by splitting gi on each vertex on the boundary
into several variables g1

i , g
2
i , · · · , etc., one for each attached simplex (see Fig. 16). In the Euclidean

signature, we take the new evolution operator

(e−ĤBdry){g̃mi ,...},{gmi ,...} (5.2)

to be non-zero only when g1
i = g2

i = g3
i = · · · on each vertex. In other words, if the condition

g1
i = g2

i = g3
i = · · · is not satisfied on some vertices, then the configuration will correspond to high

energy boundary excitations on those vertices.
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Figure 17: Visualization for guiding the calculation in eqn. (5.7), shown here as three symmetry
transformations (say, h, f , and (fh)−1) on a 1+1D boundary of a 2+1D bulk.

In the new boundary Hilbert space spanned by ⊗i,m|gmi 〉, the symmetry transformation

Û(g) =
∏

(ij···k)

Û0(g)ν
sij···k
d (gmii , g

mj
j , · · · , gmkk , g∗, g−1g∗) (5.3)

becomes on-site (or on-cell, or on-simplex). On each simplex, the symmetry transformation Û(g)
is given by

Û(g)|gi, gj , · · · , gk〉 (5.4)

= Û0(g)ν
sij···k
d (gi, gj , · · · , gk, g∗, g−1g∗)|gi, gj , · · · , gk〉

= ν
sij···k
d (gi, gj , · · · , gk, g∗, g−1g∗)|ggi, ggj , · · · , ggk〉.

Thus we can make any non-on-site symmetry on the boundary into an on-site symmetry, by
redefining the boundary sites. This seems to contradict our picture that the non-on-site symmetry
on the boundary captures the bulk SPT state, which should not be convertible into on-site boundary
symmetry by any boundary operations (that have the local site structure).

In fact, there is no contradiction since Û(g), g ∈ G may not generate the group G. They may
generate a bigger group H – an extension of G by an Abelian group K. So after we split gi into
g1
i , g

2
i , etc. on the boundary, the symmetry of our model is no longer G. It is changed into H.

Since the symmetry transformation generated by H is on-site, such a symmetry transformation is
not anomalous. The bulk G-SPT state can also be viewed as an H-SPT state. But as an H-SPT
state, it is the trivial one, since the the H-symmetry is on-site on the boundary.

So, we have found an extension of G, under 1 → K → H
r→ G → 1, where K is an Abelian

normal subgroup of H, such that

νHd (h0, · · · , hd) ∈ Hd(H,U(1)) (5.5)

defined as

νHd (h0, · · · , hd) = νd(r(h0), · · · , r(hd)) (5.6)

is trivial in Hd(H,U(1)). We also note that K is a local symmetry (on each simplex) of the effective
boundary Hamiltonian.

To calculate K from νd(gi, gj , · · · , gk, g∗, g−1g∗), we consider three symmetry transformations
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h, f , and (fh)−1. We find that (see Fig. 17)

Û((fh)−1)Û(f)Û(h)

= νd(fhgi, fhgj , · · · , fhgk, g∗, fhg∗)× νd(hgi, hgj , · · · , hgk, g∗, f−1g∗)× νd(gi, gj , · · · , gk, g∗, h−1g∗)

= νd(gi, gj , · · · , gk, h−1f−1g∗, g∗)× νd(gi, gj , · · · , gk, h−1g∗, h−1f−1g∗)× νd(gi, gj , · · · , gk, g∗, h−1g∗)

≡ Φh,f (gi, gj , · · · , gk). (5.7)

The above phase factor Φh,f (gi, gj , · · · , gk), as a function of gi, gj , · · · , gk, is a generator of the group
K. We can obtain all the generators by choosing different h and f , and in turn obtain the full
group K. We note that, due to the geometry nature of Fig. 17 and its generalization in dimensions
d, the above construction is true only for d ≥ 2.

Thus, this concludes our proof of Statement 1. We can rephrase it to the equivalent proved
statements:

Statement 2: “Any G-cocycle νGd ∈ Hd(G,U(1)) of a finite group G (a bosonic SPT state
with a finite onsite, unitary or anti-unitary symmetry, symmetry group G), can be pulled back
to a finite group H via a certain group extension 1 → K → H

r→ G → 1 by a finite K, such
that r∗νGd = νHd = δµHd−1 ∈ Hd(H,U(1)). Namely, a G-cocycle becomes a H-coboundary, split to

H-cochains µHd−1, given the dimension d ≥ 2 (q.e.d).”

Statement 3: “Any G-anomaly in (d − 1)D given by νGd ∈ Hd(G,U(1)) of a finite group G,

can be pulled back to a finite group H via a certain group extension 1 → K → H
r→ G → 1 by a

finite K, such that G-anomaly becomes H-anomaly free, given the dimension d ≥ 2 (q.e.d).”

Unfortunately, we do not have a systematic understanding of what K will be generated by this
construction. In particular, K may be different for cocycles νd that differ only by coboundaries.
Another drawback of this method is that we cannot obtain the exact analytic function of the split
H-cochain easily.

However, we provide a different method that helps to derive the analytic H-cochain, based on
the Lydon-Hochschild-Serre spectral sequence in Appendix D.3. Readers can find more systematic
examples in Appendix D. Finally, we remark that very recently Ref. [55] has proven statements
related to ours in a more mathematical setup.18

5.2 2+1/1+1D and d + 1/dD Bosonic SPTs for an even d: The dD ZK
2 -gauge

theory boundary of d+1D bulk invariant (−1)
∫

(a1)d+1
via 0→ Z2 → Z4 → Z2 →

0

We would like to apply the above method to some cocycles that describes SPT states. For example,
we can consider a non trivial cocycle in ν3 ∈ H3(Z2, U(1)).

ν3(−,+,−,+) = ν3(+,−,+,−) = −1, others = 1 (5.8)

where Z2 = {+,−}. Choose g∗ = +, h = − and f = −, we find

Φ−−(gi, gj) = ν3(gi, gj ,−,+)ν3(gi, gj ,+,−). (5.9)

18After the appearance of our preprint on arXiv, one of the authors (J.W.) thanks Yuji Tachikawa for informing
the recent Ref. [55]’s Sec. 2.7 of as a mathematical proof, reproducing and obtaining similar results as our Sec. 5.1.
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In fact, Φ−−(gi, gj) = Φ−+(gi, gj) = Φ+−(gi, gj), and

Φh,f (−,+) = Φh,f (+,−) = −1, others = 1. (5.10)

So K = Z2 and H = Z4. The short exact sequence 0→ Z2 → Z4 → Z2 → 0 trivializes the cocycle
ν3 ∈ H3(Z2, U(1)).

See Appendix D.4 for further illumination of this example. In general, we find that in any odd
spacetime dimension, there is a Z2-SPT phase and that a gapped symmetric boundary for this
phase can be obtained from the extension 0 → ZK2 → ZH4 → ZG2 → 0. See Appendix D.5. The
bulk SPT phase is associated to the invariant exp(iπ

∫
a1 ∪ a1 ∪ · · · ∪ a1) ≡ exp(iπ

∫
(a1)d+1) with

a cup product form of a1 ∪ a1 ∪ · · · ∪ a1, a nontrivial element in Hd+1(Z2, U(1)) for an even d. The
a1 here is a Z2-valued 1-cocycle in H1(Md+1,Z2) on the spacetime complex Md+1.

5.3 3+1/2+1D and d+1/dD Bosonic topological superconductor with ZT
2 time-

reversal symmetry for an odd d: The dD ZK
2 -gauge theory boundary of

d+ 1D bulk invariant (−1)
∫

(w1)d+1
via 0→ Z2 → ZT

4 → ZT
2 → 0

Next, we consider a non trivial cocycle ν4 ∈ H4(ZT2 , UT (1)) = Z2 [15]. The ν4 represents a nontrivial
class of bosonic SPTs with an anti-unitary G = ZT2 time-reversal symmetry. This SPTs is also
named as bosonic topological superconductor or bosonic topological paramagnet with G = ZT2 .
Here Z2 and ZT2 are the same group mathematically. However, the generator in ZT2 provides a
non-trivial action on the G-module U(1), denoted as UT (1). The subscript T in the module UT (1)
indicates that the group ZT2 has a non-trivial action on the module.

More generally when a group G contains an anti-unitary operation such as time-reversal ZT2 , we
define a nontrivial G-module U(1) as UT (1). We stress that U(1) and UT (1) are the same Abelian
group. The group action is only non-trivial when g · ν = νs(g), for g ∈ G, ν ∈ UT (1), such that
s(g) = −1 if g contains an anti-unitary element, and s(g) = 1 if g contains no anti-unitary element.
The formalism developed in this paper up to this point is applicable to this case, for models that
fit in the group cohomology framework.

The group cocycle of this SPT phase is given by

ν4(−,+,−,+,−) = ν4(+,−,+,−,+) = −1, others = 1, (5.11)

where ZT2 = {+,−}. Choose g∗ = +, h = − and f = −, we find

Φ−−(gi, gj , gk) = ν4(gi, gj , gk,−,+)ν4(gi, gj , gk,+,−). (5.12)

and Φ−−(gi, gj , gk) = Φ−+(gi, gj , gk) = Φ+−(gi, gj , gk). In fact, we obtain

Φh,f (−,+,−) = Φh,f (+,−,+) = −1, others = 1. (5.13)

So K = Z2 and H = ZT4 . The short exact sequence 0 → Z2 → ZT4 → ZT2 → 0 trivializes the
cocycle ν4 ∈ H4(ZT2 , UT (1)). This means that ν4 becomes a coboundary in H4(ZT4 , UT (1)) for a
larger group H = ZT4 . Thus, we find that the 3+1D bosonic SPTs with ZT2 symmetry (the bosonic
topological superconductor of G = ZT2 ) has a 2+1D symmetry-preserving surface Z2 topological
order.

For the boundary K-gauge theory of a G-SPT state, the gauge charge excitations are labeled
by Rep(H)=Rep(ZT4 ) with H/K = G = ZT4 /Z2 = ZT2 , instead of Rep(K × G)=Rep(Z2 × ZT2 ).
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H is a “twisted” product of K and G, the so-called projective symmetry group (PSG) introduced
in Ref. [46]. When a gauge charged excitation is described by Rep(H) instead of Rep(K × G), it
implies that the particle carries a fractional quantum number of global symmetry G. We say there
is a fractionalization of the symmetry G.

We note that the eTmT surface topological order first proposed in [30] on the surface of 3+1D
ZT2 -bosonic topological superconductor is also a 2+1D deconfined Z2 gauge theory.

See Appendix D.6 for further illumination of this example. In general, we find that the 0 →
ZK2 → ZT4 → ZT2 → 0 construction can provide a boundary dD ZK2 gauge theory on d+1D bosonic
ZT2 -SPTs, when d is odd, see Appendix D.7. The bulk SPT invariant is equivalent to the partition
function exp(i2π

∫
1
2w

d+1
1 ) for an odd d, a nontrivial element in Hd+1(ZT2 , UT (1)) = Z2. The w1

here is a Z2-valued, the first Stiefel-Whitney (SW) class in H1(Md+1,Z2) on the spacetime complex
Md+1. Here w1 = w1(TMd+1) is the w1 of a spacetime tangent bundle over Md+1. The w1 6= 0
holds on a non-orientable manifold.

More examples of symmetry-extended gapped boundaries are provided in Appendix D.

6 Boundaries of SPT states with finite/continuous symmetry groups
and beyond group cohomology

In the above Sec. 5, we described a method that constructs exactly soluble boundary for any within-
group-cohomology SPT states with a finite symmetry group G, via a nontrivial group extension by
a finite group K. Those boundaries preserve the G-symmetry and have topological orders if the
boundary dimension is 2+1D and higher. Such a result can be generalized to SPT states with a
continuous compact symmetry group G, provided that the group cocycle that describes the G-SPT
state can be trivialized by a finite extension 1 → K → H → G → 1, namely, with a finite group
K. This is because even for a continuous compact symmetry group G, the action amplitude in
eqn. (4.53) is still always equal to one regardless of the values of {gi} in the bulk and {hi, hij}’s on
the boundary. Thus eqn. (4.70) is still valid if we treat |H| and |G| as the volumes of the continuous
group H and G. When K is finite, the flat condition vijvjkvki = 1 makes the K-gauge theory in a
gapped deconfined phase. Therefore, for both a finite group G and a continuous compact group G,
a d+ 1D G-SPT state within group cohomology can have a symmetry preserving gapped boundary
if the G-group cocycle can be trivialized by a finite extension of G and when d ≥ 3.

The SPT states within group cohomology have pure gauge G-anomalies on the boundary cor-
responding to the global symmetry group G. More general SPT states exist that have mixed
gauge-gravitational anomalies on the boundary [17]. Those SPT states are referred to as beyond-
group-cohomology SPT states [30]. Those beyond-group-cohomology SPT states can be constructed
using group cohomology of G × SO(∞). More precisely, using the action amplitude constructed
from the group cocycle νd+1 ∈ Hd+1(G × SO(∞), U(1)), we can construct models that realize
the beyond-group-cohomology SPT states (as well as within group-cohomology SPT states) in
d+ 1D [17]. However, the correspondence between G× SO(∞)-cocycle νd+1 and a d+ 1D G-SPT
state is not one-to-one: Several different cocycles can correspond to the same SPT state.
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We note that [17]

Hd+1(G× SO(∞), U(1)) = Hd+1(SO(∞), U(1))⊕
d+1⊕
k=1

Hk
(
G,Hd+1−k(SO(∞), U(1))

)
. (6.1)

The cocycles in the first term Hd+1(SO(∞), U(1)) describe invertible topological orders which do
not need the symmetry groupG. The cocycles in the second term

⊕d+1
k=1Hk

(
G,Hd+1−k(SO(∞), U(1))

)
will describe G-SPT states in a many-to-one fashion.

When G is finite, a cocycle in
⊕d+1

k=1Hk
(
G,Hd+1−k(SO(∞), U(1))

)
can always be trivialized by

an Abelian extension K: 1 → K → H → G → 1. This is because when Hd+1−k(SO(∞), U(1)) =
ZN , then the Hk(G,ZN ) can be viewed as a part of Hk(G,U(1)), and we can use the approach in
Sec. 5 to show that the cocycles in Hk(G,ZN ) can always be trivialized by a finite extension of G.
When Hd+1−k(SO(∞), U(1)) = Z, we note that Hk(G,Z) ∼= Hk−1(G,U(1)). Using the approach
in Sec. 5, we can show that the cocycles in Hk−1(G,U(1)) can always be trivialized, which in turn
allows us to show that the cocycles in Hk(G,Z) can always be trivialized.

This allows us to conclude that the bosonic d+1D beyond-group-cohomology G-SPT states de-
scribed by

⊕d+1
k=1Hk

(
G,Hd+1−k(SO(∞), U(1))

)
always have a symmetry preserving gapped bound-

ary when G is finite and when the bulk space dimension d ≥ 3. Here G can contain anti-unitary
symmetries including time-reversal symmetry.

7 Boundaries of bosonic/fermionic SPT states: Cobordism ap-
proach

In principle, the philosophy of our approach should also work for the cobordism group description
of topological states. For example, based on Ref. [18], one can consider bosonic SPTs in a d + 1-
dimensional spacetime with a finite internal onsite symmetry group G via a cobordism theory. Such
an SPT state is proposed to be classified by

Ωd+1,SO
tors (BG,U(1)) ≡ Ωd+1,SO(BG,U(1))/im(eG) = Hom(ΩSO

d+1,tors(BG), U(1)), (7.1)

which is called the Pontryagin-dual of the torsion subgroup of the oriented bordism group ΩSO
d+1(BG).

In the first equality of eqn. (7.1), the Ωd+1,SO(BG,U(1)) is called the oriented cobordism group
of BG with U(1) coefficient, it is defined as Ωd+1,SO(BG,U(1)) ≡ Hom(ΩSO

d+1(BG), U(1)), the

space (here an Abelian group) of homomorphisms from ΩSO
d+1(BG) to U(1). The eG is a map

defined as eG : Hom(ΩSO
d+1(BG),R) → Hom(ΩSO

d+1(BG), U(1)). The image of the eG map is com-

posed by elements of Ωd+1,SO(BG,U(1)) that vanish on the torsion subgroup of bordism group,

ΩSO
d+1,tors(BG). Effectively, this yields the second equality, the Ωd+1,SO

tors (BG,U(1)) is equivalent to

Hom(ΩSO
d+1,tors(BG), U(1)), namely the space (here again an Abelian group) of homomorphisms

from the torsion subgroup of bordism group ΩSO
d+1,tors(BG) to U(1).

To determine the symmetry-extended gapped interface of a G-SPT state, we need to find a
larger total group H that forms a group extension 1 → K → H

r→ G → 1 by a finite group K.
By pulling G back to H, we require that the nontrivial element in Ωd+1,SO

tors (BG,U(1)) specifying

a G-SPT state, becomes a trivial identity element in the Cobordism group Ωd+1,SO
tors (BH,U(1)) ≡

Ωd+1,SO(BH,U(1))/im(eH) = Hom(ΩSO
d+1,tors(BH), U(1)), where eH : Hom(ΩSO

d+1(BH),R) → Hom
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(ΩSO
d+1(BH), U(1)). In short, the G-SPT state within Cobordism group Ωd+1,SO

tors (BG,U(1)) becomes

a trivial H-SPT state (a trivial vacuum in H) within Cobordism group Ωd+1,SO
tors (BH,U(1)). The

boundary of such a G-SPT state should allow a G-symmetry-preserving gapped interfaces with
a deconfined topologically ordered K-gauge theory (where K is a finite discrete group), if the
spacetime dimensions of bulk dimension d+ 1 ≥ 4, above or equal to 3 + 1D.

The above procedure is for bosonic SPT states including only fundamental bosons. For fermionic
SPT states including fundamental fermions, in principle, we can replace the oriented SO in Cobor-
dism groups Ωd+1,SO(BG,U(1)) and Ωd+1,SO(BH,U(1)), to the Spin version of Cobordism groups
for the fermionic SPT states (namely Ωd+1,Spin(BG,U(1)) and Ωd+1,Spin(BH,U(1))), and to the
Pin± version of Cobordism groups for the fermionic SPT states with time reversal symmetries
(namely Ωd+1,Pin±(BG,U(1)) and Ωd+1,Pin±(BH,U(1))), where T 2 = (−1)F for Pin+ or T 2 = +1
for Pin−, respectively [20]. The F is the fermion-number parity. In this setup, our approach for
symmetric gapped interfaces should be applicable to both bosonic and fermionic SPT states. The
underlying idea again is related to the fact that a certain global anomaly associated to G on the
boundary of G-SPT states becomes anomaly-free in a larger group H.

It will be interesting to find more concrete examples and figure out the explicit analytic (exactly
soluble or not) lattice Hamiltonian construction for such symmetry-preserving gapped boundaries
within the cobordism setup in the future.

8 Generic gapped boundaries/interfaces: Mixed symmetry break-
ing, symmetry extension and dynamically gauging

In this section, we will give an overview of how the symmetry extension construction we have
described is related to what may be more familiar gapped boundary states. We will also describe
the generalizations of the ideas to interfaces between SPT states, and to the case that the bulk phase
has intrinsic topological order. We will further develop their path integrals, lattice Hamiltonians
and wave functions suitable for many-body quantum systems in Sec. 9.

8.1 Relation to Symmetry Breaking

The most familiar type of gapped boundary state for a G-SPT phase is obtained by explicitly or
spontaneously breaking the G symmetry on the boundary to a subgroup H of G. Here H must have
the property that the cocycle defining the G-SPT phase becomes a coboundary when the variables
are restricted from G to H. For the notational distinction, we call this unbroken subgroup H of G
as H = G′.

From the point of view of this paper, the statement that G′ is a subgroup of G means that
there is an injective homomorphism ι : G′ → G. A gapped boundary state can be constructed if
the given cohomology class in νGd ∈ Hd(G,U(1)) is trivial when pulled back to G′. See Appendix
F.1 for explicit examples.
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8.2 Symmetry Extension and Mixed Symmetry Breaking/Extension

Our construction on the symmetry extension in this paper is instead based on a surjective, rather
than injective, homomorphism r : H → G. Because r is surjective, the symmetry is extended (from
G to H) along the boundary, rather than being broken. By gauging K = H/G, one can arrange so
that the global symmetry of the full system is G. Many examples of symmetry-extended gapped
boundaries are shown in Appendix D.

It is straightforward to combine the two cases. We can construct a gapped boundary state
associated to any homomorphism ϕ : H → G, such that the cohomology class in Hd(G,U(1))
becomes trivial when pulled back to H. The construction proceeds exactly as we have explained
in earlier sections of this paper, without any substantial modification. In this boundary state, G is
spontaneously or explicitly broken to the subgroup G′ = ϕ(H), and then G′ is extended to H.

More explicitly, one could also imagine arranging the above procedure in a two-stage process.
Assume that in a layer within a distance ` from the boundary, G is spontaneously broken down to
G′. Then near the boundary the global/gauge symmetry is only G′ and the boundary condition is
defined by the choice of a group H, with a surjective map r to r(H) = G′, such that the cocycle
of G′ becomes trivial by lifting to H: via 1 → K ′ → H

r→ G′ → 1. In other words, to construct
a boundary condition in a mixed symmetry breaking/extension case, what we need is that the
cocycle of G that defines the bulk topological state, when restricted to G′ and then pulled back to
H, becomes trivial.

In all of these cases, one has to actually pick a trivialization of the pullback of νGd to H. The
possible choices differed by a class in Hd−1(H,U(1)) correspond to an H-topological state on the
boundary. This corresponds roughly to appending an H-topological state on the boundary.

8.3 Gapped Interfaces

One can similarly consider the case of an interface (i.e. domain wall) between two SPT phases.
In general, we may have one symmetry group G I on one side of the interface, with a cohomology
class ν I , and a second symmetry group G II on the other side, with its own cohomology class ν II .
(The gapped boundary of G-topological state can be regarded as a gapped interface between a
G-topological state and a trivial vacuum.) We shall describe gapped interfaces between these two
states.

Interfaces can be reduced to boundary states by a well-known folding trick. Instead of saying
that there is G I on one side and G II on the other side, one “folds” along the interface and considers
a system with a combined symmetry group G = G I×G II , and a cohomology class ν I×ν−1

II . (Folding
inverts one of the two cohomology classes.) Then we can construct gapped interfaces associated as
above to any homomorphism ϕ : H → G I ×G II .

An interesting special case is that the same group G is supposed to be unbroken on both sides
and also along the interface. This means that G I = G II = G, and that the unbroken subgroup
ϕ(H) is a diagonal subgroup G′ of G I ×G II . The cohomology class ν I × ν−1

II of G I ×G II = G×G
restricts to a class of G′ that we can denote by the same name. H can be any finite extension of
G′ ∼= G that trivializes this class.

63



8.4 Intrinsic Topological Order

Though our emphasis in this paper has been on gapped boundary states for SPT phases, a similar
construction applies to bulk phases with intrinsic topological order.

We can construct such a phase simply by gauging the G symmetry of a given G-SPT state.
Then since G is extended to H along the boundary, for consistency we have to gauge the full H
symmetry along the boundary. All our formulas make sense in that context.

SET phases can be treated in a similar way. For this, we gauge a subgroup G0 of G. The
most significant case is that G0 = N is a normal subgroup of G. Then gauging N gives a state
with intrinsic topological order of an N -gauge theory, in which Q = G/N is a quotient group of
global symmetries. Along the boundary, we have to gauge the inverse image of N in H. If the map
ϕ : H → G is surjective, then the Q symmetry remains as a symmetry of the boundary state and
is extended along the boundary to the inverse image of Q in H. For details see again Sec. 9. It
is again possible to consider more general cases in which the Q symmetry may be partly broken
along the boundary and partly extended.

There is no essential loss of generality in assuming here that G0 is a normal subgroup N of G,
for the following reason. If G0 is not normal, then gauging G0 will explicitly break G to a subgroup
G∗, the normalizer of G0 in G. Then G0 is normal in G∗. After replacing G by G∗, everything
proceeds as before.

We provide other details of path integral/Hamiltonian models in Sec. 9. Many examples of
dynamically gauging gapped boundaries/interfaces are provided in Appendix F.

9 General construction of exactly soluble lattice path integral
and Hamiltonian of gapped boundaries/interfaces for topologi-
cal phases in any dimension

We consider the spacetime-lattice path integral formulation in Sec. 9.1 and the spatial lattice
Hamiltonian formulation in Sec. 9.2 for a systematic construction of gapped boundaries/interfaces
for topological phases in any dimension. See Table 9 for an example of the lattice formed by
simplices on a space or spacetime complex.

9.1 Path integral

In the following subsections, we systematically construct the path integral Z defined for vari-
ous topological phases (including SPT, gauge theory, SET, gapped boundary/interfaces, etc) and
contrast their properties. We shall clarify the gauge equivalent configuration briefly mentioned
in eqn. (4.53), and the precise mod-out factor to remove the symmetry/gauge redundancy. In
Sec. 4.7, we showed the construction of cocycle (VH,Kd−1 )si0···id−1 (hi0 , · · · , hid−1

;hi0i1 , hi1i0 , · · · ) that
contains the emergent gauge fields. We call this type of gauge field is soft gauged, which means
that the Hilbert space of the gauge theory is still a tensor product form defined on each local site.
Htot = ⊗iHi, because the hi, hij , hil are variables assigned to the site i (see Fig. 15). Below we
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discuss the hard gauged theory, where the total Hilbert space Htot 6= ⊗iHi is not a tensor product
form of Hilbert spaces Hi on each local site i since we require additional link variables.

We should note that we can easily formulate a soft gauge theory from a hard gauge theory,
based on Sec. 4.7. One reason to consider the hard gauge theory in the following Secs. 9.1.2 and
9.1.3 is for the simplicity of notation and calculation, and for its smaller Hilbert space.

Figure 18: In Sec. 9.1, we define a lattice path integral on a d-dimensional spacetime manifold by
triangulating the manifold to d-simplices. If the spacetime is closed, as in Sec. 9.1.1, 9.1.2 and
9.1.3, we assign d-simplices with cocycles νGd for SPTs or with VG,Nd for SETs. In this figure, the
spacetime Md is obtained as the gluing of two manifolds Md

I ∪Md
II with a common boundary ∂Md

I .
For simplicity, we draw the d = 3 case. One example of the M3 = S3 is a 3-sphere, then we can
choose M3

I = D3 and M3
II = D3, where the gapped spacetime boundary is on a 2-sphere ∂M3

I = S2.
We would like to define the path integral on an open manifold Md

I with a gapped boundary ∂Md
I ,

where details are discussed in Sec. 9.1.4. In our construction, we assign lower dimensional split
cochains µHd−1 (or VH,Kd−1 ) for SPTs and µH,N,Kd−1 for SETs to (d− 1)-simplices paved onto a gapped

boundary ∂Md
I .

(1) (2)

Figure 19: Follow Fig.18, the fig.(1) shows the filling of d-cocycles into the gapped bulk in Md
I ,

and the filling of (d− 1)-cochains onto a gapped boundary ∂Md
I . The combined result contributes

to the topological amplitude shown in fig.(2). Then we need to sum over all the allowed group
element configurations onto each vertex/link (the so-called “sum over all the colorings”) to obtain
the path integral Z. The explicit formula is derived in Sec. 9.1.4.

Schematically Figs.18 and Fig.19 summarize how to define an exactly soluble partition func-
tion or path integral on a triangulated spacetime complex. Normally, a path integral of gapped
topological phase is well-defined on a closed spacetime manifold. However, here in particular, some

65



path integral of fully gapped topological phase is also well-defined in the gapped bulk on Md
I with

a gapped interface ∂Md
I .

9.1.1 SPTs on a closed manifold

We start from reviewing and strengthening the understanding of SPT path integral defined by
homogeneous d-cocycles νd(gi0 , · · · , gid) of a cohomology group Hd(G,U(1)) for a global symmetry
group G [15] on a closed manifold,

Z =
1

|G|Nv,Bulk

∑
{gi}

∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid). (9.1)

We first assign the ordering of vertices as the branching structure , then we assign a group element
for each vertex as coloring. The sum over all possible colorings, by summing over all assignments of
group elements, is done by

∑
{gi}. On any closed manifoldMd, say with a number of verticesNv,Bulk,

we can prove that the amplitude
∏

(i0···id)∈Md ν
si0···id
d (gi0 , · · · , gid) = 1 for any choice of {gi}. Here is

the proof: First, recall that the cocycle condition imposes that the cocycle
∏
ν
si0···id
d (gi0 , · · · , gid) =

1 on any closed sphere Sd. Second, we can simply connect every vertex gj on Md to an additional
new point assigned with g0 through a new edge 0j, and we can view the amplitude as∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid) =

∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid)

∏
(j0···jd−1)∈Md

ν
sj0···jd−1,0

d (gj0 , · · · , gjd−1
, g0)

=
∏

(i0···id)∈Md

ν
si0···̂i···id0
d (gi0 , · · · , ĝi, · · · , gid , g0)

=
∏

(i0···id)∈Md

(δν
si0···i···id0
d (gi0 , · · · , gi, · · · , gid , g0)) =

∏
(i0···id)∈Md

1 = 1. (9.2)

The first equality computes the amplitude from all vertices on Md and g0, We use the fact that
there are two terms under the same form νd(gj0 , · · · , gjd−1

, g0) overlapping the same d-simplex
with opposite orientations that cancel out. The second equality takes the product of each d-
simplex where ĝi is a removed entry, where i ranges from {i0, · · · , id, 0}. Moreover, the vertices
{i0, · · · , id, 0} and their connected edges also form a d + 1-simplex. There are d + 1 number of
d-cocycles νd assigned to d-simplices paving on the surface of the d + 1-simplex. Effectively, the
surface d+1-simplex is a closed Sd+1 sphere, and the amplitude on Sd+1 yields a d-cocycle condition
(δν

si0···i···id0
d (gi0 , · · · , gi, · · · , gid , g0)) = 1 in the third line. In eqn. (9.1), the product of amplitudes

is 1, and the summation
∑
{gi} yields a factor |G|Nv,Bulk exactly canceling with the mod-out factor.

We thus show that Z = 1 on any closed manifold for SPT defined by homogeneous cocycles.

Global symmetry : We note that the global symmetry of SPT also manifests in the path integral.
We first define the global symmetry transformation g ∈ G of SPT as sending each group element
gi → ggi on every vertex i. Through the homogeneous cocycle condition g · νd(gi0 , · · · , gid) =
νd(g · gi0 , · · · ,g · gid) = νd(gi0 , · · · , gid) [15]; thus, Z is invariant under the global symmetry trans-
formation.

9.1.2 Gauge theory with topological order on a closed manifold

The gauge theory of a gauge group K in this subsection is topological gauge theory [21], suitable for
certain topological orders. The path integral defined by inhomogeneous d−cocycles ωd(ki0i1 , · · · , kid−1id) ∈
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Hd(K,U(1)) is

Z =
1

|K|Nv,Bulk

∑
{kij ij+1

}

∏
(i0···id)∈Md

ω
si0···id
d (ki0i1 , · · · , kid−1id). (9.3)

on any closed manifold M . Each triangle (more generally any contractible 2-face or 2-plaquette)
must satisfy k12k23k31 = 1 as a trivial element in K, which means a zero flux through a 2-surface.

We note that the gauge theory Z is not equal to 1 in general. The reason is that on a manifold
with non-contractible cycles such as S1 circles, the inhomogeneous cocycles allow distinct gauge
group elements winding through each cycle (that does not occur in homogeneous cocycles). This fact
also reflects in nontrivial holonomies along non-contractible cycles for gauge field theory. However,
we can show that Z = 1 on Sd−1×S1. By considering the minimum triangulation that Sd−1 is the
surface of a d-simplex, and another S1 connects each point back to itself. Each cocycle amplitude
turns out to be 1, but the

∑
{k} sums over group elements. The minimum triangulation of Sd−1×S1

has Nv = d+ 1 vertices and Ne = d+ 1 independent edge variables, thus Z = |K|Ne/|K|Nv = 1 on
Sd−1 × S1.

Gauge symmetry : We note that the gauge symmetry also manifests in the path integral. We
first define the local gauge-symmetry transformation k ∈ K on a particular site j sending each
group element on all the neighbor links through

kijij+1 → (k)−1kijij+1 , kij−1ij → kij−1ij (k).

Effectively what we do is equivalent to a Pachner move shifting the vertex ij to a new vertex ij′

with a new triangulation near this vertex, and we assign the link ijij′ with a gauge transformation
variable k = kijij′ ∈ K. We can focus on a local gauge transformation on a single site ij , one can
easily generalize to apply gauge transformations on every site. To prove that the Z is gauge invari-
ant, we show that

∏
(i0···id)∈Md ω

si0···id
d (ki0i1 , · · · , kid−1id) is gauge invariant. The ratio of amplitudes

before and after gauge transformations is:∏
(i0···id)∈Md ω

si0···id
d (ki0i1 , · · · , kij−1ij , kijij+1 , · · · , kid−1id)∏

(i0···id)∈Md ω
si0···id
d (ki0i1 , · · · , kij−1ij (k), (k)−1kijij+1 , · · · , kid−1id)

=
∏

(···ijij′ ··· )∈Sd
ω
si···
d (· · · ) = (δω)d+1 = 1. (9.4)

In the first equality, we find that amplitudes around the vertex ij and ij′ are left over that cannot
be directly canceled. There are two local patches centered around ij and ij′ as two d-dimensional
disks Dd and Dd. The two disks share the same boundary and can be glued to a sphere Sd. Thus
we can apply the d-cocycle condition δωd = 1 that the amplitude on Sd is 1, to prove that each
amplitude in Z is invariant. Local gauge transformation can be applied on every site, and the Z is
still gauge invariant by the same proof above.

9.1.3 SETs on a closed manifold via 1→ N → G→ Q→ 1,
and a relation between SPTs and topologically ordered gauge theory

Consider an anomaly-free SET path integral on a closed manifold under 1 → N → G → Q → 1
[23, 56]. Here G is a total symmetry group named a projective symmetry group (PSG), N is a
normal subgroup that can be dynamically gauged, and Q is a quotient group of the remaining
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global symmetry [56]. We can regard the anomaly-free SET (well-defined in its own dimensions)
as gauging the N normal subgroup in G-SPT in Sec. 9.1.1.

Z =
1

|G|Nv,Bulk

1

|N |Nv,Bulk

∑
{gi,nij}

∏
(i0···id)∈∂Md

(VG,Nd )si0···id (gi0 , · · · , gid ;ni0i1 , ni1i2 , · · · , nid−1id), (9.5)

with hard-gauge variables nijij+1 ∈ N defined on the link/edge. The cocycle VG,N can be rewritten
in terms of homogeneous G cocycle ν and inhomogeneous G cocycle ω:

VG,Nd (gi0 , · · · , gid ;ni0i1 , ni1i2 , · · · , nid−1id)

= νGd (gi0 , ni0i1gi1 , ni0i1ni1i2gi2 , · · · , ni0i1 · · ·nid−1idgid)

= ωGd (g−1
i0
ni0i1gi1 , g

−1
i1
ni1i2gi2 , · · · , g−1

id−1
nid−1idgid). (9.6)

Gauge symmetry : The cocycle VG,Nd is invariant under the local gauge symmetry transformation
nj ∈ N on each site for a gauge group N :

gij → (nij ) · gij , nijij+1 → (nij )nijij+1(nij+1)−1, nij−1ij → (nij−1)nij−1ij (nij )
−1. (9.7)

So the Z is invariant under the local gauge symmetry transformation.

Global symmetry : The cocycle VG,Nd is invariant under a total symmetry transformation g of
the symmetry group G:

gij → g · gij , nijij+1 → (g)nijij+1(g)−1. (9.8)

So the Z is invariant under the global symmetry transformation. The true global symmetry that
does not include the gauge symmetry is the quotient group G/N ≡ Q.

The normalization in eqn. (9.5) has the (|G|Nv,Bulk)−1 modding out the site variables to make
the path integral independent to the number of sites. The additional (|N |Nv,Bulk)−1 mods out the
gauge transformation on each site through ∀ (nj) ∈ N to remove the gauge redundancy. It is easy
to check that Z[Sd−1 × S1] as a path integral on Sd−1 × S1 is always 1, but in general Z 6= 1 for
generic closed manifolds. If we choose that N = 1 is trivial, then we reduce to a G-symmetric
SPTs in Sec. 9.1.1. If we choose that all gj = 1 are trivial, then we reduce to the gauge theory in
Sec. 9.1.2 of a gauge group N .

We can find a mapping between a G-symmetric SPTs and a topologically ordered G-gauge
theory, by the above 1 → N → G → Q → 1 construction. For a G-symmetric SPTs, we choose
N = 1 and Q = G. For a G-gauge theory, we choose N = G and Q = 1. This is a more general
version of the relation between SPTs and topological order studied by Levin and Gu [22].

9.1.4 Symmetry-extended boundary of a G/N-SET state via 1→ N → G→ Q→ 1 and
1→ K ×N → H → Q→ 1

Consider the 1→ K → H
r→ G→ 1 formulation with H/K = G in Appendix D.1.

1. Bulk G-SPTs on an open manifold with gapped boundary with extended H-symmetry action
(schematically shown in Table 7 (i)):
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We consider a closed manifold Md glued from two open manifolds: Md and its complement
spaceMdrMd. Namely Md ∪ (MdrMd) =Md, with a common (d− 1)D boundary ∂Md.
We denote Nv,Bulk as the number of vertices in Md but not on the boundary ∂Md nor on
the complement (Md rMd), each of these vertices has a dimension of Hilbert space |G| on
each site. We denote Nv,Bdry as the number of vertices only on the boundary ∂Md, each of
these vertices has a dimension of Hilbert space |H| on each site. We denote Nv,Complt as the
number of vertices on the complement (MdrMd) but excluding the boundary ∂Md, each of
these vertices has again a dimension of Hilbert space |H| on each site. The path integral is:

Z =
1

|G|Nv,Bulk

1

|H|Nv,Bdry+Nv,Complt

∑
{gi,hi}

∏
(i0···id)∈Md

(j0···jd)∈∂MdorMdrMd

ν
si0···id
d (gi0 , · · · , gid)(ν

H
d )sj0···jd (hj0 , · · · , hjd)

=
1

|G|Nv,Bulk

1

|H|Nv,Bdry+Nv,Complt

∑
{gi,hi}

∏
(i0···id)∈Md

(j0···jd)∈∂MdorMdrMd

ν
si0···id
d (gi0 , · · · , gid)(µ

H
d−1)sj0···jd−1 (hj0 , · · · , hjd−1

)

=
1

|G|Nv,Bulk

1

|H|Nv,Bdry

∑
{gi,hi}

∏
(i0···id)∈Md

(j0···jd−1)∈∂Md

ν
si0···id
d (gi0 , · · · , gid)(µ

H
d−1)sj0···jd−1 (hj0 , · · · , hjd−1

).

(9.9)

Above we had applied eqn. (4.27), and the fact that the homogeneous cocycle νHd (h0, · · · , hd) =
νd(r(h0), · · · , r(hd)) which then split it to lower-dimensional homogeneous cochains µHd−1.

Here (i0 · · · id) ∈Md means the vertices in the bulk Md (with a total number Nv,Bulk) as
well as on the boundary (with a total number Nv,Bdry). Here (j0 · · · jd) ∈ ∂Md or Md rMd

means the vertices on the boundary ∂Md or in the complementMdrMd with a total number
Nv,Bdry +Nv,Complt. The cochains inside the volume of the complementMdrMd cancel out to
1 due to overlapping terms with opposite orientations. An overall sum (j0 · · · jd) ∈Md rMd

contributes a factor |H|Nv,Complt canceling with a normalizing factor to obtain eqn. (9.10).

2. Bulk G-SPT on an open manifold with gapped boundary anomalous SET (with a G-anomaly)
of gauge group K (schematically shown in Table 7 (ii)):

Consider an SPT path integral on an open manifold Md with gapped boundary anomalous
SET on the ∂Md. We can directly start from eqn. (9.9), and introduce gauge variables
kjj′ ∈ K on the links between boundary sites on ∂Md. After properly modding out the gauge
redundancy, both obtain:

Z =
1

|G|Nv,Bulk

1

|H|Nv,Bdry

1

|K|Nv,Bdry

∑
{gi,hi,hij}

∏
(i0···id)∈Md

ν
si0···id
d (gi0 , · · · , gid) (9.10)

∏
(j0···jd−1)∈∂Md

(VH,Kd−1 )sj0···jd−1 (hj0 , · · · , hjd−1
; kj0j1 , kj1j2 , · · · , kjd−2jd−1

).

The VH,Kd−1 (hj0 , · · · , hjd−1
; kj0j1 , kj1j2 , · · · , kjd−2jd−1

) = νHd−1(hj0 , kj0j1hj1 , · · · , kj0j1kj1j2 · · ·hjd−1
)

can be evaluated as homogeneous cochains by absorbing link variables to site variables.

3. Bulk G-gauge theory on an open manifold with gapped boundary anomalous H-gauge theory
(schematically shown in Table 7 (iii)):

We can gauge the global symmetry G of eqn. (9.10) in the bulk to obtain the bulk G-gauge
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theory, while the boundary has an H-gauge theory as an anomalous gapped boundary.

Z =
1

|G|Nv,Bulk

1

|H|Nv,Bdry

∑
{gij ,hij}

∏
(i0···id)∈Md

ω
si0···id
d (gi0i1 , · · · , gid−1id) (9.11)

∏
(j0···jd−1)∈∂Md

(ΩH
d−1)sj0···jd−1 (hj0j1 , hj1j2 , · · · , hjd−2jd−1

).

The ωd and Ωd−1 are an inhomogeneous cocycle and cochain suitable for gauge theories.

4. Bulk SET on an open manifold with gapped boundary anomalous SET (schematically shown
in Table 7 (iv)):

Alternatively, we can partially gauge a normal subgroup N ⊆ G in the bulk G-SPTs and also
on the boundary. Let us name the quotient group

H

K ×N
=
G

N
≡ Q.

This gives us a bulk SET with global symmetry Q and gauge symmetry N via:

1→ N → G→ Q→ 1. (9.12)

The boundary anomalous SET with global symmetry Q and gauge symmetry K ×N is

1→ K ×N → H → Q→ 1. (9.13)

Note that: 1→ K → H → G→ 1. (9.14)

9.1.5 Symmetry-extended interface between two topological phases G I and G II

We construct a path integral of topological phases G I and G II following Appendix D.2.1 under
1 → K → H

r→ G I × G II → 1. First, consider a closed manifold Md glued from two open
manifolds: Md and its complement space Md rMd, with a common (d − 1)D boundary ∂Md.
The Md is assigned with a Hilbert-space dimension G I × G II on each degree of freedom (on
site or edge). The Md r Md is originally assigned with G I × G II -cocycles, but lifted to H to
become trivial coboundaries. Using the folding trick, given ωG I×G II

d (g) = ωG I
I (g I ) · ωG II

II (g II )−1,

we can fold ωG II
II (g II ) to −Md with an opposite orientation, while we keep ωG I

I (g I ) to Md. The
Md ∪ (−Md) can be glued to a closed manifold because they share the same boundary. We can
define the path integral on a closed Md ∪ (−Md). More generally, we can call Md as Md

I , while we
can modify the amplitude on −Md to a new amplitude on any open manifold Md

II provided that
∂Md

I = ∂Md
II = ∂Md is the same common boundary. We denote the number of vertices Nv, I on

Md
I but not on ∂Md

I , and the similar definition for Nv, II with I → II. We denote the number of
vertices Nv,∂ on ∂Md

I = ∂Md
II . We define this path integral on a closed spacetime Md

I ∪Md
II below.

1. Bulk G I and G II -SPTs with gapped H-interface (schematically shown in Table 7 (v)):

Z =
1

|G I |Nv, I |H|Nv,∂ |G II |Nv, II
∑

{g I ,i},{hi},{g II ,i}

∏
(i0···id)∈Md

I

νG I
d

si0···id (g I ,i0 , · · · , g I ,id) (9.15)

∏
(i0···id−1)∈∂Md

µ
Hsi0···id−1

d−1 (hi0 , · · · , hid−1
)

∏
(i0···id)∈Md

II

νG II
d

si0···id (g II ,i0 , · · · , g II ,id).
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2. Bulk G I and G II -SPTs with gapped boundary anomalous SET of gauge group K (schemati-
cally shown in Table 7 (vi)):

Z =
1

|G I |Nv, I |H|Nv,∂ |G II |Nv, II
∑

{g I ,i},{hi},{g II ,i}

∏
(i0···id)∈Md

I

νG I
d

si0···id (g I ,i0 , · · · , g I ,id) (9.16)

∏
(j0···jd−1)∈∂Md

(VH,Kd−1 )sj0···jd−1 (hj0 , · · · , hjd−1
; kj0j1 , kj1j2 , · · · , kjd−2jd−1

)

∏
(i0···id)∈Md

II

νG II
d

si0···id (g II ,i0 , · · · , g II ,id).

Here we dynamically gauged the normal subgroup K = H/(G I×G II ) on ∂Md by introducing
the link variables along ∂Md, thus we rewrote µHd−1 into (VH,Kd−1 ).

3. Bulk SETs with gapped interface anomalous SET of enhanced gauge symmetry (schematically
shown in Table 7 (vi)):

Developed from the above case 2. “Bulk G I and G II -SPTs with gapped boundary anomalous
SET of gauge group K,” we can partially gauge normal subgroups of G I and G II -SPTs, so
that the bulk has SETs while the interface has an anomalous SETs.

9.2 Wavefunction and Lattice Hamiltonian

We would like to formulate a lattice Hamiltonian on the space lattice, whose time-dependent
Schrödinger equation gives rise to the same low energy physics governed by the path integral
definition in the previous Sec. 9.1. We motivate the Hamiltonian construction by thinking of
ground-state wavefunctions. The lattice Hamiltonian below will be a SET generalization from the
SPTs of Ref. [15] and the topological orders/gauge theories of Ref. [57, 58]. Our Hamiltonian in
Sec. 9.2.2 is also a generalization of SETs of Ref. [59] to include a projective symmetry group under
G/N = Q. We further implement anomalous SET gapped boundaries/interfaces in Sec. 9.2.3.

Schematically Fig.20 and Fig.21 summarize how to define an exactly soluble lattice Hamiltonian
and wavefunction on a spatial manifold. Normally, a wavefunction of gapped topological phase is
well-defined on a closed spatial manifold. However, here in particular, some wavefunction of fully
gapped topological phase can also be well-defined in the gapped bulk on R I with a gapped interface
∂R.

9.2.1 Trivial product state and lattice Hamiltonian

We can consider a total trivial product state wavefunction, where {gi} specifies the group element
in a symmetry group G and its assignment to a local site i on a regularized dD spatial manifold
M , the wavefunction has its coefficient: Φ0({gi}M ) = 1. Its wave state-vector in the Hilbert space
is:

|Φ0〉 ∝
∑
{gi}M

Φ0({gi}M )|{gi}M 〉 =
∑
{gi}M

|{gi}M 〉 = (
∑
g1

|g1〉)⊗ (
∑
g2

|g2〉) · · · ⊗ (
∑
gi

|gi〉)⊗ . . . ,(9.17)

which we can properly normalize to have 〈Φ0|Φ0〉 = 1. Note that |{gi}M 〉 has a tensor product
structure, |{gi}M 〉 = · · · ⊗ |gi〉 ⊗ . . . , here i is the site index for some site i distributed around the
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Figure 20: In Sec. 9.2, we define wavefunctions and lattice models on a (d− 1)-dimensional space
manifold by triangulating the manifold to (d− 1)-simplices. If the space is closed, as in Sec. 9.2.2,
we assign “(d − 1)-simplices together with an extended vertex h∗,” with cocycles νGd for SPTs or

with VG,Nd for SETs. In this figure, the space is obtained as the gluing of two spatial manifolds
R I ∪ R II with a common boundary ∂R. For simplicity, we draw the d = 3 case. One example of
the R I ∪ R II = S2 is a 2-sphere, then we can choose R I = D2 and R II = D2, where the gapped
spacetime boundary is on a 1-circle ∂R = S1. We would like to define the wavefunction on an open
manifold R I (shown in gray) with a gapped boundary ∂R (shown as a dotted curve), details of
which are discussed in Sec. 9.2.3. In our construction, we assign lower-dimensional split cochains
µHd−1 (or VH,Kd−1 ) for SPTs and µH,N,Kd−1 for SETs to “(d − 2)-simplices connecting to the additional
vertex h∗” paved onto a gapped boundary ∂R.

(1) (2)

Figure 21: Follow Fig.20, the fig.(1) shows that a wavefunction amplitude is the product of
two contributions. The first contribution is the filling of d-cocycles into the gapped bulk in R I

connecting to h∗. The second contribution is the filling of (d−1)-cochains onto a gapped boundary
∂R connecting to h∗ and into the surface of the other complement bulk R II . The combined result
contributes to the fig.(2), where the (d− 1)-cochains on the region R II can be deformed to a trivial
product state (as a trivial gapped vacuum) under local unitary transformations without breaking
the global symmetry. We can remove the wavefunction amplitude on R II after a proper amplitude
normalization. Thus the wavefunction is well-defined simply in R I and on ∂R. The explicit formula
is derived in Sec. 9.2.3.
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spatial manifold M . To see that the state-vector is a trivial product state, we notice that it is
indeed a tensor product of (

∑
gi
|gi〉) on each site i, where (

∑
gi
|gi〉) sums over all group element

bases. The Hilbert space on each site j is Hj with a Hilbert space dimension |G| spanned by |gj〉.
The total Hilbert space is also a tensor product structure: Htotal = ⊗jHj .

Consider the site index j, we can write down the exactly soluble Hamiltonian whose ground
state is |Φ0〉:

Ĥj = − |φj〉 〈φj | = −
∑
gj∈G

|gj〉
∑
g′j∈G

〈
g′j
∣∣ = −

∑
gj ,g′j∈G

|gj〉
〈
g′j
∣∣ . (9.18)

Here Ĥj = − |φj〉 〈φj | is a local operator on each site j, and |φj〉 =
∑

gj∈G |gj〉 is an equal-weight

sum of all states of all group elements gj on each site. Thus Ĥj = − |φj〉 〈φj | is proportional to a

constant matrix

(
1 1 ...
1 1 ...
...

...
. . .

)
in the group element basis |gj〉 acting on each site. Thus we construct

a trivial product state and lattice Hamiltonian for a trivial insulator with a finite energy gap.

9.2.2 Short-range/long-range entangled states and SPT/topologically ordered/SET
lattice Hamiltonians

Now we consider a gapped short-range or long-range entangled states for an anomaly-free Hamil-
tonian on a closed space that is well-defined in d − 1D spatial lattice. We can consider either (1)
a G-SPTs for a cocycle νGd in Sec. 9.1.1, or (2) an N -gauge theory with intrinsic topological order
for a cocycle ωNd in Sec. 9.1.2, or (3) a SETs prescribed by 1 → N → G → Q → 1 for a cocycle

VG,Nd in Sec. 9.1.3.

The SET state in Sec. 9.1.3 is the most general containing all other cases by eqn.9.6, thus we
focus on the SETs below. For a nontrivial non-product state wavefunction of SETs, we define a
particular wavefunction coefficient on a closed space M as:

Φ({gi, nij}M ) ≡
∏
{...}

VG,N si0...i∗
d (gi0 , · · · , g∗;ni0i1 , ni1i2 , · · · , nid−1i∗) (9.19)

where {gi, nij}M are a set of site (i) and link (ij) variables on M , for gi ∈ G and nij ∈ N .

Conventionally VG,Nd is a U(1) phase, except that we set VG,Nd as zero if and only if any face of
its simplex violates n12n23n31 = 1. The g∗ is fixed and assigned to an additional fixed point i∗
outside M . There are link variables niji∗ from any site j on M to i∗. Given a wavefunction input
parameter {gi, nij}M , to determine the wavefunction Φ({gi, nij}M ), the only input data we need
are these two:

g∗, ni0i∗ .

We only need to provide another input data ni0i∗ , as a link variable connecting between a partic-
ular site i0 to i∗. Any other variables niji∗ are determined by a zero flux condition through any
closed loop niji∗ni∗i0ni0ij = 1, namely: niji∗ = niji0ni0i∗ . Here

∏
{...} is a product over all simplices

assigned with cocycles. The zero flux condition through any closed loop constrains that the wave-
function has a trivial holonomy around any cycle of the closed manifold. Thus, we only generate a
unique ground state so far. (We will comment how to generate other ground states with nontrivial
holonomy for topological orders/SETs later.) This ground state as a vector in the Hilbert space is,
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Figure 22: The effective expression of that Âg,nv operation. Here we show Âg,nv acts on a 2D
spatial lattice on a site v and its neighbor links. The explicit form is given in eqn. (9.24). The
volume enclosed by dashed links contributes an amplitude filled by cocycles VG,N . A more general
expression for any dimension is given in eqn. (9.23).

up to a normalization:

|Φ〉 ∝
∑

{gi,nij}M

Φ({gi, nij}M )|{gi, nij}M 〉. (9.20)

The |{gi, nij}M 〉 has a tensor product structure, |{gi, nij}M 〉 = · · · ⊗ |gi〉 ⊗ · · · ⊗ |nij〉 ⊗ · · · =
⊗i|gi〉 ⊗ij |nij〉

Now we construct an exactly soluble Hamiltonian for the above gapped ground state as

Ĥ = −
∑
v

Âv −
∑
f

B̂f . (9.21)

The first term, Âv acts on the wavefunction of a constant-time slice through each vertex v in the
space by lifting the initial state through an “imaginary time” evolution to a new state with a vertex
v′ via

Âv =
1

|G|
1

|N |
∑

[vv′]=n∈N,
g∈G

Âg,nv . (9.22)

Âg,nv |gv, niv, nvj , . . . 〉 (9.23)

=
∏
{...}

VG,N s...
d (g, gv, · · · ;n, niv · n, n−1 · nvj , · · · )|g, niv · n, n−1 · nvj , . . . 〉.

We define Âg,nv operator above by its operation on a state-vector |gv, niv, nvj , . . . 〉. Under the Âg,nv
operation, the group element assigned to v as |gv〉 has evolved to v′ as |g〉, the link element assigned
iv as |niv〉 has evolved to |niv′〉 = |niv · n〉, and |nvj〉 has evolved to |nv′j〉 = |n−1 · nvj〉.

In any dimension, we can construct (d− 1)-simplices (that can be of irregular sizes) as a lattice
to fill the space. More explicitly, consider for example a 2+1D SETs, Âg,nv acts on a Hilbert
space state-vector for a 2D spatial lattice system in Fig. 22, centered at the vertex v and its six
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nearest-neighbored links:

Âg,nv |gv, g1, g2, g3, g4, g5, g6;nv1, nv2, n3v, n4v, n5v, nv6〉

=
VG,N3 (g4, g5, gv, g;n45, n5v, n)VG,N3 (g5, gv, g, g6;n5v, n, n

−1nv6)VG,N3 (gv, g, g6, g1;n, n−1nv6, n61)

VG,N3 (gv, g, g2, g1;n, n−1nv2, n21)VG,N3 (g3, gv, g, g2;n3v, n, n−1nv2)VG,N3 (g4, g3, gv, g;n43, n3v, n)

|g, g1, g2, g3, g4, g5, g6;n−1 · nv1, n
−1 · nv2, n3v · n, n4v · n, n5v · n, n−1 · nv6〉. (9.24)

We design the B̂f term as the zero flux constraint on each face / plaquette. More explicitly, consider
a face f (in Fig. 22) with three vertices (assigned g1, g2, gv) and three links (assigned nv2, n21, nv1),
the Bf acts on the corresponding state vector |g1, g2, gv;nv2, n21, nv1〉 as

B̂f |g1, g2, gv;nv2, n21, nv1〉 = (δnv2n21n1v=1) · |g1, g2, gv;nv2, n21, nv1〉. (9.25)

The δnv2,n21n1v=1 is a Kronecker delta which gives 1 if nv2, n21n1v = 1 is trivial in N ; thus, the flux
through the face f is zero. The δnv2,n21n1v=1 gives 0 otherwise. Even for SETs, the explicit zero
flux condition is reduced to

(g−1
v nv2g2)(g−1

2 n21g1)(g−1
1 n1vgv) = nv2n21n21 = 1,

the same as pure N -gauge theory of topological order. For SPTs with a nontrivial G but a trivial
N = 1, the zero flux always manifests as (g−1

v g2)(g−1
2 g1)(g−1

1 gv) = 1. Some more remarks on the
system are given as follows:

1. All Âg,nv and B̂f have mutually-commuting and self-commuting nice properties. In principle,
our model is an exactly soluble lattice model.

2. Since the SPTs always satisfies the zero flux on every face f , we can simplify the Hamiltonian
without the B̂f term: ĤSPT = −

∑
v Âv. The additional B̂f term in eqn. (9.21) for SETs and

topological orders imposes the zero flux constraint at low energy. However, at high energy,
at the cost of an energy penalty, the zero flux condition does not hold at those faces f with
energetic anyon excitations. The anyon excitations are created at the end points of extended
operators (e.g. line operators in 2+1D). See also Remark 8.

3. Hilbert space: The Hilbert space on each site j is Hj with a Hilbert space dimension |G|
spanned by |gj〉 for gj ∈ G. The Hilbert space on each edge ij is Hij with a Hilbert space
dimension |N | spanned by |nij〉 for nij ∈ N . For our lattice Hamiltonian eqn. (9.21), the
total Hilbert space is a tensor product structure:

Htotal = ⊗jHj ⊗ij Hij . (9.26)

When we limit to a symmetric G-SPT, with N = 1, we have a tensor product Htotal = ⊗jHj

defined on sites. When we limit to a gauge group N -topological order, with G = 1, we have
a tensor product Htotal = ⊗ijHij defined on links. Naively, one may ask that isn’t that “the
discrete gauge theory description of topological order has no tensor product Hilbert space
Htotal 6= ⊗ijHij?” The answer is that the gauge theory description of topological order for

our Hamiltonian eqn. (9.21) only occurs at the lowest-energy ground states, when B̂f = 1 as
zero flux on every face. For those ground states of topological order, indeed, the Hilbert space
is not a tensor product, Htotal 6= ⊗ijHij , due to the requirement of projection constrained

by B̂f = 1. Thus, our Hamiltonian as a local bosonic lattice model at higher energy contains
more than a discrete gauge theory. The same argument holds for SET states.
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4. Gauge and global symmetries for Hamiltonians: The Hamiltonian in eqn. (9.21) is apparently
invariant under the N -gauge eqn. (9.7) and G-global symmetry eqn. (9.8) transformations.
For SETs and SPTs, each individual of Âg,nv and B̂f terms is both N -gauge invariant and
G-global invariant. On the other hand, for a topological order of gauge group N without any
global symmetry (i.e. G = 1), the individual Ânv is not gauge invariant. For example, under

a local gauge transformation nv applied on the vertex v, it transforms Ânv → Â
(nv)·n
v . If a

local gauge transformation is applied on a neighbored vertex next to v, then Ânv is invariant.
However the overall Âv = 1

|N |
∑

[vv′]=n∈N Â
n
v is gauge invariant.

5. Gauge and global symmetries for wavefunctions: For the SET state vector |Φ〉 of eqn. (9.20),
we can apply symmetry transformations on either the wavefunction coefficient Φ({gi, nij}M )
or on the basis |{gi, nij}M 〉; the two transformations are equivalent by an inverse transforma-
tion on another. Thus, we focus on the transformations on the wavefunction Φ({gi, nij}M ).

• If G is nontrivial, then we have either SPTs or SETs. It is easy to check that the cocycle
VG,N is both gauge and global symmetry invariant under N -gauge eqn. (9.7) and G-global
symmetry eqn. (9.8) transformations. Thus, apparently, the wavefunction

Φ({gi, nij}M ) = Φ({(ni)gi, (ni)nij(nj)−1}M ) = Φ({(g)gi, (g)nij(g)−1}M )

is gauge and global-symmetry invariant under transformations of eqn. (9.7) and eqn. (9.8).

• If G = 1 is trivial and the gauge group N is nontrivial, then we have a pure gauge
theory with topological order. The reduced inhomogeneous cocycle VG,N = ωN alone is
not gauge invariant, the wavefunction Φ({nij}M ) is not gauge invariant, either. Even the
ground state vector |Φ〉 ∝

∑
{nij}M Φ({nij}M )|{nij}M 〉 is not gauge invariant, and is not

gauge invariant up to a U(1) phase. Namely, each wavefunction obtains a different U(1)
phase e iθ({nij}M ,ni) that depends on the input {nij}M and gauge transformation ni, i.e.
Φ({nij}M ) → e iθ({nij}M ,ni)Φ({nij}M ). We define such a gauge transformed state vector

as |Φ〉 → |Φ(ni)〉. However, as long as any physical observable 〈Ô〉 = 〈Φ|Ô|Φ〉 is strictly
gauge invariant as we show below,19 the theory is well-defined. We find that 〈Ô〉 is indeed
gauge invariant,

〈Φ|Ô|Φ〉 =
∑
{nij}

∑
{ñij}

Φ†({nij}M )c
{ñij}
{nij}Φ({ñij}M ) = 〈Φ(ni)|Ô|Φ(ni)〉, (9.27)

where we have considered a generic operator Ô defined by its operation on |Φ〉:

Ô|Φ〉 = Ô
∑
{nij}

Φ({nij}M )|{nij}M 〉 =
∑
{nij}

∑
{ñij}

c
{ñij}
{nij}Φ({ñij}M )|{nij}M 〉 (9.28)

with generic c
{ñij}
{nij} coefficients.

19 Recall that the gauge transformation can be implemented on the basis (a vector in the Hilbert space) or on the

wavefunction (effectively a “covector”). The operator Ô can be also implemented either on the basis as

Ô|{nij}M 〉 =
∑
{n′

ij}

c
{nij}
{n′

ij}
|{n′ij}M 〉,

or on the wavefunction
ÔΦ({nij}M ) =

∑
{ñij}

c
{ñij}
{nij}

Φ({ñij}M ).

In either case, we obtain the same consistent result for Ô acting on the state vector |Φ〉 as in eqn. (9.28).
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6. Wavefunctions and their independence of input g∗ and ni0i∗ : Consider a wavefunction on a
closed space M defined in eqn. (9.19).
• SPT wavefunction Φ({gi}M )SPT is independent of the input choice g∗. Namely, changing
g∗ to g′∗ ≡ (g)−1g∗

Φ({gi}M )SPT =
∏
{...}

ν
G si0...i∗
d (gi0 , · · · , gid−1

, g∗) =
∏
{...}

νG s...
d ((g)gi0 , · · · , (g)gid−1

, g∗)

=
∏
{...}

νG s...
d (gi0 , · · · , gid−1

, (g)−1g∗) =
∏
{...}

νG s...
d (gi0 , · · · , gid−1

, g′
∗
).(9.29)

Here we use the fact that Φ({gi}M )SPT is G-global symmetry invariant in the second equality.

This proof
Φ({(g)gi}M )SPT

Φ({gi}M )SPT
= 1 requires the use of a G-cocycle condition, and we will show a

complete proof in Sec. 9.2.4, even in the presence of a gapped boundary/interface. We also
use that νGd ({gi}) = νGd ({(g)−1gi}) due to the property of a homogeneous cocycle in the third

equality. One quick way to visualize this proof eqn. (9.29) is that the ratio
Φ({(g)gi}M )SPT

Φ({gi}M )SPT
yields

a term equivalent to a product of coboundary terms; fortunately the overall coboundary terms
on a closed space M must cancel out to be 1.
• Topological order and SET wavefunction Φ({gi, nij}M )SET can be defined in such a way
that it is independent of the input g∗ and ni0i∗ . It is easier to prove that if we design and
evaluate eqn. (9.19) in terms of homogeneous G cocycles. Below we show that replacing
g∗ → g′∗ ≡ (g)−1g∗ and ni∗i0 → n′i∗i0 ≡ (n)ni∗i0 , with a slight reordering of vertex indices
and branch structure for our convenience, the Φ({gi, nij}M )SET is still invariant:

Φ({gi, nij}M )SET =
∏
{...}

ν
G si∗...id−1

d (g∗, ni∗i0gi0 , ni∗i0ni0i1gi1 , . . . , ni∗i0ni0i1 . . . nid−2id−1
gid−1

)

=
∏
{...}

νG s...
d (g∗, (g)ni∗i0gi0 , (g)ni∗i0ni0i1gi1 , . . . , (g)ni∗i0ni0i1 . . . nid−2id−1

gid−1
)

=
∏
{...}

νG s...
d (g′

∗
, ni∗i0gi0 , ni∗i0ni0i1gi1 , . . . , ni∗i0ni0i1 . . . nid−2id−1

gid−1
) |g′∗≡(g)−1g∗ . (9.30)

Φ({gi, nij}M )SET =
∏
{...}

ν
G si∗...id−1

d (g∗, ni∗i0gi0 , ni∗i0ni0i1gi1 , . . . , ni∗i0ni0i1 . . . nid−2id−1
gid−1

)

=
∏
{...}

νG s...
d (g∗, (n)ni∗i0gi0 , (n)ni∗i0ni0i1gi1 , . . . , (n)ni∗i0ni0i1 . . . nid−2id−1

gid−1
)

=
∏
{...}

νG s...
d (g∗, n′i∗i0gi0 , n

′
i∗i0ni0i1gi1 , . . . , n

′
i∗i0ni0i1 . . . nid−2id−1

gid−1
)

∣∣∣∣
n′i∗i0

≡(n)ni∗i0

. (9.31)

The Φ({gi, nij}M )SET becomes that of topological order Φ({nij}M )TO if we set all g = 1 for
the trivial G. The proofs in eqn. (9.30) and eqn. (9.31) again require the use of a G-cocycle
condition and the property of a homogeneous cocycle.

7. Local unitary transformation and the Hamiltonian: We can define a unitary transformation
Û as

Û =
∑

{gi,nij}M

∏
{...}

VG,Nd (gi0 , · · · , g∗;ni0i1 , ni1i2 , · · · , nid−1i∗) |{gi, nij}M 〉 〈{gi, nij}M | . (9.32)

We can view that the above VG,Nd is a U(1) complex phase determined by local input data

{gi0 , · · · ;ni0i1 , · · · } that are given within a local (d − 1)-simplex. Since the Û sends the
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input state |{gi, nij}M 〉 to the same output state. The overall U(1) phase is determined by∏
{...} V

G,N
d , which is a product of U(1) phases assigned to each (d− 1)-simplex.

• For SPTs, it is

Û =
∑
{gi}M

∏
{...}

νGd (gi, ..., g
∗) |{gi}M 〉 〈{gi}M | . (9.33)

For SPTs, actually this Û is a local unitary transformation (LUT), because this Û is formed
by a local circuit of many independent νd+1 on each local simplex. Overall Û is a unitary
diagonal matrix acting on the full Hilbert space with diagonal elements assigned with distinct
U(1) phases. Under this LUT, the SPT’s |Φ〉 is deformed to U †|Φ〉 = |Φ0〉 of eqn. (9.17) as
a trivial product state. However, such a LUT locally breaks the global G symmetry of SPTs,
because each νGd (g · gi, ..., g∗) is not g-invariant with a fixed g∗. The LUT can deform such
a short-range entangled state of SPTs to a trivial product state at the cost of breaking its
global G symmetry.

The SPT Hamiltonian (without the B̂f term) can be rewritten as

Ĥ =
∑
j

ÛĤjÛ
† = −

∑
j

Û |φj〉 〈φj | Û † =
∑
j

Û(−
∑

gj ,g′j∈G

|gj〉
〈
g′j
∣∣)Û †. (9.34)

The |φj〉 =
∑

gj∈G |gj〉 is an equal-weight sum of all states for all gj on each site.

• For topological orders/SETs, the Û defined in eqn. (9.32) is not unitary for the total Hilbert
space Htotal = ⊗jHj ⊗ij Hij , because VG,Nd (n12, n23, . . . ) is defined to be 0 when a closed

loop n12n23n31 6= 1. We can artificially redefine Û ′ to design those zero VG,Nd terms to be

1 by hand, and make Û ′ a new unitary matrix. For example, one such unitary deformation
sends to

U ′
†|Φ〉 = P[

∑
{gi,nij}M

|{gi, nij}M 〉] = P[⊗i(
∑
gi

|gi〉)⊗ij (
∑
nij

|nij〉)],

where P is a projection operator imposing the zero flux condition through a closed loop as
n12n23n31 = 1, and P projects out any n12n23n31 6= 1 state. However, this final state is
very different from a trivial product state, e.g. ⊗i(

∑
gi
|gi〉) ⊗ij (

∑
nij
|nij〉). Regardless of

how we design a unitary Û ′ matrix, we cannot deform the ground state |Φ〉 of topological
orders/SETs to a trivial product state through any local unitary transformation. This reason
is due to a super-posed extended loop states as ground states of intrinsic topological orders
are highly long-range entangled — their information encoded in the projection P on the zero
flux condition is incompatible with a trivial product state. The LUT cannot deform a long-
range entangled state to a trivial product state. Thus topological orders/SET Hamiltonian

cannot be rewritten as Ĥ =
∑

j Û
′ĤjÛ ′

†
, for any unitary Û ′ and for some local Hamiltonian∑

j Ĥj whose ground state is a trivial product state.

8. Degenerate ground states with holonomies around non-contractible cycles: So far we focus
only on a ground state |Φ〉 that has no holonomies around non-contractible cycles, and that
can be deformed to a trivial product state. However, for gauge theories of topological orders
and SETs, we have distinct degenerate ground states when the spatial topology is nontrivial
(e.g. a 2D spatial torus T 2

xy). Start from |Φ〉, we can generate other degenerate ground states
by inserting extended operators as holonomies around non-contractible cycles. Without losing
generality, let us consider a 2+1D system; we have generic line operators ŴS1

U in a 2D spatial
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Figure 23: An example of line operator Ŵ
S1
y

U ≡
∏
v Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
acts along the blue dashed line. The

product of v spans along all the vertices on the blue dashed line. One of the most generic operators

Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
on this lattice centered at a vertex v acts on a local Hilbert space of 7 G-vertices and

12 N -links on a shaded honeycomb region, thus it acts on a Hilbert space of dimensions |G|7|N |12.

torus T 2
xy with coordinates x and y. We can fully generate distinct ground states spanning

the dimensions of Hilbert space on T 2
xy by

Ŵ
S1
y

U |Φ〉 ≡
∏
v

Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
|Φ〉. (9.35)

Here S1
y in Ŵ

S1
y

U means that the line operator has a cycle around S1
y , so the

∏
v means a series of

vertices v spanning around the S1
y -cycle, for example along the blue dashed line in Fig.23. The

Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
is a shorthand expression Ûn

(v)
v1 ,n

(v)
v2 ,n

(v)
3v ,n

(v)
4v ,n

(v)
5v ,n

(v)
v6 ,n

(v)
21 ,n

(v)
32 ,n

(v)
43 ,n

(v)
45 ,n

(v)
56 ,n

(v)
61

gv ,g
(v)
1 ,g

(v)
2 ,g

(v)
3 ,g

(v)
4 ,g

(v)
5 ,g

(v)
6

, which

acts on the honeycomb shaded region in Fig.23. Examples of Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
include the Âg,nv and

B̂f terms. For example, for a Z2 toric code [60] on a T 2 torus, the expression for degenerate

ground states Ŵ
S1
y

U |Φ〉 boils down to

(
∏

σz)
q(
∏

σx)m|Φ〉,

where σx and σz are the rank-2 Pauli matrices. The product
∏

is along the S1
y line operator.

The (q,m) are integer mod 2 values, with (q,m) = (0, 0), (1, 0), (0, 1), (1, 1) are four distinct

ground states. Moreover, a generic Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
does not need to commute with Âg,nv and B̂f ,

and it can violate the zero flux condition of Remark 2. Thus such a Û
{n(v)
vi ,n

(v)
ij }

{gv ,g(v)i }
can create

anyon excitations that cost higher energy.

We can easily generalize the above discussion (2+1D) to any spacetime dimension.
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9.2.3 Anomalous symmetry-preserving gapped boundary/interface of bulk SPTs and
SETs

Continued from Sec. 9.2.2, we develop further to formulate a lattice wavefunction and Hamiltonian
for topological phases with gapped boundaries/interfaces. We first focus on a bulk G-SPTs on an
open manifold while the gapped boundary has an anomalous H-SPTs that cannot exists without
an extended bulk, via a group extension H/K = G in Sec. 9.1.4. Along the way, we comment how
to easily generalize to a bulk with SETs.

• Wavefunction: For wavefunction, we can simply adopt the G-SPT limit of eqn. (9.19) as

Φ({gi}M ) ≡
∏
{...} ν

G si0...i∗
d (gi0 , · · · , g∗) defined first on a closed space M ≡Md−1 of (d− 1)-

spatial dimensions. The g∗ is again some fixed value outside the Md−1. We would like to
keep the degrees of freedom on each site with Hilbert space dimensions |G| on the gapped
left region R I , and extend the site’s Hilbert space dimensions to |H| on the gapped right
region R II as well as on the interface ∂R (≡ ∂R I ≡ ∂R II up to an orientation). We denote
the group element in H assigned along ∂R as h∂ ∈ H. We also extend the Hilbert space
dimensions of i∗ from |G| to |H|, and we choose r(h∗) = g∗. The modified wavefunction
defined on M = R I ∪R II is

Φ({gi, hj}) ≡ Φ({gi}R I
, {h∂j }∂R, {hj}R II

)

=
∏
{...}

ν
G sia...i∗
d ({gia}R I

, r(h∗)) ·
∏
{...}

ν
G siajb...i∗
d ({gia}R I

, {r(h∂jb)}∂R, r(h
∗))

·
∏
{...}

ν
G sjajb...i∗
d ({r(h∂ja)}∂R, {r(hjb)}R II

, r(h∗)) (9.36)

=
(∏
{...}

ν
G sia...i∗
d ({gia}R I

, r(h∗)) ·
∏
{...}

ν
G siajb...i∗
d ({gia}R I

, {r(h∂jb)}∂R, r(h
∗))
)

·
(∏
{...}

µ
H sja...i∗
d−1 ({h∂ja}∂R, r(h

∗))
)(∏
{...}

µ
H sjajb...i∗
d−1 ({h∂ja}∂R, {hjb}R II

)
)

(9.37)

≡ ΦR I
({gi}, {h∂j }) Φ∂R({h∂j }) ΦR II

({h∂j }, {hj}). (9.38)

LUT−−−−→
(∏
{...}

ν
G sia...i∗
d ({gia}R I

, r(h∗)) ·
∏
{...}

ν
G siajb...i∗
d ({gia}R I

, {r(h∂jb)}∂R, r(h
∗))
)

·
(∏
{...}

µ
H sja...i∗
d−1 ({h∂ja}∂R, r(h

∗))
)

(9.39)

≡ ΦR I
({gi}, {h∂j }) Φ∂R({h∂j }) (9.40)

where we have split the above H-coboundary νGd (r(h)) = νHd (h) in eqn. (9.36) into H-cochains
µHd−1 in eqn. (9.37). We define

ΦR I
({gi}, {h∂j }) ≡

(∏
{...}

ν
G sia...i∗
d ({gia}R I

, r(h∗)) ·
∏
{...}

ν
G siajb...i∗
d ({gia}R I

, {r(h∂jb)}∂R, r(h
∗))
)
,

Φ∂R({h∂j }) ≡
(∏
{...}

µ
H sja...i∗
d−1 ({h∂ja}∂R, r(h

∗))
)
,

ΦR II
({h∂j }, {hj}) ≡

(∏
{...}

µ
H sjajb...i∗
d−1 ({h∂ja}∂R, {hjb}R II

)
)
. (9.41)
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Notice that ΦR II
({h∂j }, {hj}) is simplified to no dependence on h∗ because those µHd−1 that

depend on h∗ are pair cancelled out due to overlapping on the same (d − 1)-simplex with

opposite orientations ±1. From eqn. (9.38) to eqn. (9.39), the notation “
LUT−−−→” means that

we do a local unitary transformation (LUT) to deform ΦR II
to a gapped trivial product state

ΦR II
= 1 without breaking any symmetry. Thus, the simplified nontrivial wavefunction only

resides on R I and ∂R as Φ({gi, hj}) ≡ ΦR I
({gi}, {h∂j }) Φ∂R({h∂j }).

For example, more explicitly in 2+1D,

Φ({gi, hj}) ≡ ΦR I
({gi}, {h∂j }) Φ∂R({h∂j })

=
∏
{...}

νG s
3 (gi1 , gi2 , gi3 , r(h

∗))νG s
3 (r(h∂j1), gi2 , gi3 , r(h

∗))νG s
3 (r(h∂j1), r(h∂j2), gi3 , r(h

∗))

µH s
2 (h∂j1 , h

∂
j2 , h

∗)µH s
2 (h∂j1 , h

∂
j2 , hj3)µH s

2 (h∂j1 , hj3 , hj4)µH s
2 (hj3 , hj4 , hj5)

LUT−−−−→
∏
{...}

νG s
3 (gi1 , gi2 , gi3 , r(h

∗))νG s
3 (r(h∂j1), gi2 , gi3 , r(h

∗))νG s
3 (r(h∂j1), r(h∂j2), gi3 , r(h

∗))

·
∏
{...}

µH s
2 (h∂j1 , h

∂
j2 , h

∗). (9.42)

Here the shorthand s = ±1 depends on the ordering of each assigned simplex. We see that
those µH2 that do not depend on h∗ can be deformed to a gapped trivial product state by local
unitary transformation without breaking any symmetry (again, we denote the procedure as

“
LUT−−−→” ), because the homogeneous cochain satisfies µHd−1({(h) · hj}) = µHd−1({hj}). Thus

keeping only µH2 (h∂j1 , h
∂
j2
, h∗) but removing other µH2 , we obtain the last simplified equality.

In generic dimensions, we have eqn. (9.40).

• Lattice Hamiltonian: The Hamiltonian for the above gapped ground state has the same form
in the bulk region R as Ĥ = −

∑
v Âv −

∑
f B̂f in eqn. (9.21). However, we need to modify

the boundary term on ∂R. The first term Âv on the boundary acts on the wavefunction of a
constant-time slice through each vertex v in the space by lifting the initial state through an
“imaginary time” evolution to a new state with a vertex v′ via

Âv =
1

|H|
∑
h∈H

Âhv . (9.43)

Âhv |hv, {h∂j }, {gi}〉 (9.44)

=
∏
{...}

νG s...
d (r(h), r(hv), {r(h∂j )}, {gi})

∏
{...}

µH s...
d−1 (h, hv, {h∂j })|h, {h∂j }, {gi} . . . 〉.

More specifically, the effective 2+1D Hamiltonian term along the 1+1D gapped boundary
∂R, shown in Fig. 24 (1), is written as:

Âhv |hv, h1, g2, g3, h4〉

=
µH2 (hv, h, h1) µH2 (h4, hv, h)

νG3 (r(hv), r(h), g2, r(h1)) νG3 (g3, r(hv), r(h), g2) νG3 (r(h4), g3, r(hv), r(h))
|h, h1, g2, g3, h4〉.

(9.45)

The B̂f term imposes trivial G- and H- holonomies for the contractible loop. But here B̂f
does not play any role for SPTs, because SPTs always have trivial holonomy regardless the
loop is contractible or not.
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Figure 24: (1) We consider aG-SPTs on the spatial region R I with a lattice. We set a trivial vacuum
on the spatial region R II , and the gapped boundary of H-anomalous SPT on the boundary ∂R.
The Hamiltonian Âhv acts on the state |hv, h1, g2, g3, h4〉 and is given in eqn. (9.45), which sends to
a new state |h, h1, g2, g3, h4〉 with a U(1) phase. (2) Now consider a G-SETs on the spatial region

R I lattice with a gapped boundary anomalous SETs, the Hamiltonian Âh,n,kv is given in eqn. (9.49).

• More generic bulk/gapped boundary SET wavefunction and Hamiltonian: We can consider
more generic bulk SETs and boundary anomalous SETs as in Sec. 9.1.4 Remark 4 — a
bulk SETs with global symmetry Q and gauge symmetry N via 1 → N

a→ G → Q → 1,
and a boundary anomalous SETs with global symmetry Q and gauge symmetry K ×N via
1→ K ×N → H → Q→ 1 where H

K×N = G
N ≡ Q. This also implies 1→ K → H

r→ G→ 1.
The generic wavefunction is

Φ({gi, niaib , hj , kjajb})
LUT−−−−→ ΦR I

({gi}, {niaib}, {h
∂
j }) Φ∂R({h∂j }, {njajb}, {kjajb}), (9.46)

where

ΦR I
({gi}, {niaib}, {h

∂
j }) ≡

(∏
{...}

VG,N s...i∗
d ({gi}R I

, {r(h∂j )}∂R, r(h∗); {niaib}R I ,∂R)
)
,

Φ∂R({h∂j }, {njajb}, {kjajb}) ≡
(∏
{...}

µ
H,N,K s...i∗
d−1 ({h∂ja}∂R, r(h

∗); {njajbkjajb}∂R)
)
.

Its Hamiltonian has the same form in the bulk region R as Ĥ = −
∑

v Âv −
∑

f B̂f in
eqn. (9.21). But we need to modify the boundary term on ∂R to

Âv =
1

|H||N ||K|
∑

h∈H,n∈N,k∈K
Âh,n,kv . (9.47)

Âh,n,kv |hv, {h∂j }, {gi}; {niaib}, {kjajb}〉

=
∏
{...}

VG,N s...
d (r(h), r(hv), {r(h∂j )}, {gi};n, {niaib})∏

{...}

µH,N,K s...
d−1 (h, hv, {h∂j }; {njajb}, {kjajb})|h, {h

∂
j }, {gi}; {n′iaib}, {k

′
jajb
}〉. (9.48)

Here n′iaib and k′jajb are some modified link variables that may have n and k variables inserted.
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The B̂f term imposes trivial holonomies for the contractible loops; here, B̂f plays an im-

portant role to constrain ground states of SETs. The bulk B̂f imposes trivial G- and N -

holonomies for the contractible loops. The boundary B̂f imposes trivial H-, N - and K-

holonomies for the contractible loops. Similar to eqn. (9.25), the bulk B̂f constrains that

(δnv2n21n1v=1), and the boundary B̂f constrains that (δnv2n21n1v=1)(δkv2k21k1v=1) on each state
vector associated to a 2-simplex triangle.

For example, more specifically, an effective 2+1D Hamiltonian term Âh,n,kv along the 1+1D
anomalous SET gapped boundary ∂R, shown in Fig. 24 (2), is written as:

Âh,n,kv |hv, h1, g2, g3, h4;nv1kv1, nv2, nv3, n4vk4v〉

=
µH2 (hv, nkh, nnv1kkv1h1) µH2 (h4, n4vk4vhv, n4vnk4vkh)

νG3 (r(hv), a(n)r(h), a(nv2)g2, a(nv1)r(h1)) νG3 (g3, a(n3v)r(hv), a(n3vn)r(h), a(n3vnv2)g2)

1

νG3 (r(h4), a(n4vn
−1
3v )g3, a(n4v)r(hv), a(n4vn)r(h))

|h, h1, g2, g3, h4;nv1n
−1kv1k

−1, n−1nv2, nv3n, n4vnk4vk〉. (9.49)

Here r(h) ∈ G and r(hia) ∈ G are aimed at emphasizing that they are obtained via the
epimorphism H

r→ G. The a(n) ∈ G and a(niaib) ∈ G are aimed to emphasize that they are

obtained via the monomorphism N
a→ G. Since N is a normal subgroup inside G, previously

we have been abbreviating a(n) = n ∈ G for ∀n ∈ N .

In the next section, we analyze the symmetry-preserving property of such a gapped boundary
system in Sec. 9.2.4.

9.2.4 Proof of the symmetry-preserving wavefunction with gapped boundary/interface

Follow the setup in Sec. 9.2.3, here we rigorously prove that the wavefunction eqn. (9.40) of a bulk
G-SPTs on an open manifold while the gapped boundary has an anomalous H-SPTs via a group
extension H/K = G (in Sec. 9.1.4). See Fig.25 for a geometric illustration for the proof.

We would like to interpret that the spatial bulk have two sectors R I ≡ RdI and R II ≡ RdII ,
while the whole closed space is RdI ∪RdII = Md. The SPTs of symmetry group G is on the R I side,
a trivial vacuum is on the R II side, while the gapped interface (≡ ∂R) between the two phases is
symmetry-enhanced to H. This gapped H interface can be viewed as a gapped boundary for the
bulk G SPTs. Under the construction 1 → K → H

r−→ G → 1 of cocycle splitting, below we can
have an exact global H symmetry transformation acting along the gapped interface, together with
an exact global G symmetry transformation acting on the gapped left region R I , and no symmetry
transformation on the trivial right region R II . We consider the following setup:

(1) We assign a Hilbert space dimension |H| on each site along the interface ∂R between the R I

and the R II regions, while the R I region of the SPTs has a Hilbert space dimension |G| on each site.

(2) We require the dimension of Hilbert space on the additional site i∗ assigned with h∗ outside
Md has a Hilbert space dimension |H|. We also have an additional virtual site i′∗ assigned with
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h−1h∗ for ∀h ∈ H, such that r(h) ≡ g, r(h∗) ≡ g∗ and

r(h−1h∗) = r(h−1)r(h∗) = g−1g∗.

We also set that the site i′∗ has a Hilbert space dimension |H|. The condition (2) is important in
order to split the cocycle on the R I region that touches the interface.

(3) We consider the algebraic structure preserving map from H to G with r(h) = g, the same map
of H

r−→ G. The symmetry transformation sends |gj〉 → |r(h)gj〉 = |ggj〉 when the dimension
of Hilbert space is |G| on the site j. The symmetry transformation sends |hj〉 → |hhj〉 when the
Hilbert space dimension is |H| on the site j.

The exact global G symmetry transformation on the left region RI and the exact global H
symmetry transformation along the interface yield global U(1) phases to the wavefunction, and
the global U(1) phases need to cancel out to 1. The cancellation of global U(1) phases of G-
symmetry and H-symmetry transformations may be viewed as anomaly-free for the whole bulk
and the interface. The wavefunction is only symmetry-invariant if we consider the whole system
together.

Now consider the group manifold that has the left (R I ) sector of group G and the right sector of
a trivial vacuum, and all sectors can be lifted to the larger group H. Again we set that g∗I = g∗II =
g∗ = rV (h∗) = h∗ = 1. In general, we can easily generalize our result to any dimension. Without
losing generality, let us take a specific example in 2+1D. And let us consider the 2-dimensional
space lattice defined on a 2-sphere S2. The S2 can be regarded as two 2-disks D2 glued together
along the S1 boundary. Let us call the two D2 disks as D2

R I
assigned with G I on each site, and

D2
R II

assigned with G II on each site. Along the S1 boundary, we assign H on each site. The

wavefunction on the whole S2 surface is evolved from an additional point i∗ assigned g∗ = r(h∗).
Thus the wavefunction can be determined by assigning the 3-cocycle into this spacetime volume of
the D3 ball (whose center is i∗ and whose spatial sector is S2).

For SPTs, we use the homogeneous cocycle denoted νGsd and cochain µHd−1, and we follow

the wavefunction Φ({gi, h∂j }) ≡ ΦR I
({gi}, {h∂j }) Φ∂R({h∂j }) in eqn. (9.42). Here we arrange the

wavefunction separated into a few parts:

ΦR I
({gi}, {h∂j }) ≡

∏
{...}

νG s
3 (gi1 , gi2 , gi3 , r(h

∗))νG s
3 (r(h∂j1), gi2 , gi3 , r(h

∗))νG s
3 (r(h∂j1), r(h∂j2), gi3 , r(h

∗)),

Φ∂R({h∂j }) ≡
∏
j

µH s
2 (h∂j , h

∂
j+1, h

∗). (9.50)

Again there are orientations s = ±1 for each term.

Below we verify that the wavefunction Φ({gi, h∂j }) is invariant under the global-symmetry trans-

formation Ŝsym. It means that we can show the Φ({gi, h∂j }) is equal to

ŜsymΦ({gi, h∂j }) = Φ({(r(h) · gi), (h · h∂j )}). (9.51)

We also denote the change r(h) ≡ g in G. The above shows the symmetry transformation acts on
the wavefunction. Conversely, we can consider the equivalent dual picture that the symmetry trans-
formation acts on the state vector in the Hilbert space. Either way leads to the same conclusion.

84



Since

ŜsymΦ({gi, h∂j }) =
[Φ({(r(h) · gi), (h · h∂j )})

Φ({gi, h∂j })
]
Φ({gi, h∂j }), (9.52)

we need to show that the factor in the bracket
[
. . .
]

is 1 to prove the global symmetry preservation.
The G-symmetry on the region R I must be able to be lifted to some H-symmetry on the whole
regions R I including the interface ∂R, based on the fact that H

r→ G is surjective. We remind the
readers that g ≡ r(h), g∗ ≡ r(h∗). Namely, it is effectively the H-symmetry transformation on the
whole system.

(1)

1h

3g
2h

(2)

1h

3g
2h

(3)

1h

2h

(4)

1h

2h

(5)

Figure 25: We show geometry pictures how to understand the symmetry-transformation phase
cancellation for the overall symmetry invariance in 2+1D/1+1D, which can be easily generalized to
any higher dimensional spacetime. The fig.(1) shows how two pieces of ν3 in eqn.(9.55) contribute
to the left-region wavefunction ΦR I

, and then convert to the splitting of a ν3 into four pieces of
2-cochains in the fig.(2) and fig.(3) as in eqn.(9.57). The fig.(4) shows how two pieces of µ2 in
eqn.(9.59) contribute to the interface-region wavefunction Φ∂R. The fig.(5) shows how, on a closed
interface ∂R (here an S1), the symmetry transformation on the combined wavefunction ΦR I

·Φ∂R

canceling with each other to 1 as the symmetry invariance achieved in eqn.(9.60).

In region R I , the wavefunction change ν3(g·g1, g·g2, g·g3, g∗)
ν3(g1, g2, g3, g∗)

= ν3(g1, g2, g3, g−1·g∗)
ν3(g1, g2, g3, g∗)

can be simplified
further based on a d-cocycle condition,

(δν3)(gi, gj , g
∗, g−1 · g∗) = 1 (9.53)

⇒ ν3(g1, g2, g3, g−1 · g∗)
ν3(g1, g2, g3, g∗)

=
ν3(g2, g3, g

∗, g−1 · g∗) ν3(g1, g2, g
∗, g−1 · g∗)

ν3(g1, g3, g∗, g−1 · g∗)
. (9.54)
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Here for convenience, let us denote gigj as a link connecting two vertices i and j, where two ver-
tices are assigned with gi and gj respectively. Notice the 3-cocycle ν3(gi, gj , g

∗, g−1 · g∗) which
contains a link gigj is cancelled out, because there exists a neighbor term which shares the same
link gigj and which contributes the same factor with opposite orientation thus opposite sign for
s = ±1. The only subtle type of terms, that survives and that requires further analysis, is

ν3(r(h∂i ), r(h∂j ), g∗, g−1 · g∗) which contains a link with two vertices h∂i h
∂
j on the interface ∂R.

If we approach from the region R I , we see that

ν3(r(h∂1), r(h∂2), g3, g−1 · g∗)
ν3(r(h∂1), r(h∂2), g3, g∗)

=
ν3(r(h∂2), g3, g

∗, g−1 · g∗) ν3(r(h∂1), r(h∂2), g∗, g−1 · g∗)
ν3(r(h∂1), g3, g∗, g−1 · g∗)

.(9.55)

All the terms on the right-hand side cancel with some other terms in the product
∏
{...} which share

the same links connecting h∂1g3 and h∂2g3 on the same regionRI , except that ν3(r(h∂1), r(h∂2), g∗, g−1 · g∗)
term that touches the link h∂1h

∂
2 . We would like to split 3-cocycle νG3 that touches the link h∂i h

∂
j

into 2-cochains µH2 :

νG3 (r(h∂1), r(h∂2), r(h∗), r(h−1 · h∗)) = νH3 (h∂1 , h
∂
2 , h

∗, h−1 · h∗)

= (δµH2 )(h∂1 , h
∂
2 , h

∗, h−1 · h∗) =
µH2 (h∂2 , h

∗,h−1 · h∗)µH2 (h∂1 , h
∂
2 ,h

−1 · h∗)
µH2 (h∂1 , h

∗,h−1 · h∗)µH2 (h∂1 , h
∂
2 , h
∗)

. (9.56)

We shall consider all such splitting terms along the interface. As an example, for the 1+1D

interface on a spatial ring with a total number of N sites and N links (h∂j h
∂
j+1) where i = 1, . . . ,N

(mod N), we obtain:

N∏
j=1

νG3 (r(h∂j ), r(h∂j+1), r(h∗), r(h−1 · h∗)) =

N∏
j=1

µH2 (h∂j+1, h
∗,h−1 · h∗)

µH2 (h∂j , h
∗,h−1 · h∗)

N∏
j=1

µH2 (h∂j , h
∂
j+1,h

−1 · h∗)
µH2 (h∂j , h

∂
j+1, h

∗)

=
N∏
j=1

µH2 (h∂j , h
∂
j+1,h

−1 · h∗)
µH2 (h∂j , h

∂
j+1, h

∗)
. (9.57)

The first is based on eqn. (9.56) on a ring. For the second equality, we use the fact that
∏N
j=1

µH2 (h∂j+1,h
∗,h−1·h∗)

µH2 (h∂j ,h
∗,h−1·h∗)

= 1 cancels out on a closed ring. Combined with the fact that homogenous cochain does not change
under symmetry transformation if inputs do not contain h∗, due to that the homogenous cocycle

satisfies
µH2 (h·hi, h·hj , h·hk)

µH2 (hi, hj , hk)
= 1, so far we derive that

ΦR I
({r(h) · gi}, {h · h∂j })
ΦR I

({gi}, {h∂j })
=

N∏
j=1

µH2 (h∂j , h
∂
j+1,h

−1 · h∗)
µH2 (h∂j , h

∂
j+1, h

∗)
. (9.58)

We can also see that the remaining part of wavefunction is Φ∂R({h∂j }) =
∏N
j=1 µ

H
2 (h∂j , h

∂
j+1, h

∗)
−1

,
where the inverse with s = −1 is due to the opposite orientation accounted from the other side
R II . Its symmetry transformation becomes:

Φ∂R({h · h∂j })
Φ∂R({h∂j })

≡
N∏
j=1

(
µH2 (h∂j , h

∂
j+1,h

−1 · h∗)
µH2 (h∂j , h

∂
j+1, h

∗)
)−1. (9.59)

Thus the phases in eqn.(9.58) and eqn.(9.59) cancel perfectly, and the whole wavefunction Φ({gi, h∂j }) ≡
ΦR I

({gi}, {h∂j }) Φ∂R({h∂j }) is invariant under the symmetry transformation:

ŜsymΦ({gi, h∂j }) =
ΦR I

({r(h) · gi}, {h · h∂j })
ΦR I

({gi}, {h∂j })
Φ∂R({h · h∂j })

Φ∂R({h∂j })
· Φ({gi, h∂j }) = 1 · Φ({gi, h∂j }). (9.60)
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In Fig.25, we show a neat geometrical way to understand the symmetry-transformation phase
cancellation for the symmetry invariance. For any higher d-dimensional spacetime, we can give
the same proof by replacing µH2 in eqn.(9.58) and eqn.(9.59) with µHd−1. It is easy to confirm that
our proof on symmetry-preserving gapped interface holds for any higher-dimensional generalization
(q.e.d).

We can apply a similar proof for the global-symmetry-preserving property of the SET version
of wavefunction eqn. (9.46) to show

ŜsymΦ({gi, niaib , hj , kjajb}) = Φ({r(h) · gi, niaib ,h · hj , kjajb}) = Φ({gi, niaib , hj , kjajb}). (9.61)

To prove this, we may regard that h · hj ≡ hj ·h′ where h′ = h−1
j hhj . Similarly, r(h) · gi ≡ g · gi ≡

gi · g′, we find that g′ = g−1
j ggj = r(h−1

j )r(h)r(hj) = r(h−1
j hhj) = r(h′). Regardless the branch

structure for vertex ordering, we can convert the symmetry transformation, from acting on the
left of the group elements to that acting on the right of group elements. This trick can facilitate
the proof that the SET wavefunction is invariant under global symmetry, even in the presence of
gapped interfaces.

9.2.5 More Remarks

Here are a summary and some more remarks:

1. Global enhanced H-symmetry invariant : We have shown that the SPTs wavefunction on a
whole system is invariant under G-symmetry transformation in the bulk R I together under
H-symmetry transformation on the interface ∂R. The symmetry transformation is fixed by
H

r−→ G, and we may view that the symmetry is enhanced to H for the whole system.

2. Global K-symmetry on the boundary/interface: Under the construction 1 → K → H
r−→

G→ 1 for G-bulk SPTs and an anomalous boundary H-SPTs, the K is trivial in the bulk as
r(k) = 1 ∈ G for k ∈ K. How about K-symmetry transformation on the interface? It is easy
to check there is no local K-symmetry on the interface, since Φ∂R({kj · h∂j }) 6= Φ∂R({h∂j })
for arbitrary local kj ∈ K transformation on each site j. However, below we can prove that
there is a global K-symmetry applying on the boundary/interface, namely

Φ∂R({k · h∂j }) = Φ∂R({h∂j }). (9.62)

Proof: Without losing generality, consider the 1+1D boundary of 2+1D SPTs. We see that

Φ∂R({k · h∂j }) =
N∏
j=1

µH2 (kh∂j ,kh
∂
j+1, h

∗)

µH2 (h∂j , h
∂
j+1, h

∗)
· Φ∂R({h∂j })

=
N∏
j=1

µH2 (h∂j , h
∂
j+1,k

−1h∗)

µH2 (h∂j , h
∂
j+1, h

∗)
· Φ∂R({h∂j }) = Φ∂R({h∂j }). (9.63)
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where in the last equality we use the fact of 3-cocycle splitting and r(k) = 1 ∈ G so

1 = ν3(r(h∂j ), r(h∂j+1), r(h∗) = g∗, r(k−1·h∗) = g∗) =
µ2(h∂j+1, h

∗,k−1 · h∗)
µ2(h∂j , h

∗,k−1 · h∗)
µ2(h∂j , h

∂
j+1,k

−1 · h∗)
µ2(h∂j , h

∂
j+1, h

∗)

⇒ 1 =

N∏
j=1

1 =

N∏
j=1

µ2(h∂j+1, h
∗,k−1 · h∗)

µ2(h∂j , h
∗,k−1 · h∗)

N∏
j=1

µ2(h∂j , h
∂
j+1,k

−1 · h∗)
µ2(h∂j , h

∂
j+1, h

∗)

⇒ 1 = 1 ·
N∏
j=1

µ2(h∂j , h
∂
j+1,k

−1 · h∗)
µ2(h∂j , h

∂
j+1, h

∗)
. (9.64)

3. Gauging SPTs to SETs: Since there is a global K-symmetry on the boundary/interface, we
can partially or fully gauge this K-symmetry. We can also gauge a normal subgroup N of the
global G symmetry of G-SPTs — however, to gauge N in the bulk we also need to gauge the
N for the anomalous H-SPTs on the boundary/interface. By gauging the normal subgroups
N and K, this gives rise to SETs of Sec. 9.1.4 Remark 4.

4. Degenerate ground states and holonomies for the boundary anomalous SETs: If the gapped
boundary is on a compact space with nontrivial cycles, there can be nontrivial holonomies for
the gapped boundary anomalous SETs. For example, for a 2+1D SPTs on a 2-disk D2 and
its 1+1D anomalous SETs on a 1-circle S1, or, for a 3+1D SPTs on a solid torus D2×S1 and
its 2+1D anomalous SETs on a 2-torus T 2, their nontrivial boundary holonomies imply the
ground state degeneracy (GSD). We will explicit compute such GSDs for some examples in
Appendix D, such as 0→ ZK2 → ZH4 → ZG2 → 0 in Sec. D.4.1 and 1→ ZK4 → QH8 → ZG2 → 1
in Sec. D.10.1.

5. Gapped interfaces by folding trick : Again based on the folding trick, we can construct a
wavefunction and lattice Hamiltonian of gapped interfaces between two topological phases in
Sec. 9.1.5, and we still can prove the symmetry-preserving wavefunction.

10 Conclusion

Some concluding and additional remarks follow:

1. We provide a UV complete lattice regularization of the Hamiltonian and path integral def-
inition of gapped interfaces based on the symmetry-extension mechanism, partly rooted in
Ref. [40]. Presumably, some of other phenomenon studied in Ref. [40] could also be examined
based on our lattice regularized setting.

2. The anomalous non-onsite G-symmetry at the boundary indicates that if we couple the G-
symmetric boundary to the weakly fluctuating background probed gauge field of G, there
is an anomaly in G (in the same language as in particle physics and high-energy theory)
along the boundary. The G-anomaly can be a gauge anomaly (e.g. for an internal unitary
G-symmetry), or a mixed gauge-gravitational anomaly (e.g., for a G-symmetry that contains
an anti-unitary time reversal symmetry ZT2 ). The key ingredient of our approach is based
on the fact that certain non-perturbative global anomalies in G at the boundary become
anomaly-free in H, when G is pulled back to H (see Sec. 4.5).
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3. Given some bulk G-SPT states, our formulation finds their possible H-symmetry-extended
and G-symmetry-preserving gapped boundaries, via a suitable group extension 1 → K →
H → G→ 1.20 To construct an H-symmetry-extended gapped boundary, we actually require
a weaker condition on the group extension that K may be a finite group or a continuous
group, in any bulk dimension ≥ 1+1D. To construct a G-symmetry-preserving topologically
ordered gapped boundary, we further require a stronger condition on the group extension
that K is a finite group, in order to have a boundary deconfined K-gauge theory, for a 3+1D
bulk and above.

4. When G, H and K are finite groups, we can prove that there always exist H-symmetry
extended gapped boundaries (in any bulk dimension ≥ 1+1D) and there always exist G-
symmetry preserving gapped boundaries (for 3+1D bulk and above). The gauge anomaly
associated to a finite symmetry group G must be a non-perturbative global anomaly. The
cohomology/cobordism group of a finite G only contains the torsion part, which indicates the
non-perturbative anomalies.

We believe that the argument remains valid, even when G and H are infinite continuous
compact groups, but K remains a finite group. In this case, the boundary dynamics still
yields a deconfined K-gauge theory, given that the bulk dimensions are larger or equal to
3+1D (see Sec. 6). (When the bulk is 2+1D, we comment in the next remark.)

WhenG is a continuous group for the bulkG-SPTs, the boundary could have both perturbative
anomalies (e.g. captured by a 1-loop Feynman diagram), or non-perturbative global anomalies,
detected by coupling the boundary to G-gauge fields.21 The perturbative anomalies do not
offer any symmetry-preserving surface topological orders. In contrast, some of the non-
perturbative global anomalies can offer a symmetry-preserving surface topological order as
long as our construction trivializes the G-anomaly in H.22

5. We apply our symmetry-preserving gapped interface construction to the 2+1D bulk and
1+1D boundary. For the 1+1D topologically ordered K-gauge theory on the boundary of
a finite/continuous group symmetry of 2+1D G-SPTs, we find an interesting phenomenon
that the 1+1D boundary deconfined K-gauge theory states develop long-range orders that
spontaneously break the G-symmetry (see Sec. 4.8). The 1+1D boundary deconfined and
confined gauge theory states belong to the same phase; namely, they are both symmetry-
breaking states connected without phase transitions.

Examples include those of a finite gauge group K, and a global symmetry G containing
discrete unitary or ant-unitary global symmetry sectors that can be spontaneously broken.
For instance, in Sec. 3.3, and Appendix A.2.4 and D.22, we show that the unitary ZG2 -
symmetry of a 1+1D ZK2 gauge theory is spontaneously broken, on the boundary of 2+1D
ZG2 -SPTs. In Appendix D.22, we also show that the anti-unitary time reversal ZT2 -symmetry
of a 1+1D ZK2 gauge theory is spontaneously broken, on the boundary of 2+1D bosonic
U(1) o ZT2 -topological insulator and Z2 o ZT2 -topological superconductor. This is, so far,

20 To make a comparison, we remark that Refs. [26,61–63] show a related physics by starting from a given anomalous
boundary field theory, and finding the possible bulk TQFT.

21 The free part of the cohomology/(co)bordism group contributes the perturbative anomalies. The torsion part
of the cohomology/(co)bordism group contributes the non-perturbative global anomalies.

22We demonstrate examples for each case in Appendices: First, a perturbative chiral anomaly of U(1)-SPTs in
D.19 (with a bulk invariant exp(i2πk

∫
( A
2π

) (c1)d/2 of even dimensions d and an integer k), do not offer a symmetry-
preserving surface topological orders but only have a symmetry-enforced gapless boundaries. Other symmetry-enforced
gapless boundaries also occurred in [64]. Second, a global mixed gauge-gravitational anomaly on the boundary of
6+1D U(1)-SPTs in D.20 (with a bulk invariant exp(i2π

∫
1
2
w2w3c1)), does allow a deconfined 5+1D K = Z2 surface

topological orders.
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consistent with the fact that there is no robust intrinsic topological order in 1+1D robust
against any local perturbations. 23

6. Our approach shall be applicable to obtain gapped interfaces of more generic bosonic and
fermionic topological states (other than the fermionic CZX model in Appendix B), including
topological states from the beyond-symmetry-group cohomology and cobordism approach
(Secs. 6 and Sec. 7). It will be interesting to establish this result with more concrete examples.

7. In Appendix D, we systematically construct various symmetry-extended gapped boundaries
for topological states in various dimensions (choosing homogeneous cocycles for SPTs and
inhomogeneous cocycles for topological orders), summarized in the Table 10. We can also
combine results in different subsections in Appendix D and use the folding trick to obtain the
gapped interfaces between topological states.

The previously known gapped interfaces for the Z2 toric code and Z2 double-semion model can
be achieved by certain (gauge-) symmetry-breaking sine-Gordon cosine interactions at strong
couplings. The previously known gapped interfaces of 2+1D twisted quantum double models
Dω3(G) and Dijkgraaf-Witten gauge theories can also be obtained through such a (gauge-)
symmetry-breaking mechanism or anyon condensation [65–71], see Appendix F.1. It is known
that there are 2 types of gapped boundaries for Z2 toric code, 1 type of gapped boundary
for Z2 double-semion model, and 2 types of gapped interfaces between Z2 toric code and Z2

double-semion model [71]. More generally, we systematically show gauge symmetry-breaking
gapped interfaces in any dimension, in Appendix F.1, including 2+1D (ours reproduce the
results in the previous literature) and the less-studied 3+1D.

However, we can construct other new types of gapped interfaces between Z2 toric code and
Z2 double-semion models via a symmetry-extension mechanism, such as examples given in
Appendices D.4’s 2+1/1+1D under 0 → ZK2 → ZH4 → ZG2 → 0, and D.10’s 2+1/1+1D
under 1→ ZK4 → QH8 → ZG2 → 1, and more, etc. Our new gapped interface has an enhanced
Hilbert space and to certain degree an enhanced gauge symmetry, the first new type of gapped
interface has H = Z4 and the second new type of gapped interface has H = Q8. Through a
symmetry extension mechanism, we can construct new types of gapped boundaries/interfaces
in 2+1D, 3+1D and any higher dimensions.24

More generally, our framework encompasses the mixed symmetry breaking, symmetry exten-
sion, and dynamically gauging mechanisms to generate gapped interfaces.

8. Fermionic symmetry extension and fermionic spin-TQFT gapped boundaries/interfaces: Pre-
viously fermionic gauge-symmetry-breaking 1+1D gapped boundary of 2+1D fermionic TO
is examined in [73]. More recently, the 2+1D symmetric anomalous gapped fermionic surface
topological order of 3+1D fermionic SPT is examined in [74]. A step toward a possible frame-
work to incorporate these fermionic symmetry-breaking or fermionic symmetry-extension con-
structions of gapped boundaries/interfaces is pursued in [75].

9. Higher-symmetry extension and higher-gauge theory/TQFT gapped boundaries/interfaces:
Ordinary global symmetries can be regarded as the 0-form global symmetries which has
a 0-dimensional charged object measured by codimension-1 (thus (d − 1)-dimension) charge

23However, if we apply our construction for a continuous symmetry group on a 1+1D boundary, due to Coleman-
Mermin-Wagner theorem, there shall be no spontaneous symmetry breaking for a continuous symmetry in 1+1D. We
may expect to find further interesting new physics. It will be illuminating to address this issue further in the future
work.

24However, the fate of some of gauge symmetry-extended interfaces turns out to be the same phase as the gauge
symmetry-breaking interface. This was later explored in Sec. 7 of [72], where their dual description and equivalence
are found.
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Bulk/Interface Dim 1→ K → H → G→ 1
LHS

spectral
sequence

Symmetric
Gapped

Boundary

SPT Bulk inv.
(d-cocycle ωd)

D.4/5.2: 2+1/1+1D 0→ Z2 → Z4 → Z2 → 0 Yes No (Z2-SSB) ω3, I , exp(iπ
∫

(a1)3)

D.5: d+ 1/dD Even dim d: 0→ Z2 → Z4 → Z2 → 0 Yes Yes ωd+1, I , exp(iπ
∫

(a1)d+1)

D.6/5.3: 3+1/2+1D 0→ Z2 → ZT4 → ZT2 → 0 - Yes
ZT2 -cocycle,

exp(iπ
∫

(w1)4)

D.7: d+ 1/dD Odd dim d: 0→ Z2 → ZT4 → ZT2 → 0 - Yes
ZT2 -cocycle,

exp(iπ
∫

(w1)d+1)

D.8: 3+1/2+1D 1→ Z2 → Pin+(∞)→ O(∞)→ 1 - Yes
ZT2 -cocycle,

exp(iπ
∫

(w2)2)

D.8: 3+1/2+1D 1→ Z2 → Pin−(∞)→ O(∞)→ 1 - Yes
ZT2 -cocycle,

exp(iπ
∫

(w1)4 + (w2)2)

D.9: 2+1/1+1D 0→ Z2N→Z4N→Z2 → 0 Yes No (SSB) ω3, I , exp(iπ
∫

(a1)3)

D.10: 2+1/1+1D 1→ Z4 → Q8 → Z2 → 1 Yes No (SSB) ω3, I , exp(iπ
∫

(a1)3)

D.11: 2+1/1+1D 1→ Z2 → D4 → (Z2)2 → 1 Yes No (SSB) ω3, II , exp(iπ
∫
a1βa2)

D.12: 1+1/0+1D 1→ Z2 → Q8 → (Z2)2 → 1 No Yes ω2, II , exp(iπ
∫
a1a2)

D.13: 1+1/0+1D 1→ Z2 → D4 → (Z2)2 → 1 Yes Yes ω2, II , exp(iπ
∫
a1a2)

D.14: 2+1/1+1D 1→ Z2 → D4 × Z2 → (Z2)3 → 1 Yes No (SSB) ω3, III , exp(iπ
∫
a1a2a3)

D.15: 3+1/2+1D 1→ Z2 → D4 × (Z2)2 → (Z2)4 → 1 Yes Yes ω4, IV , exp(iπ
∫
a1a2a3a4)

D.15: d+1/dD 1→ Z2 → D4 × (Z2)d−1 → (Z2)d+1 → 1 Yes Yes
ωd+1,Top,

exp(iπ
∫
∪d+1
i=1 ai)

D.16: 2+1/1+1D 1→ Z2 × Z2 → D4 × Z2 → (Z2)2 → 1 Yes No (SSB) ω3, II , exp(iπ
∫
a1βa2)

D.17: 3+1/2+1D 1→ (Z2)→ D4 → (Z2)2 → 1 Yes Yes ω4, II , exp(iπ
∫
a1a2βa2)

D.18: 3+1/2+1D 1→ Z2 → D4 × (Z2)→ (Z2)3 → 1 Yes Yes ω4, III , exp(iπ
∫
a1a2βa3)

D.19: 2+1/1+1D 1→ ZN → U(1)→ U(1)→ 1 No No (Pert) exp(i k
∫
A(dA2π )

d/2
)

D.20: 6+1/5+1D
1→ Z2 → G→ G→ 1,
G = U(1)× SO(∞)

- Yes (Global) exp(iπ
∫
w2w3c1)

D.21: 2+1/1+1D
1→ Z2 → G→ G→ 1,

G = U(1) o ZT2
-

No (ZT2 -SSB)
(Global)

exp(iπ
∫
w1c1)

D.21: 2+1/1+1D
1→ Z2 → G→ G→ 1,

G = Z2 o ZT2
-

No (ZT2 -SSB)
(Global)

exp(iπ
∫
w1(a1)2)

D.23: 1+1/0+1D 1→ Z2 → SU(2)→ SO(3)→ 1 Yes Yes
Odd-integer
AF spin chain

Table 10: We outline the gapped boundary/interface results obtained in Appendix D. In several
cases, we check the validity of two techniques mentioned in Sec. D.3, based on Lyndon-Hochschild-
Serre (LHS) spectral sequence technique in Sec. D.3. The “Symmetric Gapped Boundary” column
means that the “symmetry preserving gapped interface” is available or not. For a discrete finite
G, this “Symmetric Gapped Boundary” means the cochain solution is found. “Pert.” means the
perturbative anomaly. “Ḡ-SSB” means the spontaneous symmetry breaking in Ḡ (e.g. Ḡ = Z2, ZT2 ,
etc.). “Global” means the global gauge/gravitational anomaly. “AF” means anti-ferromagnet. The
d-cocycle for a finite Abelian group G with its type indices (written in Roman numerals) follows
the notation defined in Ref. [27]. The β is the Bockstein homomorphism.

operator. Generalized global symmetries [76] include the q-form higher global symmetries
which has a q-dimensional charged object measured by codimension-(q+ 1) (thus (d− q− 1)-
dimension) charge operator. An interesting research direction is to apply the symmetry
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breaking or symmetry extension method of constructing topological boundaries/interfaces to
higher global symmetries, including the higher SPT/SET states. Recent developments along
this direction can be found in [61], [77], [78] and References therein.

10. Future application: Gapped interfaces via gauge symmetry breaking or anyon condensations
have recently found their applications in topological quantum computation (see [79] and
Reference therein for 2+1D bulk systems). We hope that our new types of gapped interfaces
via global/gauge symmetry extensions in any dimension have analogous potential applications,
for science and technology, in the future.
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Appendix

A Low energy effective theory for the boundaries of CZX model

A.1 Low energy effective theory for the second boundary of the CZX model –
A 1+1D model with an on-site ZH

4 -symmetry

In Sec. 3.2, we described a gapped boundary state of the CZX model in which the ZG2 bulk symmetry
is extended to a ZH4 symmetry along the boundary. The model as described there is gapped in
both bulk and boundary, and there is no hierarchy of energy scales: The energy gaps in bulk and
along the boundary are comparable.

This is a physically sensible state of affairs in condensed matter physics, but nonetheless one
might ask what sort of model would have such a hierarchy of scales. In this section, we will describe
several possibilities. As a result, we obtain several pure 1+1D models as the effective boundary
theories for the CZX model.

One approach is simply to reduce the coefficient of the boundary plaquette term Hbdry
p in the

Hamiltonian. In this limit (see Fig. 5), the low-energy degrees of freedom at the boundary are
described by three spins per unit cell: σi− , σi+ , and a composite spin described by the two spins on
the black dots next to σi− and σi+ , which are locked due to the projector P rp from the neighboring
Hamiltonian.

Here, we would like to reduce the boundary degrees of freedom further. To do so, we will
consider a slightly different boundary, by omitting the Hbdry

p terms in the Hamiltonian and at the
same time including some projectors at the boundary. This gives us another description of the
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(i+1)+

(i+1)−
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i−

(i−1)+

(i−1)−

Figure 26: The filled dots are qubits (or spin-1/2’s). A circle (with dots inside) represents a site.
The bulk Hamiltonian contains terms that force the dots connected by red and green lines to have
the same σzi at low energies. The dashed blue line connecting dots i, j represents the phase factor
CZij in the bulk ZG2 global symmetry transformation.

second boundary of the CZX model (see Fig. 26). The bulk Hamiltonian of the model is still given
by Hp for each complete octagon in the bulk, with addition terms that force the boundary spin
σi± ’s to have the same σz value as the bulk spins connected by the green lines. However, notice
that the shaded squares are not complete octagons since the two spins to the right of the shaded
squares do not need to be parallel. So the Hamiltonian for the shaded squares needs to be modified:

Hshaded
p = −H0

pP
u
p P

d
p P

l
pP

r
p + H̃0

pP
u
p P

d
p P

l
p(1− P rp ) (A.1)

where H̃0
p is given by

H̃0
p = i(| ↓↓↓↓〉〈↑↑↑↑ | − | ↑↑↑↑〉〈↓↓↓↓ |). (A.2)

The above Hamiltonian has a Z4 ≡ ZH4 global symmetry. The ZH4 symmetry is generated by

σxi−σ
x
i+UCZ,i−,i+ (A.3)

when acts on a boundary site, and by

UX,sUCZ,s = σxi1σ
x
i2σ

x
i3σ

x
i4UCZ,i1,i2UCZ,i2,i3UCZ,i3,i4UCZ,i4,i1 (A.4)

when acts on a bulk site, where i1, i2, i3, and i4 label the four spins on the bulk site. Note that
the Z4 symmetry is actually a Z2 symmetry in the bulk since

(UX,sUCZ,s)
2 = 1. (A.5)

So here we are actually considering a model with on-site ZG2 symmetry in the bulk, and the
symmetry is promoted to ZH4 symmetry on the boundary, since

(σxi−σ
x
i+UCZ,i−,i+)2 = −σzi−σ

z
i+ 6= 1. (A.6)

The total symmetry generator is given by

ÛZ4 =
∏
i

σxi−σ
x
i+UCZ,i−,i+

∏
bulk sites s

UX,sUCZ,s. (A.7)
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To see that Hshaded
p is invariant under ÛZ4 , we first note that H0

pP
u
p P

d
p P

l
pP

r
p is invariant under

ÛZ4 . Rewriting H̃0
pP

u
p P

d
p P

l
p(1−P rp ) as iH0

pP
u
p P

d
p P

l
p(1−P rp )σzi1 , we see that σzi1 anti-commutes with

ÛZ4 . H0
pP

u
p P

d
p P

l
p(1− P rp ) also anti-commutes with ÛZ4 . Thus Hshaded

p is invariant under ÛZ4 .

The low energy boundary excitations have a basis labeled by σzi± values of the boundary spins:

|{σzi±}〉whole = |{σzi±}〉bdry × |bulk〉, (A.8)

Now, |bulk〉 is given by

|bulk〉 = ⊗squares|square〉 ⊗shaded-squares |shaded-square〉 (A.9)

where |square〉 ≡ 1√
2
(| ↑↑↑↑〉+ | ↓↓↓↓〉) is the spin state for the four spins connected by a red square

in Fig. 26 as determined by Hp, and

|shaded-square〉 ≡ | ↑↑↑↑〉+ | ↓↓↓↓〉√
2

if σzi+σ
z
(i+1)−

= 1, (A.10)

|shaded-square〉 ≡ | ↑↑↑↑〉 − i | ↓↓↓↓〉√
2

if σzi+σ
z
(i+1)−

= −1,

is the spin state for the four spins connected by a shaded red square in Fig. 26, as determined by
Hbdry
p .

Under the ÛZ4 , |↑↑↑↑〉+|↓↓↓↓〉√
2

is unchanged for σzi+σ
z
(i+1)−

= 1. But for σzi+σ
z
(i+1)−

= −1, ÛZ4

changes | ↑↑↑↑〉 → | ↓↓↓↓〉 and | ↓↓↓↓〉 → −| ↑↑↑↑〉. The extra − sign comes from the two
uncanceled CZ factors to the right of the plaquette (see Fig. 26 where the CZ factors are pointed

out by arrows). Therefore, under the ÛZ4 , |↑↑↑↑〉− i |↓↓↓↓〉√
2

is changed to

| ↓↓↓↓〉+ i | ↑↑↑↑〉√
2

= i
| ↑↑↑↑〉 − i | ↓↓↓↓〉√

2
. (A.11)

So, under the Z4 on-site transformation to the whole system, the bulk state |bulk〉 changes into
itself up to a phase factor:

|bulk〉 → e iθ|bulk〉. (A.12)

The phase factor e iθ depends on the boundary spins σzi and is given by

e iθ =
∏
i

i
(1−σzi+σ

z
(i+1)−

)/2
UCZ,i−,i+ . (A.13)

The CZi−,i+ factors in eqn. (A.13) and eqn. (A.3) cancel each other. Therefore, the effective ZH4
transformation on the boundary low-energy subspace is given by

ÛZ4 =
∏
i

σxi−σ
x
i+ i

(1−σzi+σ
z
(i+1)−

)/2

=
∏
i

σxi+σ
x
(i+1)−

i
(1−σzi+σ

z
(i+1)−

)/2
, (A.14)

which is an on-site symmetry if we view (i+, (i + 1)−) as a site. This means that if we view the
CZX model as a model with Z4 symmetry, it is actually a trivial H = ZH4 -SPT state (since the
effective ZH4 transformation on the boundary is on-site and anomaly-free).
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To summarize, the original model in the Sec. 3.2 describes a gapped boundary where the bound-
ary plaquette term Hbdry

p has the same order as the bulk plaquette term. Now in this Sec. A.1, we

reduce the boundary plaquette term Hbdry
p to only some newly-introduced projectors on the green

links in Fig.26. For certain small or zero Hbdry
p , the boundary spins may have no constraint in the

whole wavefunction |{σzi±}〉whole = |{σzi±}〉bdry×|bulk〉, which can describe a gapless boundary. We

have also obtained the effective ZH4 symmetry transformation on the boundary.

A.2 The low energy effective theory for the fourth boundary of the CZX model
– A 1+1D exactly soluble emergent ZK

2 -gauge theory

In the last subsection, we have constructed a boundary of the CZX model that has a ZH4 symmetry.
In this section, we are going to modify the above construction to obtain a boundary that has the
same ZG2 symmetry as the bulk. We will obtain a low energy effective theory for the fourth boundary
of the CZX model discussed in subsection 3.4.

A.2.1 The boundary ZK2 -gauge theory with an anomalous ZG2 global symmetry

We start with the boundary model obtained in last Sec. A.1, and add qubits described by τ i± (see
Fig. 27). However, the boundary physical Hilbert space is the subspace that satisfies a local gauge
constraint

Ûgauge
i ≡ −σzi+σ

z
i−τ

z
i+τ

z
i− = 1. (A.15)

The symmetry generator is the same as before when acting on σi± spins. The symmetry
generator acts on the τ i± spins as ∏

i

e
i π
4
τzi− e

− i π
4
τzi+ (A.16)

As we have discussed in Sec. 3.4, such a symmetry generator generates an on-site global ZG2 sym-
metry, in the ZK2 -gauge-invariant physical Hilbert space.

Using the effective boundary ZH4 -symmetry calculated in the last subsection A.1 (see eqn. (A.14)),

plus an additional term e
i π
4
τzi− e

− i π
4
τzi+ acting on the new τi± spins, we find that the boundary ef-

fective symmetry generator is given by

ÛZ2 =
∏
i

σxi+σ
x
(i+1)−

i
(1−σzi+σ

z
(i+1)−

)/2
e

i π
4
τzi− e

− i π
4
τzi+ . (A.17)

ÛZ2 satisfies

Û2
Z2

=
∏
i

σzi+σ
z
(i+1)−

iτ zi−(− i)τ zi+

=
∏
i

(
− σzi+σ

z
(i+1)−

τ zi−τ
z
i+

)∏
i

(−1) = 1. (A.18)

in the constraint ZK2 -gauge-invariant subspace. Here we encounter the even-odd lattice site effect
again, we assume that the total number of the boundary sites is always even,

∏
i(−1) = 1, including
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Figure 27: The filled dots are qubits ↑, ↓ (or spin-1/2’s). The open blue dots are qubits ±1
representing ZK2 -gauge degrees of freedom. A circle (with dots inside) represents a bulk site. The
bulk Hamiltonian contains terms that forces the dots connected by red and green lines to have the
same σzi at low energies. The dash blue line connecting dots i, j represents the phase factor UCZ,ij
in the ZG2 global symmetry transformation. The open dots on the boundary are the qubits τ i± .

the example that the whole system is on a disk with only a single boundary. We have turned the
ZH4 symmetry in the last subsection into a ZG2 symmetry.

Next, let us include a boundary interaction term −Uτ
∑

i τ
z
i+
τ z(i+1)−

. In the following, we will
take the Uτ → +∞ limit. In this case, the interaction locks τ zi+ = τ z(i+1)−

. In the low energy
subspace, we introduce

Ei+ 1
2

= τ zi+ = τ z(i+1)−
, Vi+ 1

2
= τxi+τ

x
(i+1)−

, (A.19)

that satisfies

Ei+ 1
2
Vi+ 1

2
= −Vi+ 1

2
Ei+ 1

2
. (A.20)

Now the ZK2 -gauge constraint becomes

−Ei− 1
2
σzi−σ

z
i+Ei+ 1

2
= 1. (A.21)

The effective ZG2 symmetry generator becomes

ÛZ2 =
∏
i

σxi+σ
x
(i+1)−

i
(1−σzi+σ

z
(i+1)−

)/2
. (A.22)

After obtaining the effective ZG2 symmetry on the boundary, we can write down a global ZG2
symmetric (under eqn. (A.22)) and local ZK2 -gauge symmetric (under eqn. (A.21)) boundary effec-
tive Hamiltonian:

H = −
∑
i

Vi+ 1
2
(| ↑↑〉〈↓↓ |+ | ↓↓〉〈↑↑ |)i+,(i+1)−

− J
∑
i

σzi+σ
z
(i+1)−

− U
∑
i

Ei+ 1
2

(A.23)

= −
∑
i

Vi+ 1
2

(
σ+
i+
σ+

(i+1)−
+ σ−i+σ

−
(i+1)−

)
− J

∑
i

σzi+σ
z
(i+1)−

− U
∑
i

Ei+ 1
2
.
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This is our fourth boundary of the CZX model discussed in Sec. 3.4, but now it becomes a 1+1D
lattice ZK2 -gauge theory with an anomalous (non-on-site) global ZG2 -symmetry.

A.2.2 Confined ZK2 -gauge state – A spontaneous symmetry breaking state

In general, a large U in the above Hamiltonian will give us a ZK2 -gauge confined phase (which will
be discussed later in more detail). In the ZK2 -gauge confined phase induced by a large U , we have
Ei+ 1

2
= 1. In this case, because of eqn. (A.19) and eqn. (A.21), σzi−σ

z
i+

= −1 on every site, which

reduces two spin σi− and σi+ into one spin σi. This reduces the ZG2 symmetry transformation into

ÛZ2 =
∏
i

σ̃xi
∏
i

i (1−(σ̃zi )(−σ̃zi+1))/2 (A.24)

which is a non-on-site (anomalous) ZG2 -symmetry transformation. Here σ̃xi is a redefinition of
σxi−σ

x
i+

for the composite spin. More precisely, due to the gauge constraint σzi−σ
z
i+

= −1, σ̃xi flips
the composite spin as σ̃xi | ↑〉i− | ↓〉i+ = | ↓〉i− | ↑〉i+ and σ̃xi | ↓〉i− | ↑〉i+ = | ↑〉i− | ↓〉i+ . Since the
two spins are locked σzi−σ

z
i+

= −1 in the same site, we can also simply define σ̃zi ≡ σzi+ , so that

σ̃zi+1 ≡ σz(i+1)+
= −σz(i+1)−

. So in the large U limit, the lattice ZK2 -gauge theory, at low energies,
reduces to the boundary of the CZX model constructed in Sec. 3.1. When J > 0, the confined
ZK2 -gauge state is a ferromagnetic state, that spontaneously breaks the global ZG2 -symmetry.

A.2.3 Deconfined ZK2 -gauge state in 1+1D

The model eqn. (A.23) is exactly soluble. This is because in the big Hilbert space before projecting
into the ZK2 -gauge-invariant subspace, the Hamiltonian H in eqn. (A.23) is a sum of non overlapping
local terms: H =

∑
iHi,i+1 with

Hi,i+1 = −Vi+ 1
2

[
σ+
i+
σ+

(i+1)−
+ σ−i+σ

−
(i+1)−

]
− Jσzi+σ

z
(i+1)−

− UEi+ 1
2

(A.25)

So the energy spectrum of H can be obtained exactly from that of Hi,i+1. The ZK2 -gauge transfor-
mation

Ûgauge
i = −(Ei− 1

2
σzi−)(σzi+Ei+ 1

2
) (A.26)

commutes with H. So the energy spectrum of H in the ZK2 -gauge-invariant subspace is a subset of
the spectrum in the big unconstrained Hilbert space.

In the deconfined state at U = J = 0, Vi+ 1
2

= ±1 and does not fluctuate before we apply the

ZK2 -gauge constraint (i.e. Vi+ 1
2

does not fluctuate in the big Hilbert space before projecting into

the ZK2 -gauge invariant subspace, since [Vi+ 1
2
, H] = 0). The ground state wave function on each

link is (| ↑↑〉 + vi+ 1
2
| ↓↓〉)i+,(i+1)− ⊗ |vi+ 1

2
〉, where |vi+ 1

2
= ±1〉 are the eigenstates of Vi+ 1

2
. The

gauge-invariant ground states |Ψgs(±)〉 are two distinct holonomy sectors labeled by
∏
i vi+ 1

2
= ±1,

explicitly as:

|Ψgs(±)〉 =
∑

{v
i+1

2
},
∏
i vi+1

2
=±1

c{v
i+1

2
}
⊗
i

(| ↑↑〉+ vi+ 1
2
| ↓↓〉)i+,(i+1)− ⊗ |vi+ 1

2
〉. (A.27)

97



Here the coefficient c{v
i+1

2
} is determined in the same way as eqns.(3.15) and (3.16) with alternating

±1 signs set by the gauge-invariant constraint on the ground states |Ψgs(±)〉.

Under the ÛZ2 global symmetry operation eqn. (A.22),

| ↑↑〉+ vi+ 1
2
| ↓↓〉 → vi+ 1

2
(| ↑↑〉+ vi+ 1

2
| ↓↓〉). (A.28)

Thus

ÛZ2 |Ψgs(±)〉 =
∏
i

(vi+ 1
2
)|Ψgs(±)〉. (A.29)

From the above results, we see that the global ZG2 charge and the ZK2 -gauge flux
∏
i vi+ 1

2
are

locked. In other words, the deconfined state has two degenerate ground states on the ring and a
finite energy gap. One ground state carries the global ZG2 charge 0 and no ZK2 -gauge flux through
the ring. The other carries the global ZG2 charge 1 and the π ZK2 -gauge flux through the ring. Near
the end of the next section, we will show that the above deconfined states spontaneously break the
global ZG2 -symmetry, which is another way to understand the two degenerate ground states on the
ring.

A.2.4 Deconfined and confined ZK2 -gauge states belong to the same phase that spon-
taneously breaks the ZG2 global symmetry

We note that for the following four spin states | ↑↑〉+ | ↓↓〉, | ↑↑〉−| ↓↓〉, | ↑↓〉, and | ↓↑〉 are common
eigenstates of σ+

i+
σ+

(i+1)−
+ σ−i+σ

−
(i+1)−

and σzi+σ
z
(i+1)−

with eigenvalues (1, 1), (−1, 1), (0,−1), and

(0,−1).

For U, J > 0, the ground states have a 2-fold degeneracy, which is given by

|ψ1〉 = (| ↑↑〉+ | ↓↓〉)i+,(i+1)− ⊗ (cos(θ)|1〉+ sin(θ)| − 1〉)i+ 1
2
,

|ψ2〉 = (| ↑↑〉 − | ↓↓〉)i+,(i+1)− ⊗ (sin(θ)|1〉+ cos(θ)| − 1〉)i+ 1
2
, (A.30)

where |±1〉 are eigenstates of Vi+ 1
2

with eigenvalues ±1. In order to have the two states as ground

states, θ is constrained to be the function of U as θ = 1
2 tan−1 U .

The energy of the two ground states is E = −
√

1 + U2−J . Also θ = 0 for U = 0 (the ZK2 -gauge
deconfined case) and θ → π/4 for U → +∞ (the ZK2 -gauge confined case). The first excited states
also have a 2-fold degeneracy, which is given by

| ↑↓〉i+,(i+1)− ⊗ (|1〉+ | − 1〉)i+ 1
2
,

and | ↓↑〉i+,(i+1)− ⊗ (|1〉+ | − 1〉)i+ 1
2
, (A.31)

with energy E = −|U |+ J , which is higher than the ground state energy by at least 2J (note that
we have assumed J > 0).

We note that

(| ↑↑〉+ | ↓↓〉)⊗ (cos(θ)|1〉+ sin(θ)| − 1〉)
+ (| ↑↑〉 − | ↓↓〉)⊗ (sin(θ)|1〉+ cos(θ)| − 1〉)
≡ |+ +〉 (A.32)
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is a common eigenstate of (σzi+Ei+ 1
2
, Ei+ 1

2
σz(i+1)−

) with eigenvalues (+1,+1), and we denote it as

|+ +〉 or |+ +〉i+,i+ 1
2
,(i+1)−

. Similarly,

(| ↑↑〉+ | ↓↓〉)⊗ (cos(θ)|1〉+ sin(θ)| − 1〉)
− (| ↑↑〉 − | ↓↓〉)⊗ (sin(θ)|1〉+ cos(θ)| − 1〉)
≡ | − −〉 (A.33)

is a common eigenstate of (σzi+Ei+ 1
2
, Ei+ 1

2
σz(i+1)−

) with eigenvalues (−1,−1), and we denote it as

| − −〉 or | − −〉i+,i+ 1
2
,(i+1)−

.

A ZK2 -gauge-invariant ground state (i.e. Ûgauge
i = 1 state) on a ring is given by the tensor

product of those | + +〉 and | − −〉 states on the (i, i + 1) links. First we note that the gauge
transformation in eqn. (A.26) is a product of two operators Ei− 1

2
σzi− and σzi+Ei+ 1

2
with an additional

− sign. The |++〉 and |−−〉 are eigenstates of those operators. Therefore, we have two ZK2 -gauge-
invariant ground states:

|Ψ1(θ)〉 = · · · ⊗ |+ +〉(i−1)+,i− 1
2
,i−
⊗ | − −〉i+,i+ 1

2
,(i+1)−

⊗ |+ +〉(i+1)+,i+
3
2
,(i+2)−

⊗ · · · ,

|Ψ2(θ)〉 = · · · ⊗ | − −〉(i−1)+,i− 1
2
,i−
⊗ |+ +〉i+,i+ 1

2
,(i+1)−

⊗ | − −〉(i+1)+,i+
3
2
,(i+2)−

⊗ · · · , (A.34)

up to a proper normalization factor. Note that to get a ZK2 -gauge-invariant state under eqn. (A.26)
we need to match + to − and − to + in the neighboring links, as done in the above. However,
the two ground states expressed in eqn. (A.34) are not symmetric under the global ZG2 symmetry
transformation in eqn. (A.22):

ÛZ2 =
∏
i

σxi+σ
x
(i+1)−

i
(1−σzi+σ

z
(i+1)−

)/2 ≡
∏
i

UZ2,i+,(i+1)−

In fact, UZ2,i+,(i+1)− exchanges |+ +〉 and | − −〉,

UZ2,i+,(i+1)− |+ +〉(i−1)+,i− 1
2
,i−

= | − −〉(i−1)+,i− 1
2
,i−
, (A.35)

UZ2,i+,(i+1)− | − −〉(i−1)+,i− 1
2
,i−

= |+ +〉(i−1)+,i− 1
2
,i−
. (A.36)

The ground states that respect the global ZG2 symmetry transformation eqn. (A.22) are the linear
combination of eqn. (A.34):

|Ψgs,even(θ)〉 = 1√
2
(|Ψ1(θ)〉+ |Ψ2(θ)〉)

|Ψgs,odd(θ)〉 = 1√
2
(|Ψ1(θ)〉 − |Ψ2(θ)〉), (A.37)

where the |Ψgs,even(θ)〉 is ZG2 -symmetry even by ÛZ2 |Ψgs,even(θ)〉 = +|Ψgs,even(θ)〉, and the

|Ψgs,odd(θ)〉 is ZG2 -symmetry odd by ÛZ2 |Ψgs,odd(θ)〉 = −|Ψgs,odd(θ)〉.

When θ = 0, the even/odd ZG2 symmetric ground states are identical to the even/odd ZK2 -gauge
holonomy sectors of ground states in eqn. (A.27) due to the locking of ZG2 -charge and ZK2 -holonomy:

|Ψgs,even(θ = 0)〉 =
1√
2

(|Ψ1(0)〉+ |Ψ2(0)〉) = |Ψgs(+)〉,

|Ψgs,odd(θ = 0)〉 =
1√
2

(|Ψ1(0)〉 − |Ψ2(0)〉) = |Ψgs(−)〉. (A.38)
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When θ = π
4 , we have the confined states:

|Ψ1(θ =
π

4
)〉 = (· · · ⊗ | ↑↑〉(i−1)+,i− ⊗ | ↓↓〉i+,(i+1)− ⊗ | ↑↑〉(i+1)+,(i+2)− ⊗ · · · )

⊗
i

(|1〉+ | − 1〉)i+ 1
2
,

|Ψ2(θ =
π

4
)〉 = (· · · ⊗ | ↓↓〉(i−1)+,i− ⊗ | ↑↑〉i+,(i+1)− ⊗ | ↓↓〉(i+1)+,(i+2)− ⊗ · · · )

⊗
i

(|1〉+ | − 1〉)i+ 1
2
,

(A.39)

up to a proper normalization factor. Below we aim to show that at θ = 0, namely U = 0 and J > 0,
we have the deconfined state with spontaneous ZG2 -symmetry breaking; at θ = π

4 , namely U → +∞
and J > 0, we have the confined state with spontaneous ZG2 -symmetry breaking. We demonstrate
a strange property for this system: the deconfined state with spontaneous ZG2 -symmetry breaking
and the confined state with spontaneous ZG2 -symmetry breaking belong to the same phase. In the
next few paragraphs, we explain the meanings of the deconfined and confined phases, and also the
meanings of the spontaneous symmetry breaking.

First, we elaborate further on the physical meanings of the deconfined and confined phases.
The deconfined phase (U = 0) here means that the distinct holonomies or loop excitations (namely
Wilson lines) can span the large system without causing extra energy. Consider the expectation
value 〈0|W |0〉 of Wilson line operator W ≡

∏
i Vi+ 1

2
for some ground state |0〉, the 〈0|W |0〉 goes to

some constant (proportional to the net holonomy
∏
i vi+ 1

2
= ±1) in the Euclidean spacetime, and,

thus, obeys the perimeter law instead of the area law [80]. The two ground states with distinct
holonomies in our case imply that we are in the deconfined phase, even if the energy spectrum is
gapped between the ground states and the first excitations. On the other hand, the confined phase
(U → ∞, J > 0) has the gauge field variable |vi+ 1

2
〉 quantum disorder and strong fluctuations in

the state (|1〉 + | − 1〉)i+ 1
2
. The long-distance lines/holonomies are energy-disfavored. Consider

the expectation value 〈0|W |0〉 of Wilson line operator W for any ground state |0〉, the 〈0|W |0〉
exponentially decays to zero in the Euclidean spacetime, thus obeys the area law, thus the phase is
confined. The ZK2 -gauge confined phase for U → +∞ and J > 0 is a ferromagnetic along the link
i+(i+ 1)− but anti-ferromagnetic between the neighbored links between spin up and down. There
is no phase transition as U goes from 0 to +∞ for J > 0, since the energy gap above the ground
state is always bigger than 2J . Thus the ZK2 -gauge deconfined state for U = 0 and the ZK2 -gauge
confined state for U = +∞ belong to the same phase.

Second, we elaborate further on the physical meanings of the spontaneous symmetry breaking
(SSB) and possible long-range orders. Based on Ref. [81], we know that the SSB in a quantum sys-
tem does not necessarily mean that its ground states break the symmetry. Traditionally, we identify
the symmetry-breaking order parameter and we compute the long-range order correlation functions
to detect the symmetry-breaking. The better definition for SSB is based on the Greenberger-Horne-
Zeilinger (GHZ) entanglement [82]. Use GHZ form, we can probe the symmetry without knowing
the symmetry or the Ginzburg-Landau symmetry-breaking order parameters. Use GHZ form, we
can detect the symmetry-breaking hidden in the symmetric ground-state wavefunction.

Indeed, |Ψ1(θ)〉 and |Ψ2(θ)〉 are GHZ states,

|Ψgs,even(θ)〉 =
1√
2

(|Ψ1(θ)〉+ |Ψ2(θ)〉) ≡ |GHZ+(θ)〉

|Ψgs,odd(θ)〉 =
1√
2

(|Ψ1(θ)〉 − |Ψ2(θ)〉) ≡ |GHZ−(θ)〉. (A.40)

Because the ZG2 -global symmetry operator ÛZ2 acting on two states gives rise to the symmetric
charge ±1, the following conditions for SSB of symmetry group G are satisfied:
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1. ÛZ2 |GHZ±(θ)〉 = ±|GHZ±(θ)〉.

2. The symmetric GHZ states have the same GHZ entanglement |GHZ〉 =
∑

j cj |Ψj〉, with
j ∈ G/G′, G′ ⊂ G, where |Ψj〉 are locally distinguishable. In our case, we have G = Z2 and
G′ is trivial.

To summarize, the symmetric many-body state has spontaneous symmetry breaking, which
implies that the state has a GHZ entanglement. Indeed, we can also show that the SSB here also
implies the long-range order, consistent with what we observed in eqn. (3.21) in Sec. 3.3. Defining
the gauge-invariant operator Xi+1/2 = σzi+Ei+1/2 which is odd breaking the ZG2 -symmetry, we find
Xi+1/2|Ψ1(θ)〉 = −|Ψ1(θ)〉 and Xi+1/2|Ψ2(θ)〉 = +|Ψ2(θ)〉. Moreover,

〈GHZ±(θ)|Xi+1/2Xj+1/2|GHZ±(θ)〉 = 1. (A.41)

Thus the G-symmetry odd operator detects the long-range correlator of GHZ states, and we demon-
strate the SSB through the long-range order. In summary, we show that the deconfined state and
the confined state belong to the same phase without the phase transition by tuning the Hamiltonian
coupling U with the ground state parameter θ = 1

2 tan−1 U . All values of U have the spontaneous
ZG2 -symmetry breaking. This is possible since the ZK2 -gauge deconfined phase with no spin order
has two-fold degenerate ground states with opposite global ZG2 charge, the same as the ferromag-
netic state with spin order which also has two-fold degenerate ground states with opposite global
ZG2 charges.

We remind the readers that the fermionic version of the CZX model is studied in Appendix B.
The boundary of the fermionic CZX model with emergent ZK2 -gauge theory with anomalous global
symmetry is detailed in Appendix.C.

One can read Sec. 4 on more general boundaries of SPTs in any dimension.

B Fermionic CZX model

Consider a square lattice model with each single site endowed with four fermion orbitals, each with
eigenstates |0〉 and |1〉 of the fermion number operator nf = c†c. Thus a single site has a 24-
dimensional Hilbert space. We may call the single site a “vertex,” and the four individual fermion
orbitals in a site “sub-vertices.” In the fermionic model, we have the anti-commutation relation

{ci, c†j} = δij ,

where i, j can be any local fermion degree of freedom, on the same site or on different sites. Fermion
parity operator Pf on each site (with 1,2,3,4 four sub-vertices):

Pf =
∏

i=1,2,3,4

(−1)nf,i =
∏

j=1,2,3,4

σzj . (B.1)

Notice that

(1− 2c†ici) = σzj , c†ici =
1− σzj

2
(B.2)
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Let us introduce a Z2 generator UX as a product of c†j + cj on the four sub-vertices:

UX = (c†1 + c1)(−1)n1(c†2 + c2)(−1)n1(−1)n2(c†3 + c3)(−1)n1(−1)n2(−1)n3(c†4 + c4)

= σx1σ
x
2σ

x
3σ

x
4 , U2

X = 1, (B.3)

where we have used the Jordan-Wigner transformation to express fermion operators in terms of
spin operators, for example

c†j + cj = (
∏
i<j

σzi )σ
x
j , (B.4)

where i < j refers to a particular ordering of the orbitals (see Fig 28). We have chosen an unusual

definition of UX (instead of the more obvious (c†1 + c1)(c†2 + c2)(c†3 + c3)(c†4 + c4)), because we want
UX to have a simple form after bosonization.

For any pair of qubits, we set CZ = |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11| = 1− 2cc†c′c′†. For
each site, we define UCZ as the product of such operators over all successive pairs:

UCZ =
∏

j=1,2,3,4

(1− 2c†j+1cj+1c
†
jcj)

=
∏

j=1,2,3,4

(1−
(1− σzj+1)(1− σzj )

2
)

=
∏

j=1,2,3,4

(
(1 + σzj+1 + σzj − σzj+1σ

z
j )

2
), (B.5)

where j = 5 mod 4 = 1 mod 4. Now we introduce a Z2 transformation in each site:

UCZX = UXUCZ , U2
CZX = 1. (B.6)

The group super-cohomology predicts that there are four distinct fermionic SPTs with G = Z2×Zf2
symmetry from H3

super[Z2×Zf2 , U(1)] = Z4. The model we will first focus is the one with the second

class ν = 2 for ν ∈ Z4. The full classification for four distinct fermionic SPTs with Z2×Zf2 symmetry

is Z8 from the spin cobordism group ΩSpin
3 (BZ2) = Z8; then, our model here is ν = 4 for ν ∈ Z8.

The fermionic CZX Hamiltonian is essentially the same as the bosonic CZX Hamiltonian:

Hf =
∑

Hp. (B.7)

Hp = −X4P
u
2 P

d
2 P

l
2P

r
2 (B.8)

Here plaquettes are defined in the bosonic CZX model. X4 acts on the four sub-vertices in a
plaquette,

X4 = c3c4c2c1 + c†3c
†
4c
†
2c
†
1

= σ−4 σ
−
3 σ
−
2 σ
−
1 + σ+

4 σ
+
3 σ

+
2 σ

+
1 (B.9)

= (|0000〉〈1111|+ |1111〉〈0000|)plaquette,

and the projection operator P2 acts on a pair of qubits adjacent to a plaquette as

P2 = cic
†
ici+1c

†
i+1 + c†icic

†
i+1ci+1

= (|00〉〈00|+ |11〉〈11|)line (B.10)
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We see that, after bosonization, both the Hamiltonian and the Z2 symmetry for the fermionic
CZX model map to those of the bosonic CZX model. So the ground state of the fermionic CZX
model is the same as that of the bosonic CZX model described in Sec. 2.

It is also obvious that [
∏
Pf , Hf ] = 0 since Hf conserves fermion number mod 2 (in fact,

Hf conserves fermion number mod 4). So the fermionic CZX model Hf has Z2 × Zf2 symmetry
generated by

∏
UCZX and

∏
Pf . The ground state is invariant under the symmetry.

C A boundary of the fermionic CZX model – Emergent ZK
2 -gauge

theory with an anomalous global symmetry, and Majorana fermions

σ

σ

σ

σ

σ

σ

ψ

ψ

ψ

ψ

(i+1)+

(i+1)−

(i+1)+

(i+1)−

i+

i−

i+

i−

(i−1)+

(i−1)−

(i−1)+
ψ

(i−1)−
ψ

1

1

12 2

1 2 2

4 3 4 3

4 3 4 3

Figure 28: The filled dots are qubits (or spin-1/2’s) described by σ. The open dots are fermion
orbitals described by c or ψ. A circle (with dots inside) represents a site. The bulk Hamiltonian
contains terms that force the dots connected by red and green lines to have the same (−1)ni or
σzi at low energies. The dashed blue line connecting dots i, j represents the phase factor CZij in
the ZG2 global symmetry transformation. The arrow describes a particular ordering of all fermion
orbitals.

To obtain a boundary of the fermionic CZX model, we start with the boundary model described
in Fig. 28. On the boundary, we have qubits described by σi± and fermions described by ψi± =
ηi± + iλi± , where η and λ are Majorana fermion operators, see Fig. 29.

i− i+
λ λ

η
i+

η
i−

Figure 29: Emergent ZK2 -gauge theory from Majorana fermions on the lattice.

However, we assume that the boundary Hilbert space is not the one generated by σi± and ψi± ,
but a subspace satisfying a local ZK2 -gauge constraint:

Ûgauge
i = −σzi+σ

z
i−(−1)ni−+ni+ = 1, (C.1)

where

ni± = ψ†i±ψi± . (C.2)
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Thus, the boundary is a ZK2 lattice gauge theory.

The bulk Hamiltonian of the model is still given by Hf
p for the complete octagons in the bulk,

with additional terms that force the boundary qubits σzi± to have the same value as the (−1)ni for
the bulk fermions connected by the green lines. However, notice that the shaded squares are not
complete octagons since the two spins to the right of the shaded squares do not need to be parallel.
So the Hamiltonians for the shaded squares need to be modified:

Hf,shaded
p = −X4P

u
2 P

d
2 P

l
2P

r
2 + X̃4P

u
2 P

d
2 P

l
2(1− P r2 ) (C.3)

where X̃4 is given in eqn. (A.2). The ZG2 -symmetry of the system is generated by

ÛZ2 =
∏
i

σxi−σ
x
i+CZi−,i+ e i π

4
(1−2ni− ) e− i π

4
(1−2ni+ )

∏
bulk

UCZX . (C.4)

After the bosonization via Jordan-Wigner transformation on Majorana fermion operators,

λj = (
∏
i<j

τ zi )τxj , ηj = (
∏
i<j

τ zi )τyj , (C.5)

the above Hamiltonian and the ZG2 -symmetry map to those of the bosonic model discussed in
subsection A.2. So we can use the results there. First one can show that(

σxi−σ
x
i+CZi−,i+ e i π

4
(1−2ni− ) e− i π

4
(1−2ni+ )

)2
= 1 (C.6)

in the ZK2 -gauge-invariant physical Hilbert space. So ÛZ2 generates an on-site global ZG2 -symmetry.
Second one can show that the Hamiltonian is indeed ZG2 symmetric. Third, one can find the low-
energy effective ZG2 -symmetry on the boundary to be generated by

ÛZ2 =
∏
i

σxi+σ
x
(i+1)−

i
(1−σzi+σ

z
(i+1)−

)/2
e i π

4
(1−2ni+ ) e

− i π
4

(1−2n(i+1)+
)
. (C.7)

Next, let us include a boundary interaction term −Uτ
∑

i(1 − 2ni+)(1 − 2n(i+1)−) and take
Uτ → +∞ limit. In this case, the interaction locks ni+ = n(i+1)− . In the low energy subspace, we
introduce

Ei+ 1
2

= 1− 2ni+ = 1− 2n(i+1)− ,

Vi+ 1
2

= λi+(−1)ni+λ(i+1)− . (C.8)

After the bosonization on the boundary, the above becomes

Ei+ 1
2

= τ zi+ = τ z(i+1)−
, Vi+ 1

2
= τxi+τ

x
(i+1)−

, (C.9)

which satisfies

Ei+ 1
2
Vi+ 1

2
= −Vi+ 1

2
Ei+ 1

2
. (C.10)

Now the ZK2 -gauge constraint becomes

−Ei− 1
2
σzi+σ

z
i−Ei+ 1

2
= 1. (C.11)

104



The effective ZG2 symmetry generator becomes

ÛZ2 =
∏
i

σxi+σ
x
(i+1)−

i
(1−σzi+σ

z
(i+1)−

)/2
. (C.12)

We can write down a ZG2 symmetric and local ZK2 -gauge symmetric boundary effective Hamiltonian:

H = −
∑
i

Vi+ 1
2
(| ↑↑〉〈↓↓ |+ | ↓↓〉〈↑↑ |)i+,(i+1)−

− J
∑
i

σzi+σ
z
(i+1)−

− U
∑
i

Ei+ 1
2

(C.13)

= −
∑
i

Vi+ 1
2

(
σ+
i+
σ+

(i+1)−
+ σ−i+σ

−
(i+1)−

)
− J

∑
i

σzi+σ
z
(i+1)−

− U
∑
i

Ei+ 1
2
.

which is identical to the effective boundary Hamiltonian (A.23) in Appendix A.2.

Note that all the low-energy excitations at an energy scale much less than Uτ are purely bosonic.
So the fermionic CZX model has a boundary that can be identified as a boundary of bosonic CZX
model, stacking with a fermionic product state. This implies that the ground state of the fermionic
CZX model can also be viewed as a bosonic ZG2 -SPT state, stacking with a fermionic product
states.

D Symmetry-extended gapped boundaries/interfaces: Comments,
criteria and examples

In this section, we aim to show many systematic examples of G-topological states, such that we can
construct H-gapped boundary/interface through the symmetry extension mechanism, based on a
group homomorphism r (a surjective epimorphism) by a short exact sequence

1→ K → H
r→ G→ 1. (D.1)

In Sec. 4.4.1, we considered the mathematical set-up that G-cocycle is trivialized in H based on
homogeneous cocycles νGd , in order to consider SPT states. In this Appendix D, instead, we set-up
the mathematics based on inhomogeneous cocycles ωGd , for the convenience of notations (which
becomes more transparent later) and for more general topological phases (SET states and intrinsic
topological orders).

The plan of this Appendix D is the following. In Appendixes D.1 and D.2, we will give an
overview of the set-up of problems on the boundaries/interfaces. In Appendix D.3, we show that
the Lyndon-Hochschild-Serre (LHS) spectral sequence criteria, are helpful to analytically derive
some split H-cochains that can trivialize certain G-cochains (that can be G-cocycles) of one higher
dimension. The advantage of this LHS approach, compared to Sec. 5, is that we can obtain some
analytic split H-cochains.25 However, the drawback of this LHS approach is that, in a few cases,
the G-cochains may not always be the G-cocycles that we hoped for (standing for nontrivial G-
topological phases) but G-coboundaries (standing for a trivial vacuum). Nevertheless we can still

25 Note that Sec. 5’s approach can only suggest the possible K for a given G and a given G-cocycle, but Sec. 5
cannot provide any analytic H-cochain easily.
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produce many valid successful examples through Appendix D.3’s LHS approach shown later in
Appendix D. For all the examples given from D.4 to D.23, all that we aim to provide are the data
of the inhomogeneous G-cocycle ωGd (g) and its trivialization by finding the split H-cochain βHd−1(h).

D.1 Symmetry Extension Setup: Trivialize a G-cocycle to an H-coboundary
(split to lower-dimensional H-cochains) by lifting G to a larger group H

We switch to using the inhomogeneous version of d-cocycles ωd and d-cochains βd for the convenience
of notations. The inhomogeneous version is more general and suitable even for gauge theories with
nontrivial holonomies around non-contractible cycles. Moreover, we can convert between νGd and
ωGd based on the well-known relation given in eqn. (9.6). We can develop their path integrals, lattice
Hamiltonians and wave functions suitable for many-body quantum systems as in Sec. 9.

The setup of symmetry-extension eqn. (D.1) for inhomogeneous cocycles goes as follows. By
pulling back a G-cocycle ωGd back to H, it becomes an H-coboundary δβHd−1. Formally, we mean
that a nontrivial G-cocycle

ωGd (g) ∈ Hd(G,U(1)) (D.2)

becomes a trivial element 1 (a coboundary) when it is pulled back (denoted as ∗) to H

r∗ωGd (g) = ωGd (r(h)) = ωHd (h) = δβHd−1(h) ∈ Hd(H,U(1)). (D.3)

This trivial element means a trivial group element 0 in the cohomology group Hd(H,U(1)), or a
coboundary 1 for the U(1) coefficient. The above variable g (or h) in the bracket is a shorthand of
many copies of group elements in a direct product group of G (or H). More precisely, we rewrite
the above in terms of splitting a inhomogeneous G-cocycle:

ωGd (g01, · · · , gd−1d) = ωGd (r(h01), · · · , r(hd−1d)) = ωHd (h01, · · · , hd−1d)

= (βHd−1)s(h01)(h12, · · · , hi−1i, hii+1, hi+1i+2, · · · , · · · , hd−1d)×
d−2∏
i=0

β
H(−1)i+1

d−1 (h01, · · · , hi−1i, hii+1hi+1i+2, hi+2i+3, · · · , · · · , hd−1d)×

β
H(−1)d

d−1 (h01, · · · , hi−1i, hii+1, hi+1i+2, · · · , · · · , hd−2d−1)

≡ δβHd−1. (D.4)

Because of the property of the G-module for the cohomology group of U(1) cocycles, we impose
that (βHd−1)s(h) = βHd−1 for h contains only a unitary group element, and (βHd−1)s(h) = (βHd−1)−1 for
h is an anti-unitary group element in H such as an anti-unitary time-reversal symmetry group.

We call this approach “symmetry extension” (or colloquially “symmetry enhancement”), be-
cause H is a larger group mapping surjectively to G. For quantum many-body systems, the
dimension of Hilbert space is enhanced from a |G| per degree of freedom in the bulk to a larger |H|
per degree of freedom on the boundary.

Here we provide some useful information of the cohomology group Hd(G,U(1)) of G that may
be used later:

106



G H1(G,U(1)) H2(G,U(1)) H3(G,U(1)) H4(G,U(1))

D4 (Z2)2 Z2 (Z2)2 × Z4 (Z2)2

Q8 (Z2)2 0 Z8 0

Z2 Z2 0 Z2 0

ZT2 0 Z2 0 Z2

(Z2)2 (Z2)2 Z2 (Z2)3 (Z2)2

Table 11: Some examples of cohomology group Hd(G,U(1)) for G = D4, Q8, Z2, Z
T
2 and (Z2)2 that

can be used to construct G-topological phases.

subgroup N quotient group Q G/N = Q

{1} D4/{1} = D4 D4/{1} = D4

{1, R2} (center) D4/{1, R2} = (Z2)2 D4/Z2 = (Z2)2

{1, x} No No
{1, xR2} No No
{1, xR} No No
{1, xR3} No No

{1, x, R2, xR2} D4/{1, x, R2, xR2} = Z2 D4/(Z2)2 = Z2

{1, xR,R2, xR3} D4/{1, xR,R2, xR3} = Z2 D4/(Z2)2 = Z2

{1, R,R2, R3} D4/{1, R,R2, R3} = Z2 D4/Z4 = Z2

D4 D4/D4 = 1 D4/D4 = 1

Table 12: Subgroup N and quotient groups Q of G = D4.

subgroup N quotient group Q G/N = Q

{1} Q8/{1} = Q8 Q8/{1} = Q8

{1,−1} (center) Q8/{1,−1} = (Z2)2 Q8/Z2 = (Z2)2

{1, i,−1,−i} Q8/{1, i,−1,−i} = Z2 Q8/Z4 = Z2

{1, j,−1,−j} Q8/{1, j,−1,−j} = Z2 Q8/Z4 = Z2

{1, k,−1,−k} Q8/{1, k,−1,−k} = Z2 Q8/Z4 = Z2

Q8 Q8/Q8 = 1 Q8/Q8 = 1

Table 13: Subgroup N and quotient groups Q of G = Q8.

We write the order-8 dihedral group as

D4 = 〈x, R | R4 = x2 = 1, xRx = R−1〉

generated by x and R. We write the order-8 quaternion as

Q8 = 〈x, y|x2 = y2, xyx−1 = y−1, x4 = y4 = 1〉

so that each element in Q8 we can write uniquely as xqyn, where q ∈ {0, 1} and n ∈ {0, 1, 2, 3}. For
(q, n) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)}, we can identify them as the well-known
Q8 notation as xqyn ∈ {1, i,−1,−i, j,−k,−j, k}.

For notation convention, we use the additive notation 0 to denote the trivial group if all groups
are finite Abelian groups such as in 0→ ZK2 → ZH4 → ZG2 → 0. We use the multiplicative notation
1 to denote the trivial group if some group is non-Abelian such as in 1→ ZK4 → QH8 → ZG2 → 1.
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For selective some examples below (from D.4 to D.23), we will test the Lyndon-Hochschild-
Serre (LHS) spectral sequence d2 map technique in Sec. D.3 and comment its validity to derive
H-cochains for trivializing certain G-cocycles.

D.2 Symmetry-extended gapped interfaces

Consider the interface (i.e. domain wall) between two sides of phases labeled by groups G I and G II

respectively. The two sides of phases could be either both SPTs, both SETs or both topological
orders. Below we present various systematic constructions for gapped interfaces. The gapped
boundary of G can be regarded as a gapped interface between a G-topological state and a trivial
vacuum.

D.2.1 Symmetry-extension and the folding trick: Trivialize a G I ×G II -cocycle to an
H-coboundary by splitting to lower-dimensional H-cochains

Importantly the previous formulation of gapped boundary is also applicable to formulate the gapped
interface, by using the folding trick. The strategy is that, by replacing the G in Sec. D.1 to G I×G II ,
then we can determine the gapped boundary between G I ×G II and the vacuum, via trivializing a
G I × G II -cocycle to H-coboundary by splitting to lower-dimensional H-cochains. The surjective
group homomorphism r is given by

1→ K → H
r→ G I ×G II → 1.

We can rewrite the above in terms of splitting an inhomogeneous G = G I ×G II -cocycle:

ωG I×G II
d (g) = ωG I×G II

d (r(h)) = δβHd−1(h). (D.5)

Here (g) is a shorthand of (g01, · · · , gd−1d) with each element in G I × G II . Generally ωG I×G II

is a cocycle in the cohomology group Hd(G I ×G II , U(1)). Künneth theorem shows us that there
exists a particular form of cocycle ωG I

I (g I ) · ωG II
II (g II )−1, obtained from ωG I

I ∈ Hd(G I , U(1)) and

ωG II
II ∈ Hd(G II , U(1)). Now, we see that the G I -symmetry action only acts on ωG I

I (g I ), while the

G II -symmetry action only acts on ωG II
II (g II ). By folding ωG I

I (g I ) and ωG II
II (g II ) to two different

sides of the H-gapped boundary, we obtain an H-gapped interface.

D.2.2 Append a lower-dimensional topological state onto the boundary/interface

For all the previous setups, we actually pick a trivialization of the pullback of the G-cocycle to H.
The possible trivialization choices differed by a class in Hd−1(H,U(1)) physically imply that we
can further append lower dimensional gapped topological states (that are well-defined in its own
dimension) onto the boundary or the interface. (See also Sec. 8.2 for a discussion.) In general, it
could be a SET of (d− 1)-dimensions labeled by an H-cocycle with H-site and K-link variables:

VH,Kd−1 ({hi}; {kij}) = νHd−1(hi0 , ki0i1hi1 , · · · , ki0i1 · · · kid−2id−1
hid−1

) ∈ Hd−1(H,U(1)) (D.6)

and described by 1→ K → H → G→ 1, with a total projective symmetry group H, a gauge group
K, and a global symmetry group G. The H cocycle obeys the cocycle condition: δVH,Kd−1 = δνHd−1 =

108



1. In different limit choices of G and K, the topological phases of VH,Kd−1 include SPTs, topological
orders and SETs.

The proper choices of G and K on the boundary are also constrained by the choices of G and
K in the bulk. We will leave this issue as a case-by-case study.

In this Appendix D, we use inhomogeneous cocycles as in Appendix D.1, we replace VH,Kd−1 by

ΩH
d−1. We see that

δ(βHd−1(h) ΩH
d−1(h)) = δ(βHd−1(h)) = ωHd (h) = ωGd (r(h)) = ωGd (g),

where δ(ΩH
d−1(h)) = 1. It can also be appended on the interface, as in Appendix D.2.1’s eqn. (D.5),

δ(βHd−1(h)ΩH
d−1(h)) = δβHd−1(h) = ωG I×G II

d (r(h)) = ωG I×G II
d (g).

Here the appended lower-dimensional topological states (differed by ΩH
d−1, with δ(ΩH

d−1(h)) = 1)
are all gapped.

D.3 Criteria on trivializing the G-cocycle in a larger group H:
Lyndon-Hochschild-Serre spectral sequence

We would like to provide a systematic way to determine the possible trivialization of the d-cocycle
in G by lifting to a larger group H, based on the setup of the Lyndon-Hochschild-Serre (LHS)
spectral sequence. The question we would like to address here is that

“Given 1 → K → H
r→ G → 1, how can we analytically obtain the split H-cochain βHd−1 that

satisfies that ωGd (r(h)) = ωHd (h) = δβHd−1(h) for some G-cocycle ωGd ?”

An answer goes as follow. For 1→ K → H
r→ G→ 1, with G acting trivially on H∗(K,U(1)),26

there is a spectral sequence {Ep,qn , dn} with:
(a) Ep,q2 = Hp(G,Hq(K,U(1))).

(b) The differential is defined as a map dn: Ep,qn → Ep+n,q−n+1
n . We have Ep,qn+1 = Ker(dn)

Im(dn) at Ep,qn .

We focus on the d2 differential of the E2 page in the LHS spectral sequence

d2 : Ep,q2 → Ep+2,q−1
2 (D.7)

⇒ d2 : Hp(G,Hq(K,U(1)))→ Hp+2(G,Hq−1(K,U(1))), (D.8)

in particular

d2 : Hd−2(G,H1(K,U(1)))→ Hd(G,H0(K,U(1))) = Hd(G,U(1)). (D.9)

If we want to trivialize the d-cocycle ωGd ∈ Hd(G,U(1)), we can look for a larger group H, where
H/K = G for some K. The d2 turns out to provide the following nice property. The image of
the differential d2 : Hd−2(G,H1(K,U(1)))→ Hd(G,U(1)) provides elements of ωGd ∈ Hd(G,U(1)),
such that all such elements are guaranteed to vanish to be trivial as a coboundary in Hd(H,U(1)).

26 If K is contained in the center of H, it implies G acts trivially on H∗(K,U(1)).
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In other words, every element ωGd in the image of the d2 map is guaranteed to be trivial in
Hd(H,U(1)).27 We have

ωGd = δβHd−1, (D.10)

or, more precisely,

ωGd (r(h)) = ωHd (h) = δβHd−1(h), (D.11)

where βHd−1 is determined by the d2 differential and the map

f : Gd−2 → H1(K,U(1)). (D.12)

The f is a function that relates to a cocycle

αd−2 ∈ Hd−2(G,H1(K,U(1))). (D.13)

If we know the data of H are given by the pair G and K, we can propose the βHd−1.28 Notice that

d2(αd−2) is in Hd(G,U(1)). The claim is that there exists the map d2 : Hd−2(G,H1(K,U(1))) →
Hd(G,U(1)) where every G-cocycle ωd in the image of d2 map is an H-coboundary that can be
split to lower-dimensional H-cochains in Hd(H,U(1)).

By writing the group element h ∈ H in terms of a pair (k, g) ∈ (K,G) as h = (k, g), we can
write down the further precise relation

ωHd (h) = ωHd (h1, h2, . . . , hd) = ωHd ((k1, g1), (k2, g2), . . . , (kd, gd)) = ωGd (g1, g2, . . . , gd) = ωGd (g)

= δ(βHd−1((k1, g1), (k2, g2), . . . , (kd−1, gd−1))) = (δβHd−1)((k1, g1), (k2, g2), . . . , (kd, gd))

= (δβHd−1)(h1, h2, . . . , hd) = δβHd−1(h). (D.14)

Such a construction of βHd−1 so that δβHd−1(h) ∼ d2(αd−2) is a coboundary in Hd(H,U(1)), from

the LHS spectral sequence. This means that some G-cocycle ωGd (r(h)) = ωHd (h) = δβHd−1(h) can

be split to lower dimensional H-cochains. However, we emphasize that some obtained ωGd (r(h))
may be already a G-coboundary and may not be the specific non-trivial G-cocycle that we originally
aimed to trivialize. We will show in Appendix D (from D.4 to D.23) how this LHS spectral sequence
approach can help in constructing some examples, but not necessarily other examples.

D.4 2+1/1+1D Bosonic 0→ ZK
2 → ZH

4 → ZG
2 → 0

Consider the example where G = Z2, H = Z4 and K = Z2, and denote them under 0 → ZK2 →
ZH4 → ZG2 → 0. The twisted 3-cocycle is

ω
ZG2
3 (ga, gb, gc) = exp[

i2π

22
p [ga]2([gb]2 + [gc]2 − [[gb]2 + [gc]2])] = (−1)gagbgc (D.15)

with g ∈ ZG2 and p ∈ H3(ZG2 , U(1)) = Z2. To have a nontrivial 3-cocycle, we set p = 1. This

cocycle is equivalent to e i 2π
∫

1
2
a1∪a1∪a1 = (−1)

∫
a1∪a1∪a1 with a cup product form of a1∪a1∪a1, in

27 Namely, the image of the d2 map is guaranteed to be contained in the kernel of the inflation map fromHd(G,U(1))
to Hd(H,U(1)). J.W. gratefully acknowledges Tom Church and Ehud Meir for illuminating the spectral sequence
method [83, 84]. Given d2 : Hd−2(G,H1(K,U(1)))→ Hd(G,U(1)), if ωGd is killed by d2 (namely, ωGd is in the image
of d2), in other words d2(αd−2) = ωGd , then ωGd becomes a coboundary in Hd(H,U(1)).

28For example, we can write βHd−1 as a function F as βHd−1(h) = F(αd−2(g), k). For many examples shown in this
Appendix D, we find that a candidate form of βHd−1(h) is βHd−1(h) ∼ αd−2(g)k.
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H3(Z2, U(1)). The a1 here is a Z2-valued 1-cocycle in H1(M3,Z2) on the spacetime complex M3.
For a discrete finite G, the principal G-bundle and the flat G connection are effectively the same.
Here we consider G = Z2, so in this context, we can view the nontrivial SPTs detectable by the
principal Z2-bundle and the flat Z2-connection

We find that the analytic 2-cochain

β2(h1, h2) = exp[(i2πp/4)[h1]2[h2]4]. (D.16)

splits G 3-cocycle. Alternatively, we can choose β2(h1, h2) = exp[(i2πp/4)[h1]4[h2]2] with m,n ∈
ZH4 .

Furthermore, we find LHS technique in Appendix D.3 works successfully. For LHS technique
of Appendix D.3, we look for:

d2 : H1(G,H1(K,U(1))) → H3(G,H0(K,U(1))) = H3(G,U(1)).

⇒ d2 : H1(Z2, Z2) = Z2 → H3(Z2, U(1)) = Z2. (D.17)

f : G→ H1(K,U(1))

⇒ f : ZG2 → H1(ZK2 , U(1)) = Z2. (D.18)

Because this f maps to H1(ZK2 , U(1)) = Z2, the β2 can be a base of (−1). We find that another
2-cochain that splits 3-cocycle is

β̃2(h1, h2) = f(g2)k1 = (−1)g2k1 . (D.19)

For h = 0, (g, k) = (0, 0); h = 1, (g, k) = (1, 0); h = 2, (g, k) = (0, 1); h = 3, (g, k) = (1, 1). The
group elements in H satisfy

h1 · h2 = (g1, k1) · (g2, k2) = ([g1 + g2]2, [k1 + k2 + g1g2]2).

We would like to check that (δβ̃2)(h1, h2, h3) = (−1)g1g2g3 .

(δβ̃2)(h1, h2, h3) =
β̃2(h2, h3)β̃2(h1, h2h3)

β̃2(h1h2, h3)β̃2(h1, h2)
=

(−1)g3k2(−1)[g2+g3]2k1

(−1)g3[k1+k2+g1g2]2(−1)g2k1
(D.20)

=
(−1)g3k2(−1)(g2+g3)k1

(−1)g3(k1+k2+g1g2)(−1)g2k1
= (−1)g1g2g3 , (D.21)

which is true. (Actually, both β̃2(h1, h2) = (−1)g2k1 and β̃2(h1, h2) = (−1)g1k2 work to trivialize G

3-cocycle.) We can rewrite β̃2(h1, h2) = (−1)g2k1 = (−1)g2
h1−[h1]

2 = ig2(h1−[h1]2) = i[h2]2([h1]4−[h1]2).
If we write h ∈ H in terms of h = (g, k), then β2(h1, h2) = exp[(2π i/4)([h1]2)([h2]4)] = i[h1]2[h2]4 =
i[g1]2[g2+2k2]4 .

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk 2 + 1D field theory of an action

∫
2

2πBdA+ 1
2πAdA, with B and A locally as

1-form gauge fields.

D.4.1 Degeneracy on a disk and an annulus: Partition functions Z(D2 × S1) and
Z(I1 × S1 × S1)

Here we can put the 2+1/1+1D 0→ ZK2 → ZH4 → ZG2 → 0 construction of topological states on a
spatial D2 disk or an annulus I1×S1 to count the degeneracy (GSD). Whether we gauge the global
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symmetry K and H or not, we have at least three types of theories:
(i) Fully global symmetric SPTs (a bulk G-SPTs and a boundary anomalous H-SPTs),
(ii) Bulk SPTs/boundary SETs (a bulk G-SPTs and a boundary anomalous H-SETs with a gauge
group K),
(iii) Fully topological orders with dynamical gauge fields (a bulk G-topologically ordered gauge
theory and a boundary anomalous H-gauge theory). Since K is a normal subgroup in H, we can
label the K-holonomy in H. Thus below we write all holonomies h in H.

Theory (i) is basically the second boundary discussed in Sec. 3 and 4. Theory (ii) is basically
the third (hard-gauge) and fourth (soft-gauge) boundaries discussed in Sec. 3 and 4. Theory (iii)
is basically the fifth boundary mentioned in Table 5 and 6. These three types of theories are also
shown in the first three rows in Table 7.

We compute the partition function of Sec. 9.1.5 on Z(D2 × S1) to evaluate GSD on a spatial
D2 disk in Table 14.

Disk D2 Theory (i)
(the second bdry)

Theory (ii)
(the third/fourth bdry)

Theory (iii)
(the fifth bdry)

GSD 1 2 1

Table 14: For the theory (ii), GSD=2 from the holonomy h = 0 and h = 2 ∈ H. For the fully
gauge theory (iii), GSD=1 from the holonomy h = 0 ∈ H .

Note that the h = 0 carries zero or an even ZG2 charge. The h = 2 carries an odd ZG2 charge.
For the theory (iii), when the ZG2 is gauged, the ground state for the whole system cannot carry
an odd ZG2 charge, thus h = 0 ∈ H implies GSD=1 on a disk. An important remark is that we
cannot regard the 1+1D anomalous ZH4 gauge theory as a usual 1+1D discrete gauge theory —
because the usual 1+1D Z4 gauge theory has GSD= |H| = 4 on a S1 ring. In our case, the 2+1D
bulk plays an important rule, which causes the GSD reduces to GSD=1 for the theory (iii).

We compute the partition function of Sec. 9.1.5 on Z(I1 × S1 × S1) to evaluate GSD on an
annulus I1 × S1 in Table 15:

Annulus S1 × I1 Theory (i)
(the second bdry)

Theory (ii)
(the third/fourth bdry)

Theory (iii)
(the fifth bdry)

GSD 1 4 2

Table 15: For the theory (ii), GSD=4 from the holonomies: (hin, hout) with hin, hout ∈ {0, 2} . For
the fully gauge theory (iii), GSD=2 from the holonomies of two sectors: (hin, hout) = (0, 0), (2, 2).

Again the 2+1D bulk plays an important rule for the GSD reduction for the theory (iii) from
GSD= |H|2 = 16 to GSD=2 in Table 15.
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D.5 d+ 1/dD Bosonic 0→ ZK
2 → ZH

4 → ZG
2 → 0 for an even d

We can readily generalize Sec. D.4 to consider a gapped boundary for the d+ 1/dD bosonic SPTs
with a G = Z2 symmetry for any even dimension d under: 0→ ZK2 → ZH4 → ZG2 → 0. The twisted
(d+ 1)-cocycle is

ω
ZG2
d+1(g1, g2, . . . , gd+1) = (−1)g1g2...gd+1 (D.22)

with g ∈ ZG2 andHd+1(ZG2 , U(1)) = Z2 for an even d. This cocycle is equivalent to e i 2π
∫

1
2
a1∪a1∪···∪a1

with a cup product form of a1∪a1∪· · ·∪a1, in Hd+1(Z2, U(1)). The a1 here is a Z2-valued 1-cocycle
in H1(Md+1,Z2) on the spacetime complex Md+1.

As in Appendix D.4, we write h = (g, k) ∈ ZH4 as a doublet where g ∈ ZG2 and k ∈ ZK2 . We
find that the d-cochain that splits the (d+ 1)-cocycle in H can be

β̃d(h1, h2, . . . , hd) = (−1)g2···gdk1 . (D.23)

The group elements in H satisfy

h1 · h2 = (g1, k1) · (g2, k2) = ([g1 + g2]2, [k1 + k2 + g1g2]2).

We would like to check that (δβ̃d)(h1, h2, . . . , hd, hd+1) = (−1)g1g2...gd+1 for an even d. Namely

(δβ̃d)(h1, h2, . . . , hd, hd+1) =
β̃d(h2, . . . , hd+1) . . . β̃d(h1, h2, . . . , hdhd+1)

β̃d(h1h2, . . . , hd+1) . . . β̃d(h1, h2, . . . , hd)

=
(−1)g3···gd+1k2(−1)(g2+g3)g4···gd+1k1 · · · (−1)g2···(gd+gd+1)k1

(−1)g3···gd+1(k1+k2+g1g2) · · · (−1)g2···gdk1
= (−1)g1g2...gd+1 (D.24)

is true. Moreover, since Hd(Zn, U(1)) = 0 for any even dimension d, there is no any further lower-
dimensional topological phase of the H = Z4-cocycle that we can append on the gapped boundary
of an even spacetime dimension d.

We find that the d+1D bosonic SPTs with Z2 symmetry (the bosonic topological superconductor
of G = Z2) have a dD symmetry-preserving surface deconfined Z2 topologically ordered gauge
theory, at least for d ≥ 4. When d = 2, the boundary deconfined Z2 gauge theory is a spontaneous
symmetry breaking state crossing over to a confined state, thus we require fine tuning to have a
deconfined gauge theory, shown in Sec. A.2.4.

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk d + 1D field theory of an action

∫
2

2πBdA+ 1
(2π)d/2

A(dA)d/2 with locally A a

1-form gauge field and B a d-form gauge field.

D.6 3+1/2+1D Bosonic 0 → Z2 → ZT
4 → ZT

2 → 0 with ZT
2 time-reversal symme-

try

We discussed this example in the main text of Sec. 5.3 through a different method. From Ref. [15]
and Table.11, for an anti-unitary symmetry ZT2 , we recall that the cohomology groups for an odd

dimension d offer: H4(ZT2 , UT (1)) = Z2. The 4-cocycle ω
ZT2
4 ∈ H4(ZT2 , UT (1)) is of the similar form

of the cocycle studied in the previous section. The only new ingredient for the calculation involving
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ZT2 symmetry is the nontrivial anti-unitary action of ZT2 on the ZT2 -module UT (1). This cocycle

is equivalent to e i 2π
∫

1
2
w4

1 in H4(ZT2 , UT (1)). The w1 here is a Z2-valued, the first Stiefel-Whitney
class in H1(M4,Z2) on the spacetime complex M4. The w1 6= 0 holds on a non-orientable manifold.

We would like to check that ω
ZT2
4 (g1, g2, g3, g4) = (−1)g1g2g3g4 = (δβ̃3)(h1, h2, h3, h4) for some

β̃3. Similar to Appendix D.4, we write h = (g, k) ∈ H = ZT4 as a doublet where g ∈ G = ZT2
and k ∈ K = Z2. We propose β̃3(h1, h2, h3) = (−1)g2g3k1 , which splits the G-cocycle as an H-
coboundary under 0→ Z2 → ZT4 → ZT2 → 0. Indeed we find

(δβ̃3)(h1, h2, h3, h4) =
β̃3(h2, h3, h4)β̃3(h1, h2h3, h4)β̃3(h1, h2, h3)

β̃3(h1h2, h3, h4)β̃3(h1, h2, h3h4)

=
(−1)g3g4k2(−1)(g2+g3)g4k1(−1)g2g3k1

(−1)g3g4(k1+k2+g1g2)(−1)g2(g3+g4)k1
= (−1)g1g2g3g4 , (D.25)

which is true.

We find that the 3+1D bosonic SPTs with ZT2 symmetry (the bosonic topological supercon-
ductor of G = ZT2 ) have a 2+1D symmetry-preserving surface deconfined Z2 topologically ordered
gauge theory.

D.7 d+ 1/dD Bosonic topological superconductor 0→ Z2 → ZT
4 → ZT

2 → 0 for an
odd d with ZT

2 time-reversal symmetry: The dD ZK
2 -gauge theory boundary

of d+ 1D bulk invariant (−1)
∫

(w1)d+1

From Ref. [15] and Table.11, we recall that the cohomology groups for an even dimension d offer:

Hd+1(Z2, U(1)) = Z2, Hd+1(ZT2 , UT (1)) = 0.

The cohomology groups for an odd dimension d offer:

Hd+1(ZT2 , UT (1)) = Z2, Hd+1(Z2, U(1)) = 0.

We can readily generalize Appendix D.6 to consider a gapped boundary for d+1/dD bosonic SPTs
with a G = ZT2 symmetry for any odd dimension d under: 0→ Z2 → ZT4 → ZT2 → 0. The twisted
(d+ 1)-cocycle is

ω
ZG2
d+1(g1, g2, . . . , gd+1) = (−1)g1g2...gd+1 (D.26)

with g ∈ ZT2 and Hd+1(ZT2 , UT (1)) = Z2 for an even d. This cocycle is equivalent to e i 2π
∫

1
2
wd+1

1 in
Hd+1(ZT2 , UT (1)). The w1 here is a Z2-valued, the first Stiefel-Whitney (SW) class in H1(Md+1,Z2)
on the spacetime complex Md+1. Here we mean the SW class of the O(d+1) bundle, where O(d+1)
is the structure group of the tangent bundle. The w1 6= 0 holds on a non-orientable manifold.

As in Appendix D.4, we write h = (g, k) ∈ H = ZT4 as a doublet where g ∈ G = ZT2 and
k ∈ K = Z2. We find that the d-cochain that splits the (d+ 1)-cocycle in H can be

β̃d(h1, h2, . . . , hd) = (−1)g2···gdk1 . (D.27)
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The group elements in H again satisfy h1 · h2 = (g1, k1) · (g2, k2) = ([g1 + g2]2, [k1 + k2 + g1g2]2).
We can check that (δβ̃d)(h1, h2, . . . , hd, hd+1) = (−1)g1g2...gd+1 for an even d. Namely

(δβ̃d)(h1, h2, . . . , hd, hd+1) =
β̃d(h2, . . . , hd+1) . . . β̃d(h1, h2, . . . , hd−1hd, hd+1)β̃d(h1, h2, . . . , hd)

β̃d(h1h2, . . . , hd+1) . . . β̃d(h1, h2, . . . , hdhd+1)

=
(−1)g3···gd+1k2 · · · (−1)g2···(gd−1+gd)gd+1k1(−1)g2···gdk1

(−1)g3···gd+1(k1+k2+g1g2) · · · (−1)g2···gd−1(gd+gd+1)k1
= (−1)g1g2...gd+1 , (D.28)

is true. Moreover, since Hd(ZTn , U(1)) = 0 for any odd dimension d, there is no any further lower
dimensional topological phase of the H = ZT4 -cocycle that we can append on the gapped boundary
of an odd spacetime dimension d.

We find that the d+1D bosonic SPTs with ZT2 symmetry (the bosonic topological superconduc-
tor of G = ZT2 ) have a dD symmetry-preserving surface deconfined Z2 topologically ordered gauge
theory, at least for d ≥ 3.

D.8 3+1/2+1D Bosonic topological superconductor 1 → Z2 → Pin±(∞) →
O(∞) → 1 with ZT

2 time-reversal symmetry: The 2 + 1D ZK
2 -gauge theory

boundary of 3 + 1D bulk invariant (−1)
∫

(w2)2 and (−1)
∫

(w1)4+(w2)2

There is an additional 3+1D time-reversal symmetric Bosonic topological superconductor (BTSC)
beyond the previous H4(ZT2 , UT (1)) = Z2 class. It can be captured either within the group coho-
mology of G× SO∞ [17] under H4(ZT2 × SO(∞), UT (1)) = (Z2)2,29 or the cobordism classification

Ω4
O(pt, U(1)) = (Z2)2 [18]. It gives rise to 3+1D bulk topological invariants e i 2π

∫
1
2
w2

2 = (−1)
∫

(w2)2

or (−1)
∫

(w1)4+(w2)2 . wi ≡ wi(TM) is the i-th Stiefel-Whitney class of a tangent bundle TM over
spacetime M . We would like to find out the surface K-gauge topological order through a short
exact sequence.

First, notice that the spin group Spin(n) is the double cover of the special orthogonal group
SO(n). There exists a short exact sequence

1→ Z2 → Spin(n)→ SO(n)→ 1. (D.29)

In our case, for the 3+1D bulk SPT invariant (−1)
∫

(w2)2 obtained through G = ZT2 × SO(∞)
in H4(ZT2 × SO(∞), UT (1)),30 one may attempt to use the short exact sequence 1 → ZK2 →
ZT2 × Spin(∞) → ZT2 × SO(∞) → 1 to construct the surface ZK2 -gauge theory. However, we
suggest that the more proper way to consider a trivialization of the bulk BTSC, is not based on
G = ZT2 × SO(∞), but based on G = O(∞) via

1→ ZK2 → Pin±(∞)→ O(∞)→ 1. (D.30)

We can also rephrase Sec. D.7 into this framework via the group extension

1→ ZK2 → SO(∞)× ZT4 → SO(∞)× ZT2 → 1. (D.31)

In summary,

29 The H4(ZT2 × SO(∞), UT (1)) = (Z2)2 classification [17] suggests a bulk topological invariant e i 2π
∫ 1

2
p1 =

(−1)
∫
p1 , where the Pontryagin class p1 is related by the Stiefel-Whitney class w2 through the relation w2

2 = p1 mod 2
on any closed oriented 4-manifold. Moreover, the class with w2 is related to π1(SO(∞)) = Z2 and π1(O(∞)) = Z2.

30 For the d + 1D bulk, precisely we should consider the groups SO(d + 1), Spin(d + 1) and Pin±(d + 1) in this
context. Here we replace d+ 1 to ∞ in order to follow the convention in [17].
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1. By eqn. (D.30), we can trivialize 3+1D (−1)
∫

(w2)2 on the 2+1D boundary by pulling G =
O(∞) back to H = Pin+(∞). Because the Pin+-structure constrains w2(TM) = 0, so
it trivializes the (−1)

∫
(w2)2 . Moreover, the Pin+-structure implies the quasi-particles are

Kramers doublets (T 2 = (−1)F ) and fermions (f). This means the 2+1D boundary ZK2 -gauge
theory has an emergent dynamical Pin+-structure, with electric and magnetic quasi-particles
as efTm

f
T .

2. By eqn. (D.30), we can trivialize (−1)
∫

(w1)4+(w2)2 on the 2+1D boundary by pulling G =
O(∞) back to H = Pin−(∞). Because the Pin−-structure constrains w2(TM) +w1(TM)2 =
0, so it trivializes the (−1)

∫
(w2+w2

1)2 = (−1)
∫

(w1)4+(w2)2 . Moreover, the Pin−-structure implies
the quasi-particles are Kramers singlets (T 2 = +1) and fermions (f). This means the 2+1D
boundary ZK2 -gauge theory has an emergent dynamical Pin−-structure, with electric and
magnetic quasi-particles as efmf .

3. By eqn. (D.31), we can trivialize (−1)
∫

(w1)4 on the 2+1D boundary by pulling G = SO(∞)×
ZT2 back to H = SO(∞)×ZT4 . Because the SO(∞)×ZT4 -structure constrains w1(TM)2 = 0, so
it trivializes the (−1)

∫
(w1)4 . Moreover, the SO(∞)×ZT4 -structure implies the quasi-particles

are Kramers doublets (T 2 = (−1)F ) and bosons (b). This means the 2+1D boundary ZK2 -
gauge theory has an emergent dynamical SO(∞)× ZT4 -structure, with electric and magnetic
quasi-particles as ebTm

b
T .

Other detailed physics aspects along this approach are discussed in [85]. By picking a spin/Pin+/Pin−

structure on the boundary, it means the boundary can have fermionic quasiparticles. The choice
of spin structure can be viewed as a twisted version of ZK2 gauge theory.

We note that the efmf and efTm
f
T surface topological order first proposed in [30] on the surface

of this 3+1D ZT2 -bosonic TSC is also a 2+1D deconfined Z2-gauge theory with quasiparticles of Z2-
gauge charge and Z2-gauge flux, both with fermionic statistics. However, we remark that the past
literatures were not careful enough and tended to mishandle the correspondences between 3+1D
bulk SPTs (−1)

∫
(w2)2/(−1)

∫
(w1)4+(w2)2 and their boundary ZK2 -gauge theory efTm

f
T /efmf [19]. Our

approach here and Ref. [85] makes this relation transparent and precise.

D.9 2+1/1+1D Bosonic 0→ ZK
2N→ZH

4N→ZG
2 → 0

For 0→ ZK2N
2→ ZH4N

r→ ZG2 → 0, again we want to trivialize a cocycle ω
ZG2
3 (ga, gb, gc) = (−1)gagbgc

to a cochain. Generically, we can still reduce (mod 4N) to (mod 4) in the exponent so that
β2(h1, h2) = exp[(2π i/4)([h1]2)([h2]4)], or β2(h1, h2) = exp[(2π i/4)([h1]4)([h2]2)] can be the suc-
cessful split cochains.

D.10 2+1/1+1D Bosonic 1→ ZK
4 → QH

8 → ZG
2 → 1

Trivialize the 3-cocycle in H3(ZG2 , U(1)). The example that the H = Q8 is a non-Abelian group,
while G = Z2, we write

1→ ZK4 −→ QH8
r−→ ZG2 → 1. (D.32)

Again, ω
ZG2
3 (ga, gb, gc) = (−1)gagbgc .
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Write the quaternion Q8 = 〈x, y|x2 = y2, xyx−1 = y−1, x4 = y4 = 1〉 so that each element in the
group we can write uniquely as xgyk with g ∈ {0, 1} corresponding to {{1, i,−1,−i}, j{1, i,−1,−i}}
in ZG2 , and k ∈ {0, 1, 2, 3} corresponding to {1, i,−1,−i} in ZK4 . Use yx = xy−1 and y−1x = xy,
we can rewrite the group operation as

xg1yk1xg2yk2 = xg1xg2y(−1)g2k1yk2 = x[g1+g2]2y[(−1)g2k1+k2+2g1g2]4 .

We can write h = (g, k) of H as a doublet from G and K, then

h1h2 = (g1, k1) · (g2, k2) = (g1 + g2, (−1)g2k1 + k2 + 2g1g2) ≡ (g1 + g2, F (k1, k2, g1, g2)). (D.33)

We find that LHS technique in Appendix D.3 works successfully. For LHS technique of Ap-
pendix D.3, we look for:

d2 : H1(G,H1(K,U(1))) = Z2 → H3(G,H0(K,U(1))) = H3(G,U(1)) = Z2. (D.34)

f : G→ H1(K,U(1))⇒ ZG2 → Z4. (D.35)

In this case, it is found that

β2(h1, h2) = β2((g1, k1), (g2, k2)) = f(g2)k1 = ig2k1 . (D.36)

Here f(g−1
2 ) corresponds to a U(1) function labeled by g2, and provides a U(1) function via f : G→

H1(K,U(1)). This U(1) function depends on k1 ∈ K for H1(K,U(1)), thus we have β(h1, h2) =
f(g−1

2 )(k1). We look for the base of i because H1(K,U(1)) = Z4 is generated by i with i4 = 1.

We would like to find a 2-cochain that satisfies the desired 3-cocycle splitting property:

ω
QH8
3 (ha, hb, hc) = ω

ZG2
3 (r(ha), r(hb), r(hc)) = (−1)r(ha)r(hb)r(hc) = (−1)gagbgc = (δβ2)(h1, h2, h3).(D.37)

We write

(δβ2)(h1, h2, h3) =
β2(h2, h3)β2(h1, h2h3)

β2(h1h2, h3)β2(h1, h2)
=

f(g3)(k2)f(g2g3)(k1)

f(g3)(F (k1,k2,g1,g2))f(g2)(k1)
. (D.38)

Recall that f(g2g3)(k1) is the cocycle of H1(K,U(1)) with a power k1. We should be able to rewrite
f(g2g3) based on the 1-cocycle condition:

f(g2)f(g3)

f(g2g3)
= 1⇒ f(g2g3) = f(g2)f(g3), (D.39)

so

(δβ2)(h1, h2, h3) =
f(g3)(k2)f(g2)(k1)f(g3)(k1)

f(g3)(F (k1,k2,g1,g2))f(g2)(k1)
=

f(g3)(k2)f(g3)(k1)

f(g3)(F (k1,k2,g1,g2))

=
f(g3)k2f(g3)k1

f(g3)[(−1)g2k1+k2+2g1g2]4
. (D.40)

Further computation shows, indeed,

(δβ2)(ha, hb, hc) =
β2(hb, hc)β2(ha, hbhc)

β2(hahb, hc)β2(ha, hb)
=

i (kbgc) ika[gb+gc]2

i [ka(−1)gb+kb+2gagb]4gc i (kagb)
= (−1)gagbgc . (D.41)

Because H2(Q8, U(1)) = 0, we do not have another lower-dimensional 1+1D Q8-topological state
to stack on the boundary.

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk 2 + 1D field theory of

∫
2

2πBdA+ 1
2πAdA.
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D.10.1 Degeneracy on a disk and an annulus: Partition functions Z(D2 × S1) and
Z(I1 × S1 × S1)

Follow the set up Appendix D.4.1, we put the 2+1/1+1D 1→ ZK4 → QH8 → ZG2 → 1 construction
of topological states on a spatial D2 disk or an annulus I1 × S1 to count the degeneracy (GSD).
Depend on gauging the global symmetry K and H or not, we have at least three types of theories.
Since K is a normal subgroup in H, we can label the K-holonomy in H. Thus, below, we write all
holonomies h in H. We consider the group homomorphisms:

ZK4 =


1
i
−1
−i

 1−→


1
i
−1
−i

 ⊂ QH8 (D.42)

QH8 =

(
1, i,−1,−i
j, k,−j,−k

)
−→

(
1
−1

)
= ZG2 . (D.43)

We compute the partition function of Sec. 9.1.5 on Z(D2 × S1) to evaluate GSD on a spatial
D2 disk in Table 16.

Disk D2 Theory (i)
(the second bdry)

Theory (ii)
(the third/fourth bdry)

Theory (iii)
(the fifth bdry)

GSD 1 4 2

Table 16: For the theory (ii), GSD=4 from the holonomy h = 1, i,−1,−i in K and also in H.
For the fully gauge theory (iii), GSD=2 from the holonomy h = 1 and h = i/ − i. Here h = i
and h = −i each contributes 1/2 state, and the i/-i together act like a 2-dimensional irreducible
representation as a non-Abelian ground state. The setup and notations follow Appendix D.4.1

The usual 1+1D topological gauge theory has its GSD on an S1 ring and can be computed as
Z(S1 × S1) by

GSD =
1

|H|
∑
h,t

1|if ht = th =
1

|H|
∑
h

(# of elements in the centralizer CH(h) of h)

= (#conjugacy classes of H)

= (# of irrep of H) ≤ |H|, (D.44)

reduced to a smaller number than |H|. The # stands for the number. For H = Q8, we have
(#conjugacy classes of H) = (# of irre rep of H) = 5 < |H| = 8. The 5 conjugacy classes 1, -1,
{i,−i}, {j,−j} and {k,−k} yield 5 distinct holonomies for GSD=5 on S1.

We find that the h = 1 carries zero or an even ZG2 charge. The h = i and h = −i combined are
also zero or an even ZG2 charge. Other sectors of h carry an odd ZG2 charge. For the theory (iii),
when the ZG2 is gauged, the ground state for the whole system cannot carry an odd ZG2 charge,
thus h = 0 or h = i/ − i ∈ H implies GSD=2 on a disk. An important remark is that we cannot
regard the 1+1D anomalous QH8 gauge theory as a usual 1+1D discrete gauge theory — because
the usual 1+1D Q8 gauge theory has GSD= 5 on a S1 ring. In our case, the 2+1D bulk plays an
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important rule, which causes the GSD reduces from 5 conjugacy classes to 2 conjugacy classes (1
and {i,−i}) of GSD=2 for the theory (iii).

We compute the partition function of Sec. 9.1.5 on Z(I1 × S1 × S1) to evaluate GSD on an
annulus I1 × S1 in Table 17:

Annulus S1 × I1 Theory (i)
(the second bdry)

Theory (ii)
(the third/fourth bdry)

Theory (iii)
(the fifth bdry)

GSD 1 16 8

Table 17: For the theory (ii) without symmetry twist, GSD=16 from the holonomies of sectors
(hin, hout) with hin, hout ∈ {1, i,−1,−i}. For the theory (iii) fully gauge theory, GSD=8 from the
holonomies (hin, hout) = (1, 1), (−1,−1), (1, i/− i), (−1, i/− i), (i/− i, 1), (i/− i,−1) and two more
states from (i/− i, i/− i). The set-up and notations follow Appendix D.4.1

Again the 2+1D bulk plays an important role for the GSD reduction for the theory (iii) from
GSD= |(# of irre rep of H)|2 = 25 to GSD=8 in Table 17.

D.11 2+1/1+1D Bosonic 1→ Z2 → D4 → (Z2)
2 → 1

We consider the construction 1 → K = Z2 → H = D4 → Q = (Z2)2 → 1. Here D4 is a dihedral
group of order 8, namely |D4| = 8. Write the dihedral group D4 = 〈x, R|x2 = R4 = 1, xRx = R−1〉
so that each element in the group we can write uniquely as xaRb with a ∈ {0, 1} and b ∈ {0, 1, 2, 3}.
The quotient group is

D4

Z2
=

D4

{1, R2}
= {1{1, R2}, x{1, R2}, R{1, R2}, xR{1, R2}} = (Z2)2.

Here we would like to trivialize the particular twisted 3-cocycle of G = (Z2)2:

ω2(ga, gb, gc) = exp(
i2π

2
[ga1 ]2[gb2 ]2[gc2 ]2) = (−1)[ga1 ]2[gb2 ]2[gc2 ]2 , (D.45)

where ga = (ga1 , ga2) ∈ G = (Z2)2, and similarly for gb, gc. This cocycle is equivalent to e i 2π
∫

1
2
a1∪a1∪a2

with a cup product form of a1 ∪ a1 ∪ a2, in H3((Z2)2, U(1)). The a1 and a2 here are Z2-valued
1-cocycles in H1(M3,Z2) on the spacetime complex M3.

We can write h = (g, k) ∈ H where g ∈ G and k ∈ K. Let us write h = xaRb ∈ D4 in terms of
a triplet, hu = (ku, gu1 , gu2) ∈ D4, such that

(ku, gu1 , gu2) · (kv, gv1 , gv2) = (ku + kv + gu1gv2 , gu1 + gv1 , gu2 + gv2).

Note that the R2 = (1, 0, 0) ∈ D4. The D4 → (Z2)2 maps hu = (ku, gu1 , gu2) ∈ D4 to (gu1 , gu2) ∈
(Z2)2. We can view the ku generates R2 in D4, while gu1 and gu2 generates x and R respectively.
We would like to split

ωH3 (hu, hv, hw) = ωG3 (r(hu), r(hv), r(hw)) = (−1)[gu1 ]2[gv2 ]2[gw2 ]2 = (δβ2)(hu, hv, hw), (D.46)
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into a 2-cochain β2. The LHS technique in Appendix D.3 suggests that we look for

d2 : H1(G,H1(K,U(1)))→ H3(G,H0(K,U(1)))

⇒ d2 : H1((Z2)2, Z2) = (Z2)2 → H3(G,U(1)) = (Z2)3. (D.47)

f : G→ H1(K,U(1))⇒ (Z2)2 → H1(ZK2 , U(1)) = Z2. (D.48)

In this case, it is found that

β2(hu, hv) = β2((ku, gu1 , gu2), (kv, gv1 , gv2)) = f(gv)
ku = (−1)kugv2 . (D.49)

We can see that

δ(β2) =
β2(hv, hw)β2(hu, hvhw)

β2(huhv, hw)β2(hu, hv)
=

(−1)kvgw2 (−1)ku(gv2+gw2 )

(−1)(ku+kv+gu1gv2 )gw2 (−1)kugv2
= (−1)gu1gv2gw2 = ωH3 (hu, hv, hw).

(D.50)
Similarly, it turns out that we can find another 2-cochain β2(hu, hv) = (−1)kugv1 that splits a

different 3-cocycle δ(β2) = (−1)kvgw1 (−1)ku(gv1+gw1 )

(−1)(ku+kv+gu1gv2 )gw1 (−1)kugv1
= (−1)gu1gv2gw1 .

Since H2(D4, U(1)) = Z2, we can have two distinct classes of 2-cochain differed by a 2-cocycle
ω2 ∈ H2(D4, U(1)) corresponding to a 1+1D D4-topological state on the boundary.

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk 2 + 1D field theory of

∫ ∑2
I=1

2
2πBIdAI+

1
2πA1dA2.

D.12 1+1/0+1D Bosonic 1→ Z2 → Q8 → (Z2)
2 → 1

Here we like to trivialize a particular twisted 2-cocycle of G = (Z2)2:

ω2(ga, gb) = exp(
i2π

2
[ga1 ]2[gb2 ]2) = (−1)[ga1 ]2[gb2 ]2 , (D.51)

where ga = (ga1 , ga2) ∈ G = (Z2)2, and similarly for gb. This cocycle is equivalent to e i 2π
∫

1
2
a1∪a2

with a cup product form of a1∪a2, in H2((Z2)2, U(1)). The a1 and a2 here are Z2-valued 1-cocycles
in H1(M2,Z2) on the spacetime complex M2.

We consider the construction 1 → K = Z2 → H = Q8 → G = (Z2)2 → 1. The quotient group
can be realized as Q8/{1,−1} = (Z2)2. We write each element in the group H = Q8 uniquely
as h = xhyh′ with h ∈ {0, 1} corresponding to {1{1, i,−1,−i}, j{1, i,−1,−i}} and h′ ∈ {0, 1, 2, 3}
corresponding to {1, i,−1,−i}. By writing h = xhyh′ , the h = 1 and the h′ = 1 correspond to two
generators of the quotient group G = (Z2)2. Apply the relation yx = xy−1 and x2 = y2, we find

xh1yh′1xh2yh′2 = x[h1+h2]2y[h′1(−1)h2+h′2+2h1h2]4 . We can rewrite

ω
QH8
2 (ha, hb) = ω

ZG2
2 (r(ha), r(hb)) = (−1)[h′a]2hb . (D.52)

We claim that the above 3-cocycle can be split by 2-cochains:

β1(h) = β1(xhyh′) = e
iπ
2

(h+h′) = i (h+h′). (D.53)
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Indeed we find it works:

(δβ1)(ha, hb) =
β1(ha)β1(hb)

β1(hahb)
=

i (ha+h′a) i (hb+h′b)

i ([ha+hb]2+[h′a(−1)hb+h′b+2hahb]4)

=
i ([ha]2+[h′a]4) i ([hb]2+[h′b]4)

i ([ha+hb]2+[h′a(−1)hb+h′b+2hahb]4)
=

i ([h′a]4) i ([h′b]4)

i ([h′a(−1)hb+h′b]4)
= ih′a(1−(−1)hb ) = (−1)h′ahb = (−1)[h′a]2hb

= ω
QH8
2 (ha, hb). (D.54)

There are various legal 1-cochains that trivialize the G 2-cocycle as 2-coboundary in H, such as
β1(h) = β1(xhyh′) = i (h+h′), i (h−h′), i (−h+h′), i (−h−h′). These 1-cochains can be differed by a 1-
cocycle ωH1 in H = Q8, such that ωH1 (h) ∈ H1(Q8, U(1)) = (Z2)2 thus they differ by a 0+1D
topological state on the boundary. Indeed, the 1-cocycle ωH1 can be:

ω1(xhyh′) = (−1)h, (−1)h′ , (−1)h+h′

One can check the following is true:

(δω1)(ha, hb) =
ω1(ha)ω1(hb)

ω1(hahb)
= 1. (D.55)

All these 1-cochains β1(xhyh′) = i (h+h′), i (h−h′), i (−h+h′), i (−h−h′) are differed by each other via
stacking 0+1D-topological states labeled by 1-cocycle ω1 = (−1)h, (−1)h′ , (−1)h+h′ ∈ H1(Q8, U(1)) =
Z2 × Z2.

The LHS technique in Appendix D.3 suggests that we look for

d2 : H0(G,H1(K,U(1)))→ H2(G,H0(K,U(1)))

⇒ d2 : H0((Z2)2, Z2) = Z2 → H2((Z2)2, U(1)) = Z2. (D.56)

f : G→ H1(K,U(1))⇒ (Z2)2 → H1(ZK2 , U(1)) = Z2. (D.57)

In this case, it suggested that β1(h) = β1((g, k)) can be written as a base of (−1), but we found
the solution for a base of i instead. So LHS technique is not helpful here.

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk 1 + 1D field theory of

∫ ∑2
I=1

2
2πBIdAI+

1
πA1A2.

D.13 1+1/0+1D Bosonic 1→ Z2 → D4 → (Z2)
2 → 1

Here we like to trivialize a particular twisted 2-cocycle of G = (Z2)2 based on 1 → ZK2 → D4
r→

(Z2)2 → 1,

ω2(ga, gb) = exp(
i2π

2
[ga1 ]2[gb2 ]2) = (−1)[ga1 ]2[gb2 ]2 , (D.58)

where ga = (ga1 , ga2) ∈ G = (Z2)2, and similarly for gb. This cocycle is equivalent to e i 2π
∫

1
2
a1∪a2

with a cup product form of a1∪a2, in H2((Z2)2, U(1)). The a1 and a2 here are Z2-valued 1-cochains
in H1(M2,Z2) on the spacetime complex M2.
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See Sec. D.11, the explicit group elements inside a quotient group can be written as:

D4

Z2
=

D4

{1, R2}
= {1{1, R2}, x{1, R2}, R{1, R2}, xR{1, R2}} = (Z2)2.

We find the split 1-cochain as β1(h) = (−1)f(h). This 1-cochain satisfies the desired 2-cocycle
splitting property. Here we can define the function f:

f(1) = f(x) = f(R) = f(xR) = 0 ∈ ZK2 , (D.59)

f(R2) = f(x ·R2) = f(R ·R2) = f(xR ·R2) = 1 ∈ ZK2 .

Let us write h = xaRb ∈ D4 in terms of a doublet h = (k, g), or a more precise triplet, hu =
(ku, gu1 , gu2) ∈ D4, such that (ku, gu1 , gu2)·(kv, gv1 , gv2) = (ku+kv+gu1gv2 , gu1 +gv1 , gu2 +gv2). Note
that the R2 = (1, 0, 0) ∈ D4. The D4 → (Z2)2 maps hu = (ku, gu1 , gu2) ∈ D4 to (gu1 , gu2) ∈ (Z2)2,
so that

f(h) = f(xaRb) =
b− [b]2

2
= ku =

{
1, if b = 2, 3.
0, if b = 0, 1.

(D.60)

β1(hu) = (−1)f(hu) = (−1)ku . (D.61)

We can see that, indeed,

δ(β1) =
β1(hu)β1(hv)

β1(huhv)
=

(−1)ku(−1)kv

(−1)ku+kv+gu1gv2
= (−1)gu1gv2 = ωG2 (r(hu), r(hv)) = ωH2 (hu, hv).(D.62)

The LHS technique in Appendix D.3 suggests that we look for

d2 : H0(G,H1(K,U(1)))→ H2(G,H0(K,U(1)))

⇒ d2 : H0((Z2)2, Z2) = Z2 → H2(G,U(1)) = Z2. (D.63)

f : G→ H1(K,U(1))⇒ (Z2)2 → H1(ZK2 , U(1)) = Z2, (D.64)

with a base of (−1). In this case, it is true that β1(hu) = β1((ku, gu1 , gu2)) = (−1)ku .

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk 1 + 1D field theory of

∫ ∑2
I=1

2
2πBIdAI+

1
πA1A2.

D.14 2+1/1+1D Bosonic 1→ Z2 → D4 × Z2 → (Z2)
3 → 1

Here we would like to trivialize the 3-cocycle of a cup product form e i 2π
∫

1
2
a1∪a2∪a3 inH3((Z2)3, U(1))

with ai ∈ H1(M3, Z2) of an M3-spacetime complex, via 1 → ZK2 → D4 × Z2
r→ (Z2)3 → 1. The

particular twisted 3-cocycle of G = (Z2)3 that we focus on is

ω3(ga, gb, gc) = (−1)[ga1 ]2[gb2 ]2[gc3 ]2 , (D.65)

where ga = (ga1 , ga2 , ga3) ∈ G = (Z2)3, and similarly for gb and gc. Here D4 is a dihedral
group of order 8, namely |D4| = 8. We write the dihedral group D4 = 〈x, R|x2 = R4 =
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1, xRx = R−1〉 so that each element in the group we can write uniquely as xaRb with a ∈ {0, 1}
and b ∈ {0, 1, 2, 3}. Indeed the group homomorphism D4 × Z2 → (Z2)3 can be understood
from a reduced map: D4 → (Z2)2. We only need to understand the short exact sequence
1 → ZK2 → D4

r→ (Z2)2 → 1 in Appendix D.13. Namely, we can take the Z2 in D4 × Z2

mapping directly to the third Z2 component in (Z2)3, while we only have to specify D4
r→ (Z2)2

such that {1{1, R2}, x{1, R2}, R{1, R2}, xR{1, R2}} r→ (Z2)2. Meanwhile, the normal subgroup ZK2
can be viewed as {1, R2} in D4.

We denote the group elements of hu ∈ D4 × Z2 as (ku, gu1 , gu2 , gu3), where (ku, gu1 , gu2) ∈ D4,
and gu3 ∈ Z2, such that (ku, gu1 , gu2)·(kv, gv1 , gv2) = (ku+kv+gu1gv2 , gu1 +gv1 , gu2 +gv2). Follow the
construction in a previous Appendix D.13, note that the R2 = (1, 0, 0) ∈ D4. The D4×Z2 → (Z2)3

maps hu = (ku, gu1 , gu2 , gu3) ∈ D4×Z2 to (gu1 , gu2 , gu3) ∈ (Z2)3. We propose this 2-cochain satisfies
the desired 3-cocycle splitting property:

β2(hu, hv) = (−1)f(hu)gv3 = (−1)kugv3 . (D.66)

We can indeed show

(δβ2)(hu, hv, hw) =
β2(hv, hw)β2(hu, hvhw)

β2(huhv, hw)β2(hu, hv)
=

(−1)kvgw3 (−1)ku(gv3+gw3 )

(−1)(ku+kv+gu1gv2 )gw3 (−1)kugv3
= (−1)gu1gv2gw3

= ωG3 (r(hu), r(hv), r(hw)) = ωH3 (hu, hv, hw). (D.67)

The LHS technique in Appendix D.3 also gives the correct hint.

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk 2 + 1D field theory of

∫ ∑3
I=1

2
2πBIdAI+

1
π2A1A2A3.

D.15 3+1/2+1D Bosonic 1→ Z2 → D4 × (Z2)
2 → (Z2)

4 → 1 and
d+ 1/dD Bosonic 1→ Z2 → D4 × (Z2)

d−1 → (Z2)
d+1 → 1

We can easily generalize from Appendix D.13 and D.14 to any dimension. For example, based
on a 3+1/2+1D bosonic 1 → Z2 → D4 × (Z2)2 → (Z2)4 → 1 construction, we can trivialize the

4-cocycle of a cup product form e i 2π
∫

1
2
a1∪a2∪a3∪a4 in H4((Z2)4, U(1)), here ai ∈ H1(M4, Z2) of an

M4-spacetime complex. We denote the group elements of hu ∈ D4× (Z2)2 as (ku, gu1 , gu2 , gu3 , gu4),
where (ku, gu1 , gu2) ∈ D4, and (gu3 , gu4) ∈ (Z2)2. We can define a 3-cochain in H

β3(hu, hv, hw) = (−1)f(hu)gv3gw4 = (−1)kugv3gw4 (D.68)

that indeed splits a nontrivial 4-cocycle

(δβ3)(hu, hv, hw, hz) =
β3(hv, hw, hz)β3(hu, hvhw, hz)β3(hu, hv, hw)

β3(huhv, hw, hz)β3(hu, hv, hwhz)

=
(−1)kvgw3gz4 (−1)ku(gv3+gw3 )gz4 (−1)kugv3gw4

(−1)(ku+kv+gu1gv2 )gw3gz4 (−1)kugv3 (gw4+gz4 )
= (−1)gu1gv2gw3gz4

= ωG4 (r(hu), r(hv), r(hw), r(hz)) = ωH4 (hu, hv, hw, hz). (D.69)

In general, based on a d+ 1/dD bosonic construction via 1→ Z2 → D4 × (Z2)d−1 → (Z2)d+1 → 1,

we can trivialize the d+1-cocycle of a cup product form e i 2π
∫

1
2
a1∪a2∪···∪ad+1 inHd+1((Z2)d+1, U(1)).
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We denote the group elements of hu ∈ D4×(Z2)d−1 as (ku, gu1 , gu2 , gu3 , . . . , gud+1
), where (ku, gu1 , gu2) ∈

D4, and (gu3 , gu4 , . . . , gud+1
) ∈ (Z2)d−1. We can write down the d-cochain

βd(hu, hv, hw, hz, . . . ) = (−1)f(hu)gv3gw4gz5 ...g.d+1 = (−1)kugv3gw4gz5 ...g.d+1 (D.70)

that splits a nontrivial d+ 1-cocycle in Hd+1((Z2)d+1, U(1)).

ωGd+1(r(hu), r(hv), r(hw), r(hz), . . . ) = ωHd+1(hu, hv, hw, hz, . . . ) = (−1)gu1gv2gw3gz4 ...g.d+1 . (D.71)

Again the LHS technique in Appendix D.3 also gives the correct hint.

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a bulk d+ 1D field theory of

∫ ∑d+1
I=1

2
2πBIdAI+

1
(π)d

A1A2 . . . Ad+1.

D.16 2+1/1+1D Bosonic 1→ (Z2)
2 → D4 × Z2 → (Z2)

2 → 1

Here we would like to trivialize a particular twisted 2-cocycle of G = (Z2)2 in H3((Z2)2, U(1)),

ω3(ga, gb, gc) = exp(
i2π

2
[ga1 ]2[gb2 ]2[gc2 ]2) = (−1)[ga1 ]2[gb2 ]2[gc2 ]2 , (D.72)

where ga = (ga1 , ga2) ∈ G = (Z2)2, and similarly for gb and gc. The idea is extending the 1+1D
example of Appendix D.13’s via 1 → ZK2 → D4

r→ (Z2)2 → 1 in the normal subgroup side by Z2,
and we seek for a realization in 2+1D:

1→ (Z2)2 → D4 × Z2
r→ (Z2)2 → 1. (D.73)

Since we have discussed that in Appendix D.11 the 2+1D example of

1→ ZK2 → D4
r→ (Z2)2 → 1 (D.74)

already trivializes the 3-cocycle of a cup product form e i 2π
∫

1
2
a1∪a2∪a2 in H3((Z2)2, U(1)), then we

can simply take D4 × Z2
r→ (Z2)2 as the combination of D4

r→ (Z2)2 and Z2
r→ 1. We denote

the group elements of hu ∈ D4 × Z2 as (ku, gu1 , gu2 , gu3), where (ku, gu1 , gu2) ∈ D4, and gu3 ∈ Z2,
such that (ku, gu1 , gu2) · (kv, gv1 , gv2) = (ku + kv + gu1gv2 , gu1 + gv1 , gu2 + gv2). We propose the split
2-cochain

β2(hu, hv) = (−1)kugv2 . (D.75)

We can see that

(δβ2) =
β2(hv, hw)β2(hu, hvhw)

β2(huhv, hw)β2(hu, hv)
=

(−1)kvgw2 (−1)ku(gv2+gw2 )

(−1)(ku+kv+gu1gv2 )gw2 (−1)kugv2
= (−1)gu1gv2gw2

= ωG3 (r(hu), r(hv), r(hw)) = ωH3 (hu, hv, hw). (D.76)

The LHS technique in D.3 gives the correct hint. Basically this shows the same result as in Appendix
D.11.
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D.17 3+1/2+1D Bosonic 1→ (Z2)→ D4 → (Z2)
2 → 1

Here we like to trivialize a particular twisted 4-cocycle of G = (Z2)2 in H4((Z2)2, U(1)),

ω4(ga, gb, gc, , gd) = exp(
i2π

2
[ga1 ]2[gb2 ]2[gc2 ]2[gd2 ]2) = (−1)[ga1 ]2[gb2 ]2[gc2 ]2[gd2 ]2 . (D.77)

We consider the construction via 1 → Z2 → D4 → (Z2)2 → 1. Follow the earlier definition of D4

group elements, we propose the split 3-cochain

β3(hu, hv, hw) = (−1)f(hu)gv2gw2 = (−1)kugv2gw2 . (D.78)

We can check explicitly that the 3-cochain splits the 4-cocycle in H:

(δβ3)(hu, hv, hw, hz) =
β3(hv, hw, hz)β3(hu, hvhw, hz)β3(hu, hv, hw)

β3(huhv, hw, hz)β3(hu, hv, hwhz)

=
(−1)kvgw2gz2 (−1)ku(gv2+gw2 )gz2 (−1)kugv2gw2

(−1)(ku+kv+gu1gv2 )gw2gz2 (−1)kugv2 (gw2+gz2 )
= (−1)gu1gv2gw2gz2

= ωG4,II = ωG4 (r(hu), r(hv), r(hw), r(hz)) = ωH4 (hu, hv, hw, hz). (D.79)

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a field theory of

∫ ∑2
I=1

2
2πBIdAI+

1
2(π)2

A1A2dA2.

D.18 3+1/2+1D Bosonic 1→ Z2 → D4 × Z2 → (Z2)
3 → 1

Here we aim to trivialize the 4-cocycle of a particular twisted 4-cocycle ofG = (Z2)3 inH4((Z2)3, U(1)),

ω4(ga, gb, gc, , gd) = exp(
i2π

2
[ga1 ]2[gb2 ]2[gc3 ]2[gd3 ]2) = (−1)[ga1 ]2[gb2 ]2[gc3 ]2[gd3 ]2 . (D.80)

We consider the construction via 1→ Z2 → D4 × Z2 → (Z2)3 → 1. Follow the earlier definition of
D4 group elements, we propose the split 3-cochain

β3(hu, hv, hw) = (−1)f(hu)gv3gw3 = (−1)kugv3gw3 (D.81)

We can check explicitly that the 3-cochain splits the 4-cocycle in H:

(δβ3)(hu, hv, hw, hz) =
β3(hv, hw, hz)β3(hu, hvhw, hz)β3(hu, hv, hw)

β3(huhv, hw, hz)β3(hu, hv, hwhz)

=
(−1)kvgw3gz3 (−1)ku(gv3+gw3 )gz3 (−1)kugv3gw3

(−1)(ku+kv+gu1gv2 )gw3gz3 (−1)kugv3 (gw3+gz3 )
= (−1)gu1gv2gw3gz3

= ωG4,III = ωG4 (r(hu), r(hv), r(hw), r(hz)) = ωH4 (hu, hv, hw, hz). (D.82)

If we consider the bulk to be fully gauged topologically ordered state, this becomes a gapped
boundary for a field theory of

∫ ∑3
I=1

2
2πBIdAI+

1
2(π)2

A1A2dA3.

D.19 2+1/1+1D to d + 1/dD Bosonic 1→ ZN → U(1)→ U(1)→ 1: Symmetry-
enforced gapless boundaries protected by perturbative anomalies

It is tempting to ask for the construction of a 2+1/1+1D topological state via

1→ ZN → U(1)→ U(1)→ 1, (D.83)
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where the bulk has 2+1D U(1) SPTs obtained from H3(U(1), U(1)) = Z, while the boundary has
1+1D SETs with a U(1) global symmetry and an emergent exact ZN gauge symmetry.

Of course, this kind of group extension along the boundary is possible, in general. But then
the boundary theory is a 1+1D theory with a U(1) global symmetry that has a perturbative ’t
Hooft anomaly [28]. As in ’t Hooft’s original work on such matters, this obstructs the possibility
of symmetrically gapping the boundary theory. Similar remarks apply for any even d dimensional
spacetime of the boundary theory. 31

D.20 6+1/5+1D Bosonic 1→ Z2 → U(1)×SO(∞)→ U(1)×SO(∞)→ 1: Surface
topological order and global mixed gauge-gravitational anomaly

The previous Appendix D.19 discusses the U(1)-anomaly on the boundary of SPTs obtained from
the group cohomology Hd+1(U(1), U(1)) = Z of symmetry group G = U(1). However, there are
U(1) anomalies beyond the Hd+1(G,U(1)) but within Hd+1(G× SO(∞), U(1)) [17]. One example
is the 3+1D perturbative mixed gauge-gravity anomaly [17, 27] on the surface of 4+1D U(1)-SPTs
characterized by

exp(i2π

∫
1

3

A

2π
p1) (D.85)

where A is a U(1) 1-form gauge field and p1 is the first Pontryagin class of the tangent bundle of
spacetime manifold. Unfortunately, such anomaly has Z class (within H5(U(1)× SO(∞), U(1)) =

31If the counter-statement was true, then we may have a 1+1D SETs where the U(1) global symmetry cannot be
spontaneously broken — this is due to that Coleman-Mermin-Wagner theorem asserts that there is no spontaneous
symmetry breaking for continuous symmetry in 1+1D. In this case, the degenerate ground states of the 1+1D
anomalous SETs with emergent ZN gauge fields, may not directly cross over to symmetry breaking states and may
have a distinct phase transition. This continuous symmetry group protection will be a new phenomenon very different
from the result from a discrete finite symmetry group in A.2.4. In this case, the 1+1D anomalous SETs may be a
robust 1+1D anomalous topological order protected by a global symmetry. If this was true, we can ask whether this
example may be generalizable to higher dimensions d+ 1/dD since Hd+1(U(1), U(1)) = Z when d is even.

However, the above construction is invalid. By coupling a U(1) probed background gauge field to 1+1D boundary
of 2+1D SPTs, the boundary exhibits a perturbative chiral anomaly. It is indeed a U(1) gauge anomaly probable
by the weak-coupling U(1) gauge field. In 1+1D, one can do the fermionization (or bosonization), a 1-loop Feynman
diagram of the fermionized 1+1D boundary captures the U(1)-anomaly. This ’t Hooft U(1)-anomaly matching factor
is equivalent to the effective quantum Hall conductance probed by external charged U(1) gauge fields from the
bulk [86]. Such a perturbative anomaly cannot be pulled back to another larger continuous group H (here we have
an H = U(1) with N times larger periodicity than G = U(1)) with the G-anomaly eliminated to be anomaly-free
in H. In this case, the U(1)-anomaly still remains robust in H = U(1). More generally, for Hd+1(U(1), U(1)) = Z
with an even d = 2, 4, . . . , prescribing the d + 1/dD SPTs where the d + 1D bulk topological invariants are written
in terms of Abelian Chern-Simons forms, as

exp(i
k

(2π)d/2

∫
A(dA)d/2) = exp(i2πk

∫
(
A

2π
) (c1)d/2), (D.84)

probed by A as a U(1) 1-form gauge field, and c1 ≡ dA/2π as the first Chern class, with k ∈ Z. The boundary
theories are enforced to be gapless by a continuous U(1) symmetry and by a perturbative U(1) anomaly for any
even d dimensions. These are symmetry-enforced gapless boundaries due to a perturbative anomaly. (There are also
symmetry-enforced gapless boundaries due to a non-perturbative anomaly studied in [64].)

Instead we can find another scenario such that the SPTs is protected by a continuous G-global symmetry with
a ZN sub-classification, instead of a Z classification. To make a comparison, the Z class indicates a perturbative
anomaly. The ZN class is obtained, for example, from the torsion (Tor) part in the universal coefficient theorem of
group cohomology. The ZN indicates the boundary G-anomaly shall have global gauge anomalies. For global gauge
anomalies, it is possible to find a larger continuous H such that the global gauge G-anomaly becomes anomaly-free
in H. Our observation agrees with [87]. Appendix D.20 and D.23 provide two of such examples.
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(Z)2), it is still a perturbative anomaly protected to be symmetry-enforced gapless that excludes
symmetry-preserving gapped boundary (e.g. surface topological order).

Another SPT theory with 6+1D bulk/5+1D boundary dimension can have a Z2 anomaly (within
H7(U(1)×SO(∞), U(1)) = (Z)2×Z2), labeled by the bulk topological invariant [17] on a 7-manifold
M7:

exp(i2π

∫
M7

1

2
w2w3

dA

2π
) = exp(i2π

∫
M7

1

2
w2w3c1), (D.86)

where the wi as the ith SW class. Here wi is a cohomology class with mod 2 coefficients. We
can write wi = wi(TM

7) of the spacetime tangent bundle TM7. This Z2 class indicates a non-
perturbative global mixed gauge-gravitational anomaly from a continuous group U(1). We suggest
that the 5+1D Z2 gauge theory can be a surface topological order, via the construction 1→ Z2 →
U(1) × SO(∞) → U(1) × SO(∞) → 1, as a symmetry-preserving gapped boundary. The U(1) in
the total group H is the double cover of that U(1) in the quotient group G. The boundary field
theory could be ∑

b∈C4((∂M)6,Z2),

a∈C1((∂M)6,Z2)

exp(i2π

∫
(∂M)6

1

2

(
(bδa) + w2w3a+ bc1

)
). (D.87)

The Cd(M,Zn) contains all d-cochains of Zn values assigned to a d-simplex on a triangulated
manifold M. Here a is a 1-cochain and b is a 4-cochain, both are integers with Z2 values. It is
basically a 5+1D Z2 gauge theory. The “gauge transformations” are:

w2 → w2 + δα, w3 → w3 + δβ, λ ≡ αδβ + w2β + αw3, b→ b+ λ, c1 → c1 + δγ, a→ a− γ. (D.88)

Here λ, α, β and γ are 4-cochain, 1-cochain, 2-cochain and 1-cochain respectively, all in Z2 values.
Effectively we view the normalized U(1) probed gauge field A/(2π) as a R-valued 1-cochain Ã, such
that the first Chern class c1 = δÃ becomes an integral 2-cochain on a triangulated manifold, so
c1 → c1 +δγ. We have the gauge transformation w2w3 → w2w3 +δλ = w2w3 +w2δβ+δαw3 +δαδβ,
because the SW classes satisfy δw2 = δw3 = 0. The whole partition function with bulk and
boundary theories together is gauge invariant. Since both a and b are Z2-valued cochains, coupled
to w2, w3 and c1 of the background U(1) probed fields, we can regard the 5+1D surface theory as
a Z2 gauge theory.

D.21 2+1D/1+1D Bosonic topological insulator 1→ ZK
2 → U(1)oZT

2 → U(1)o
ZT

2 → 1 and 2+1D/1+1D Bosonic topological superconductor of ZK
2 o

ZT
2 : Spontaneous G-symmetry breaking of boundary deconfined K-gauge

theory

The bosonic SPTs with symmetry group G = U(1) o ZT2 is called a bosonic topological insulator
(BTI). In 2+1D, we can obtain these SPTs from the group cohomology H3(U(1)oZT2 , U(1)) = Z2.
Let us focus on the nontrivial Z2 class, the bulk field theory on a 3-manifold M3 is described
by [17,19]

exp(i2π

∫
M3

1

2
w1
dA

2π
) = exp(i2π

∫
M3

1

2
w1c1). (D.89)

The boundary field theory is described by∑
φ∈C0((∂M)2,Z2),

a∈C1((∂M)2,Z2)

exp(i2π

∫
(∂M)2

1

2
(φδa+ w1a+ φc1)), (D.90)
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where φ is a 0-cochain and a is a 1-cochain, both in Z2 values. The “gauge transformations” are:

w1 → w1 + δα, φ→ φ+ α, c1 → c1 + δγ, a→ a− γ. (D.91)

Here α and γ are 0-cochain and 1-cochain in Z2 values. The c1 is an integral 2-cochain defined
as the same as in the previous Appendix D.20. The boundary theory shows a K = Z2 gauge
theory in 1+1D coupled to w1 and c1. In terms of U(1)-field A, we have the gauge transformation
A→ A+ 2πγ. This establishes our construction:

1→ ZK2 → U(1) o ZT2 → U(1) o ZT2 → 1.

For this ZK2 gauge theory, there are a few topologically distinct sectors and gauge-invariant
operators, shown in Table 18: (1) The trivial sector is 1, with trivial quantum number U(1) charge

0 and T = +1. (2) The ZK2 gauge charge as e-sector corresponds to the line operator eiπ
∫

(a+ A
2π

).

Each of two ends of such an open line e
iπ

∫ x2
x1

(a+ A
2π

)
has an e-particle (ZK2 gauge charge e). Each

of two ends must attach with a 1/2 U(1) charge, due to its attachment to U(1)-field A. Thus,
the e-particle has quantum number U(1) charge 1/2 and T = +1. (3) The ZK2 gauge flux as

m-sector corresponds to the line operator e
iπ(φ(x1)−φ(x2)+

∫ x2
x1

w1)
, where the vortex eiπφ is an m-

instanton insertion operator. Similarly, each of the two ends of the open line must attach with an
m instanton with an eigenvalue of T = −1, due to w1. The m instanton has a trivial eigenvalue of
U(1), namely 0.

Operators Sectors (fractional objects) U(1) charge T eigenvalue

1 Trivial (none) 0 1

eiπ
∫

(a+ A
2π

) Z2 gauge charge (e particle) 1/2 1

e
iπ(φ(x1)−φ(x2)+

∫ x2
x1

w1)
Z2 gauge flux (m instanton) 0 -1

Table 18: The quantum numbers (U(1) charge and T ) of the U(1) symmetry and ZT2 time reversal
symmetry here are meant to associated to e-particle local excitations and m-instanton (the second
column), not to the entire line operators (the first column).

If we put either 2+1D SPTs on a spatial disk with a circular boundary, and if the boundary Z2

gauge theory is deconfined, there are two fold degenerate ground states, labeled by a trivial (no)
holonomy and a nontrivial holonomy of Z2 gauge charge (e particle) winding an odd number of
times, along the circular boundary.

Note that the SPTs with a smaller symmetry group Z2 o ZT2 also renders the same class, due
to H3(Z2 o ZT2 , U(1)) = (Z2)2 — one of Z2 class coincides with H3(U(1) o ZT2 , U(1)) = Z2. The
SPT invariant for that Z2 class in H3(Z2 o ZT2 , U(1)) = (Z2)2 is

exp(i2π

∫
M3

1

2
w1(a1)2), (D.92)

with a Z2-valued 1-cochain a1. This implies that the boundary physics of 2+1D U(1) o ZT2 SPTs
can be understood in terms of that of 2+1D Z2 o ZT2 SPTs. Even if the Coleman-Mermin-Wager
theorem protects the continuous U(1)-symmetry against spontaneous symmetry breaking, we may
break U(1) explicitly down to Z2. The same physics is valid for both U(1)oZT2 BTI and Z2 oZT2
SPTs.

For the K = Z2 deconfined gauge theory on the 1+1D boundary of the above U(1) o ZT2 and
Z2oZT2 SPTs, we should have no spontaneous symmetry breaking, neither on the U(1) (supposing
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that Coleman-Mermin-Wager theorem still holds) nor on the Z2 (because U(1) o ZT2 SPTs and
Z2 o ZT2 SPTs have the same physics). It is likely that the boundary has spontaneous symmetry
breaking on the time-reversal symmetry ZT2 . Below we provide arguments to support that the
time-reversal symmetry ZT2 is spontaneously broken at the boundary.

D.22 Spontaneous global symmetry breaking of boundary K-gauge theory:
ZG

2 -symmetry breaking on 2+1D Z2-SPT’s boundary v.s. ZT
2 -symmetry

breaking on 2+1D U(1) o ZT
2 -SPT’s and Z2 o ZT

2 -SPT’s boundaries for
K = ZK

2 .

Here we like to show that 1+1D deconfined K-gauge theories with symmetry G on the boundary
of 2+1D bulk G-SPTs can actually be spontaneous global G-symmetry breaking states. Some
examples are in order.

1. Our first example is already mentioned in the main text, Sec. 3.3, as well as Appendix A.2.4
and D.4. Consider the 1+1D boundary of 2+1D Z2-SPTs under the construction 0→ ZK2 →
ZH4 → ZG2 → 0. This Z2-valued 3-cocycle of bulk SPTs is equivalent to e i 2π

∫
1
2
a1∪a1∪a1 =

(−1)
∫
a1∪a1∪a1 with a cup product form of a1∪a1∪a1, in H3(Z2, U(1)). The a1 is a Z2 valued

1-cochain. Through a field theory analysis, we can find a gauge-invariant partition function
for the bulk on M3 and boundary on (∂M)2. The boundary ZK2 gauge theory has a minimal
coupling to the bulk fields, and its partition function is∑

φ∈C0((∂M)2,Z2),

a∈C1((∂M)2,Z2)

exp(i2π

∫
(∂M)2

1

2
(φδa+ φ(a1)2 + aa1)). (D.93)

Here φ and a are Z2 valued 0-cochain and 1-cochain fields respectively. The boundary has a
spin-1 electric gauge charge excitation associated to the a, and a spin-0 magnetic instanton
associated to the φ. The gauge-invariant vortex operator has a nonzero vacuum expectation
value with respect to ground states:

〈eiπ(φ(x1)−φ(x2)+
∫ x2
x1

a1)〉 = 〈Ψgs|e
iπ(φ(x1)−φ(x2)+

∫ x2
x1

a1)|Ψgs〉 = const. (D.94)

The const. stands some constant value. This statement shows the same physics as eqn.(3.21)’s
〈Ψgs(±)|Xi+1/2Xj+1/2|Ψgs(±)〉 = 1. The spin-0 vortex operator that is odd under ZG2 -
symmetry has a real expectation value, and its two-point function develops a long-range
order. This implies that ZG2 -symmetry is violated. Thus the ground states of ZK2 -gauge
theory have spontaneous ZG2 -symmetry breaking.

2. The second example is the main example of Appendix D.21, the 1+1D boundary of 2+1D
U(1) o ZT2 -SPTs under the construction 1 → ZK2 → U(1) o ZT2 → U(1) o ZT2 → 1. Again
the gauge-invariant vortex operator (see Table 18) has a nonzero vacuum expectation value
with respect to ground states:

〈eiπ(φ(x1)−φ(x2)+
∫ x2
x1

w1)〉 = 〈Ψgs|e
iπ(φ(x1)−φ(x2)+

∫ x2
x1

w1)|Ψgs〉 = const. (D.95)

The vortex operator that is odd under ZT2 -symmetry has a real expectation value, and its
two-point function develops a long-range order. This implies that ZT2 -symmetry is violated.
Thus the ground states have spontaneous ZT2 -symmetry breaking. For the third example,
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we can also show that the 1+1D boundary of 2+1D Z2 o ZT2 -SPTs under the construction
1 → ZK2 → Z2 o ZT2 → Z2 o ZT2 → 1 has the same two-point function as eqn.(D.95) and
develops a long-range order for ZT2 -symmetry-odd vortex operators. Thus the ground states
of ZK2 -gauge theory have spontaneous ZT2 -symmetry breaking.

To summarize, the above field theory analysis suggests that the ground states of 1+1D decon-
fined K-gauge theory of 2+1D G-SPTs have spontaneous G-symmetry breaking. We expect that
both its deconfined gauge theory and confined gauge theory, both have spontaneous G-symmetry
breaking, with crossover to each other without phase transitions, similar to the physics in Ap-
pendix A.2.4.

D.23 1+1/0+1D Bosonic 1→ Z2 → SU(2)→ SO(3)→ 1

In 1+1D, we have a nontrivial bosonic SPT state predicted by H2(SO(3), U(1)) = Z2. This
nontrivial class is exactly a 1+1D Haldane spin chain protected by the global symmetry SO(3).
For example, it is well-known that the 1+1D Haldane SPT state is the ground state of the AKLT
spin chain Hamiltonian:

H =
∑
j

(
1

2

(
~Sj · ~Sj+1 +

1

3

(
~Sj · ~Sj+1

)2
)

+ 1/3

)
. (D.96)

Each site j has a Hilbert space of a spin-1 degree of freedom, and the spin-1 operator ~Sj acts on
each site j. The particular choice of Hamiltonian prefers the lowest-energy ground state such that
the spin-1 on each site splits to two spin-1/2 qubits, and the neighbor spin-1/2 spins between two
sites have a total spin-0 singlet pairing. In a closed chain, we have a gapped state with a unique
ground state. In an infinite-size open chain, we have a gapped state with two dangling spin-1/2
qubits at the two ends, where the two dangling spin-1/2 of a spin-0 singlet and three spin-1 triplet
states become 4-fold degenerate.

However, we can lift the 4-fold degeneracy of a 1+1D open chain by adding two spin-1/2 qubits
at the two ends. Formally, this is achieved by trivializing the 2-cocycle of H2(SO(3), U(1)) by
lifting SO(3) to SU(2) via

1→ Z2 → SU(2)→ SO(3)→ 1. (D.97)

The bulk topological term
(−1)

∫
w2(VSO(3))

of the second SW class of principal G = SO(3)-bundle (or the associated vector bundle VSO(3) of
SO(3)) becomes trivial when we lift the SO(3) to the SU(2)-bundle. The unique gapped ground
state state is achieved when we introduce the edge Hamiltonian term pairing each of the old
dangling spin-1/2 qubits to the two newly added spin-1/2 qubits, such that the low-energy ground
state favors the singlet spin-0 pairing sectors at the two ends.32

The LHS technique in D.3 suggests that we look for

d2 : H0(G,H1(K,U(1)))→ H2(G,H0(K,U(1)))

⇒ d2 : H0(SO(3), Z2) = Z2 → H2(SO(3), U(1)) = Z2. (D.98)

f : G→ H1(K,U(1))⇒ SO(3)→ H1(ZK2 , U(1)) = Z2, (D.99)

32This procedure has been shown explicitly in Ref. [39] recently.

130



with a 1-cochain of a suggested base of (−1).

E Symmetry-breaking gapped boundaries/interfaces: Comments
and criteria

The main focus of article is a new approach to define gapped interface via “symmetry-extension:”
On lifting G to a larger group H, as described in Sec. 8 and Appendix D, that trivialize G-cocycle
to define a lower dimensional gapped boundary prescribed by the split H-cochain. On the other
hand, there is another more familiar approach for a gapped interface known in the literature, by
“symmetry-breaking.” Namely, the global or gauge symmetries are spontaneously or explicitly
broken, described in Sec. 8.1. For a finite group G, when the symmetry-breaking does not produce
gapless Goldstone bosons, the boundary can be gapped. Phenomenologically, one can achieve
symmetry-breaking through the Higgs effect or through interactions such as sine-Gordon cosine
potentials.

The global symmetry-breaking mechanism is well-known in the fields of topological insula-
tors and SPTs. For example, we can add a ferromagnet on the boundary of topological insula-
tors to break time-reversal global symmetry to obtain a gapped anomalous surface quantum Hall
state. The gauge symmetry-breaking mechanism is also known in the literature. The gapped
boundary/interface criteria studied by Haldane [88], Kapustin-Saulina [65], Kitaev-Kong [66], Lan-
Wang-Wen [67, 71] and many others can be viewed as gauge symmetry-breaking [67–69, 71] or the
Anderson-Higgs effect.

In particular, let us look at the symmetry-breaking mechanism in 2+1D Abelian bulk topological
phases for simplicity. The bulk phase can be described by an Abelian Chern-Simons theory with an
action Sbulk = KIJ

4π

∫
aI∧daJ under a symmetric integral bilinear matrix K and locally some 1-form

gauge fields a. The usual gapless boundary action is a K-matrix Luttinger liquid or a doubled-
version chiral boson theory S∂ = 1

4π

∫
dt dx (KIJ∂tΦI∂xΦJ − VIJ∂xΦI∂xΦJ) with a non-universal

velocity matrix VIJ and some scalar modes Φ. The gapped boundary conditions can be achieved
through a set of sine-Gordon cosine terms

∫
dt dx

∑
a ga cos(`a,I · ΦI) as a strong coupling ga � 1

limit. Notice that the gapping cosine term indeed breaks the symmetry of ΦI → ΦI + η for some
constant η. Here the broken symmetry can be global symmetry [89] or gauge symmetry [65–69],
depending on the context.

The simplest example is that G′ = 1 is a trivial group containing only the identity element.
And G′ → G is a map that the identity in G′ maps to the identity in G. This can be regarded as
breaking G to nothing in G′. There are G-cocycles assigned in the bulk, but the boundary becomes
a trivial cocycle/cochain 1 in G′. In terms of the inhomogeneous cochain βG

′
d−1 = 1. The G-cocycle

ωGd (g01, · · · , gd−1d) that touches any boundary link, say, g′01, must have ωGd (ι(g′01) = 1, · · · , gd−1d) =
1. This type of boundary condition works for any bulk defined by any discrete group G with any
cocycle. The usual way that one would describe it is that the G is spontaneously broken to nothing
along the boundary.

More generally, the symmetry-breaking mechanism involves breaking a G-topological phases of
group G down to a subgroup G′:

G′
ι→ G (E.1)

viewed through the injective map ι. If G′ is a subgroup of G, then we can define the symmetry-
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breaking gapped boundary of G-topological phases, if the G′-cocycle becomes a G′-coboundary
(with a similar expression as in eqn. (D.4))

ωGd (ι(g′01), · · · , ι(g′d−1d)) = ωGd (g01, · · · , gd−1d) = ωG
′

d (g′01, · · · , g′d−1d) = δβG
′

d−1,

thus split to lower (d− 1) dimensional G′ cochains. Formally, we mean that a nontrivial G-cocycle

ωGd ∈ Hd(G,U(1)) (E.2)

becomes a trivial element 1 (a coboundary) when it is pulled back (denoted as ∗) to G′

1 = ι∗ωGd ∈ Hd(G′, U(1)). (E.3)

The dimension of Hilbert space is restricted from a |G| per degree of freedom in the bulk to a
smaller |G′| per degree of freedom on the boundary.

As an application of Appendix E, we will count and classify distinct gauge symmetry-breaking
gapped interfaces in various dimensions (e.g. 2+1D bulk and 3+1D bulk), in Appendix F.1.

F Dynamically gauged gapped interfaces of topologically ordered
gauge theories

Because gauge symmetry is not a physical symmetry but only a gauge redundancy, the physical
meanings of gauge symmetry breaking and gauge symmetry extension are rather different from
their global symmetry counterparts. We would like to re-interpret the dynamically gauged gapped
interfaces for topologically ordered gauge theories (such that the whole systems are topologically
ordered without any global symmetries) more carefully in any dimensions.

Let us propose the generic gauged gapped interfaces of topologically ordered gauge theories as
follows. Let L be the gauge group of gauged interface, let G I and G II be the gauge groups of the
left sector and right sector relative to the interface respectively. Let L be a group with a group
homomorphism map to G I ×G II ,

L→ G I ×G II (F.1)

such that the product of the two cocycles of the two twisted gauge theories on left and right
pulls back to a trivial cocycle in L. Here we assume neither a surjective map (as the gauge
symmetry extension) nor an injective map (as the gauge symmetry breaking), but we only require
the group homomorphism for L→ G I×G II . Therefore such a construction actually includes mixed
mechanisms of gauge symmetry extension and gauge symmetry breaking, but we do not require
any global symmetry at all. In eqn.(F.1), we view L and G I ×G II all as gauge groups.

In Appendix F.1, we explore applications of gauge symmetry-breaking gapped interfaces. In Ap-
pendix F.2, we explore applications of gauge symmetry-extended gapped interfaces, and we make a
comparison to gapped interfaces obtained from, first constructing global symmetry extended SPTs,
and then dynamically gauging the system with various gauging procedures. The two subsections
aim to demonstrate the generality of this eqn.(F.1) for generic gauged interfaces.
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F.1 Gauge symmetry-breaking gapped interface via Anderson-Higgs mecha-
nism — Examples: 2+1D twisted quantum double models Dω3(G) and
3+1D gauge theories and Dijkgraaf-Witten gauge theories

The motivation for this subsection is to construct and count gauge-symmetry breaking gapped
interfaces for gauge theories, and to compare to the known methods and known examples in the
past literature (mostly studied in the 2+1D bulk). Then we can check consistency and further
produce new concrete examples for gauge symmetry-breaking gapped interfaces in any dimension.
Many examples are shown in this Appendix.

We consider Dijkgraaf-Witten (DW) gauge theories [21], namely topologically ordered discrete
G-gauge theories that allow “twists” by the cohomology group cocycle. For a more specialized
case, a gauge symmetry-breaking gapped boundary, this repeats the same setup in eqn.(E.1) that
we used in Appendix E. We only rewrite eqn.(F.1) as G′ → G × 1 with L = G′, G I = G, and
G II = 1.

More generally, our strategy to construct and count distinct topological gapped interfaces be-
tween two given twisted gauge theories of G I and G II in any dimension, under Anderson-Higgs
gauge-symmetry breaking, is:33

• 1st step: For gauge-symmetry breaking gapped interfaces, we consider eqn.(F.1), with an
additional constraint that L ⊆ G I × G II be an unbroken gauge subgroup. The criteria
are (similar to Appendix E except that every group is gauge group) that G I ×G II -cocycle
ωG I×G II = ωG I

I (g I ) · ωG II
II (g II )−1 (allowed by Künneth formula) in Hd(G I ×G II , U(1)) be-

comes a coboundary 1 ∈ Hd(L,U(1)) when we restricted G I (on the left) and G II (on the
right) to L on the interface.

• 2nd step: To fully implement the first step, one has to actually pick a trivialization of the
cocycle ωG I×G II . The choice is not unique and we can modify it by appending any cocycle
in Hd−1(L,U(1)), corresponding to a topological L-gauge theory on the boundary/interface,
following Appendix D.2.2. This yields distinct new gauged interfaces.

• 3rd step: Some of the gauged interfaces, constructed by the above two steps, can be identified.
For example, two different gauge groups L1 and L2 on the interfaces (between the same pair of
bulk gauge groups) with cocycles ωL1

d−1 and ωL2
d−1 can be identified as the same gapped interface

if and only if the two interfaces are conjugate through the adjoint action of G I × G II [90].
Namely, some element g ∈ G I ×G II identifies two interfaces by gL1g

−1 = L2.

• 4th step: To construct and count all gauge-symmetry breaking gapped interfaces, we consider
all the possible subgroups L ⊆ G I × G II , and all possible lower-dimensional distinct gauge
theories in Hd−1(L,U(1)), and we identify the equivalence classes of them as in the third step.

Many examples of gauge interfaces are provided below in Appendix F.1, including 2+1D G = Z2

gauge theory (namely, the Z2 toric code and Z2 topological order), 2+1D G = Z2 twisted gauge
theory (namely, the Z2 double semions, or U(1)2 × U(1)−2-fractional quantum Hall states), and
more generic 2+1D Dijkgraaf-Witten discrete gauge theories, also written as twisted quantum
double models Dω3(G) of a gauge group G with a twisted 3-cocycle ω3 for G = (Z2)3, D4, Q8. We
also consider 3+1D Dijkgraaf-Witten gauge theories of a gauge group G with a twisted 4-cocycle
ω4.

33JW thanks Tian Lan for collaborating on a different approach in 2+1D [71].
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We show that the gauge symmetry-breaking mechanism reproduces the previous results on
gapped boundaries/interfaces of 2+1D topological orders, either through the anyon condensation
method or through the tunneling matrices constructed through modular S and T data, especially
showing consistency with [71]. Furthermore we can systematically obtain gapped interfaces in any
dimension, such as in 3+1D.

F.1.1 Gauge symmetry-breaking boundaries/interfaces of Z2 toric code and Z2 double-
semion

1. Consider a 2+1D G I = G = Z2 gauge theory (namely, the Z2 toric code and Z2 topological
order) on the left, and G II = 1 as a trivial vacuum on the right. The 3-cocycle on the left
is a trivial coboundary ωG3 (g) = 1 and the cocycle on the right is also 1, but the Hilbert
spaces of the left and right sides are different. We can consider either subgroups L = G′ = 1
or L = G′ = Z2 so that G′ → G both provides a trivial cocycle when pulling back to G′.
The G′ = 1 and G′ = Z2 define the famous e-condensed or m-condensed gapped boundaries,
achieved by Anderson-Higgs gauge-symmetry breaking. The two e- and m- gapped boundaries
have been constructed explicitly on the lattice Hamiltonian model [66], and have been realized
field theoretically through strong coupling sine-Gordon interactions at boundaries [67]. Follow
Appendix E, given a bulk Abelian Chern-Simons action with a K = ( 0 2

2 0 ) matrix for Z2

gauge theory, the e- or m- gapped boundaries are achieved by strong coupling interactions∫
dt dx g cos(2Φ1) and

∫
dt dx g cos(2Φ2), on a Luttinger liquid boundary, respectively [67].

See Table 19 for the details of these 2 gapped boundaries.

2. Consider a 2+1D G = Z2 twisted gauge theory (namely, the Z2 double semions, or U(1)2 ×
U(1)−2-fractional quantum Hall states) on the left, and G′ = 1 as a trivial vacuum on the
right. The 3-cocycle on the left is nontrivial ωG3 (g) 6= 1 and the cocycle on the right is 1;
again, the Hilbert spaces of the left and right sides are different. We can consider only the
subgroups G′ = 1 so that G′ → G both provides a trivial cocycle when pulling back to G′.
The G′ = 1 defines the semion-anti-semion condensed gapped interface by Anderson-Higgs
gauge symmetry-breaking. Follow Appendix E, given a bulk Abelian Chern-Simons action
with a K =

(
2 0
0 −2

)
matrix for Z2 twisted gauge theory, the gapped boundary is achieved by

the strong coupling interaction
∫
dt dx g cos(2(Φ1 +Φ2)), on a Luttinger liquid boundary [67].

Again, this unique gapped interface is also realized and consistent with earlier work [66–69].
See Table 19 for the data of a gapped boundary.

Z2’s subgroup G′ H2(G′, U(1))
Z2 toric code

# of gauge boundaries
Z2 double-semion

# of gauge boundaries

{1} = 1 0 1 1

Z2 0 1 0

2 (total number) 1 (total number)

Table 19: Subgroup G′ of a Z2, H2(G′, U(1)) and gauge-symmetry-breaking boundaries in 2+1D.
Our result reproduces and agrees with the classification in [67]’s Table III and in [71]’s Appendix
I and II.

3. Consider a Z2 toric code on the left and a Z2 double-semion model on the right, as an example
for gauge symmetry-breaking gapped interface. Eqn.(F.1) becomes L→ Z2×Z2 with a trivial
coboundary ωG I

3 = 1 of G I = Z2 on the left, and a nontrivial cocycle ωG II
3 of G II = Z2 on

the right, and gauge symmetry-breaking results in Anderson-Higgs to L = 1 or L = Z2. This
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is consistent with two gapped interfaces between the Z2 toric code and Z2 double semions
found in [71].

F.1.2 Gauge symmetry-breaking boundaries of D(D4) = Dω3, III ((Z2)3)

D4’s subgroup G′ H2(G′, U(1))
D(D4) = Dω3, III ((Z2)3)

# of distinct gauge boundaries

{1} = 1 0 1

{1, R2} = Z2 0 1

{1, x} = R{1, xR2}R−1 = Z2 0 1
{1, xR} = R{1, xR3}R−1 = Z2 0 1

{1, x, R2, xR2} = (Z2)2 Z2 2
{1, xR,R2, xR3} = (Z2)2 Z2 2

{1, R,R2, R3} = Z4 0 1

D4 Z2 2

11 (total number)

Table 20: Subgroup G′ of a dihedral D4, H2(G′, U(1)) and gauge symmetry-breaking boundaries
in 2+1D. Our result reproduces and agrees with the classification in [71]’s Appendix XI.

Here we consider a 2+1D twisted quantum double model Dω3, III ((Z2)3) = D(D4). It can be
described by a twisted Abelian gauge theory under a Type III 3-cocycle ω3, III (see its definition
in [27]), or a non-Abelian topological field theory action

∫
((
∑3

I=1
2

2πBIdAI) + 1
π2A1A2A3). Al-

ternatively, we can regard it as a discrete D4 gauge theory, with D4 a dihedral group of order 8.
Now we aim to count the distinct types of topological gapped boundaries based on gauge symmetry
breaking. Follow eqns.(E.1) and (F.1), we choose G I = G = D4 and G II = 1. What are the possible
unbroken subgroup L = G′? In Appendix D Table 12, we show the subgroup data for the D4 group.
Since D(D4) is an untwisted gauge theory with a trivial 3-cocycle 1 ∈ H3(D4, U(1)), when we pull 1
back from D4 to any subgroup G′ ⊆ D4, it is still a 3-coboundary 1 ∈ H3(G′, U(1)). Among the 10
subgroups of D4, four of Z2 subgroups are identified to two sets of conjugate subgroups under the
adjoint action [90]. For two (Z2)2 subgroups and one D4, each of them offers two distinct gapped
boundaries by appending lower-dimensional topological states due to H2(G′, U(1)) = Z2. Thus the
total distinct gauge symmetry-breaking gapped interfaces are 11 types, which is consistent with
topological gapped boundaries obtained from a different approach via modular S and T data in
2+1D [71]. See Table 20 for the details of these 11 gapped boundaries.

F.1.3 Gauge symmetry-breaking boundaries of D(Q8) = Dω3, IIIω3, I ((Z2)3) in 2+1D and
Q8 gauge theory in 3+1D

Let us now consider gapped gauge interfaces of discrete quaternion Q8 gauge theories in 2+1D and
3+1D.

1. First, we consider a 2+1D twisted quantum double model Dω3, IIIω3, I ((Z2)3) = D(Q8). It can
be described by a twisted Abelian gauge theory under Type III and Type I 3-cocycles ω3, III ·
ω3, I (see its definition in [27]), or a non-Abelian topological field theory action

∫
((
∑3

I=1
2

2πBIdAI)+
1
π2A1A2A3 + 1

2πA1dA1). Alternatively, we can regard it as a discrete Q8 gauge theory, with
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Q8’s subgroup G′ H2(G′, U(1)) H3(G′, U(1))
Q8 gauge theories

# of distinct gauge boundaries
2+1D D(Q8) v.s. 3+1D

{1} = 1 0 0 1 v.s. 1

{1,−1} = Z2 0 Z2 1 v.s. 2

{1, i,−1,−i} = Z4 0 Z4 1 v.s. 4
{1, j,−1,−j} = Z4 0 Z4 1 v.s. 4
{1, k,−1,−k} = Z4 0 Z4 1 v.s. 4

Q8 0 Z8 1 v.s. 8

6 v.s. 23 (total number)

Table 21: Subgroup G′ of a quaternion Q8, H2(G′, U(1)), H3(G′, U(1)) and gauge symmetry-
breaking boundaries in 2+1D and 3+1D. Our 2+1D result reproduces and agrees with the classi-
fication in [71]’s Appendix XII. Our 3+1D result may be new to the literature.

Q8 a quaternion group of order 8. Now we count the distinct types of topological gapped
boundaries based on gauge symmetry breaking. Follow eqns.(E.1) and (F.1), we choose
G I = G = Q8 and G II = 1. What are the possible unbroken subgroups L = G′? In Appendix
D Table 13, we show the subgroup data for Q8 group. When we pull 1 ∈ H3(Q8, U(1))
for untwisted D(Q8) back from Q8 to any subgroup G′ ⊆ Q8, it is still a 3-coboundary
1 ∈ H3(G′, U(1)). Among the 6 subgroups of Q8, none is identified under the adjoint actions.
None of them can append lower-dimensional topological states due to H2(G′, U(1)) = 0.
Thus, the total distinct gauge symmetry-breaking gapped interfaces have 6 types, which is
consistent with topological gapped boundaries obtained from a different approach via modu-
lar S and T data in 2+1D [71]. See Table 21’s 4th column for the details of these 6 gapped
boundaries.

2. Second, we consider a 3+1D Q8 gauge theory. For an untwisted gauge theory with a trivial
4-cocycle 1 ∈ H4(Q8, U(1)), when we pull 1 back from Q8 to any subgroup G′ ⊆ Q8, it is still
a 4-coboundary 1 ∈ H4(G′, U(1)). After appending lower dimensional topological states, see
Table 21’s 4th column, we find 23 gapped boundaries.

F.1.4 Gauge symmetry-breaking boundaries of G = Z2 or (Z2)2 twisted gauge theories
in 3+1D

Consider 3+1D Dijkgraaf-Witten gauge theories of a gauge group G = Z2 and (Z2)2 with twisted
4-cocycle ω4.

1. First, we consider a 3+1D Z2 gauge theory, described by a low energy BF action
∫

2
2πBdA

with 2-form and 1-form fields B and A. Follow eqns.(E.1) and (F.1), we choose G I = G = Z2

and G II = 1. What are the possible unbroken subgroup L = G′? Since it is a untwisted
gauge theory with a trivial 4-cocycle 1 ∈ H4(Z2, U(1)), when we pull 1 back from Z2 to
any subgroup G′ ⊆ Z2, it is still a 4-coboundary 1 ∈ H4(G′, U(1)). There are two types of
boundaries realized by condensing the Z2’s charge e-particle and condensing the Z2’s flux
m-string on boundaries. These two boundaries are e- and m-gapped boundaries, analogs to
that of the 2+1D Z2 toric code. However, we can append a lower-dimensional topological
state due to H3(Z2, U(1)) = Z2, thus we find 3 gapped boundaries, as shown in Table 22’s
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G’s
subgroup G′

H3(G′, U(1))
3+1D G = Z2 gauge theory

# of gauge boundaries
3+1D G = (Z2)2 twisted DW theory

# of gauge boundaries

{1} = 1 0 1 1

Z
(a)
2 Z2 2 2

Z
(b)
2 Z2 2

(Z2)2 (Z2)3 0

3 (total number) 5 (total number)

Table 22: ForG = Z2 = Z
(a)
2 orG = (Z2)2 = Z

(a)
2 ×Z

(b)
2 , we list down the subgroupG′,H2(G′, U(1))

and gauge symmetry-breaking boundaries in 3+1D.

third column.

2. Second, we consider a 3+1D (Z2)2 twisted gauge theory, described by a low energy BF
action

∫
(
∑2

I=1
2

2πBIdAI) + 2
(2π)2

A1A2dA2 with 2-form and 1-form fields B and A. Follow

eqns.(E.1) and (F.1), we choose G I = G = (Z2)2 and G II = 1. What are the possible
unbroken subgroup L = G′? For a twisted gauge theory with a 4-cocycle H4((Z2)2, U(1)),
only limited subgroups G′ trivialize the cocycle after pulling G back to G′. After appending
lower dimensional topological states, we find 5 gapped boundaries, as shown in Table 22’s
fourth column.

To summarize, in this section, we provide many gauge-symmetry breaking gapped interfaces,
and detailed data. We find consistency with results obtained in previous literature (in 2+1D), but
we can systematically obtain gapped interfaces in any dimension, such as 3+1D.

F.2 Comparison to gapped interfaces obtained from dynamically gauging the
symmetry extended SPTs

In Appendix D, we had summarized how to construct symmetry-preserving gapped boundary for
SPTs via eqn.(D.1)’s symmetry-extension 1→ K → H

r→ G→ 1. In this section, we would like to
explore various ways to dynamically gauge this SPT system to obtain different topologically ordered
gauge versions of the system, and make comparison with the generic gauge interface construction
in eqn.(F.1)’s L → G I × G II . The goal is to demonstrate that the gauge interface construction
from L → G I × G II is general enough to contain different dynamical gauging procedure of SPT
system. To narrow down the possibilities of outcomes, here we like to fully gauge the left side SPTs
of group G to be a twisted gauge theory of group G, and to fully gauge the interface of group H.
What remains are the different but consistent choices of gauging the right side of the interface. This
corresponds to eqn.(F.1), where we choose G I = G, L = H, and leave G II free for different choices.
Below we provide several examples for the different choices of G II , and interpret the construction
from both perspectives of (a) gauging of the symmetry-extended SPTs, and (b) the gauge interface
of topologically ordered gauge theory systems, in a generic d-dimensional spacetime.

1. Consider H → G × 1, where we choose L = H, G I = G and G II = 1 in eqn.(F.1). The
group homomorphism H → G × 1 is surjective, sending h ∈ H to (r(h), 1) = (g, 1) ∈ G × 1.
From the gauging SPTs perspective of (a), the construction is obtained by first doing a
local unitary transformation on the right sector to a trivial product state, which thus can
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be removed and regarded as a trivial vacuum. We only dynamically gauge the left sector
G-SPTs and the H-interface to their gauge theory counterparts, namely the G-twisted gauge
theory (of Dijkgraaf-Witten) in d-dimensions, and H-gauge theory with a G-anomaly in a
lower (d − 1)-dimensions. But we do not gauge the right sector thus G II = 1. From the
gauge theory perspective of (b), the H → G×1 construction means that we have a nontrivial
inhomogeneous G× 1-cocycle ωG×1 = ωGI (g) · ω1

II (1)−1 = ωGI (g) · 1 for the gauge theory, and
that can be pulled back to H as lower dimensional H-cochains to construct the interface
gauge theory.

2. Consider H → G×G, where we choose L = H, G I = G and G II = G in eqn.(F.1). It is not
surjective but only a group homomorphism from h ∈ H to a diagonal group (r(h), r(h)) =
(g, g) ∈ G × G. From the gauging SPTs perspective of (a), the construction is obtained
by first doing a local unitary transformation on the right sector to a trivial product state.
The dynamically gauging procedure on the left sector and the interface is the same as in the
previous case, but we also gauge the right sector to an untwisted usual G II = G-gauge theory.
From the gauge theory perspective of (b), the H → G×G construction means that we have a
nontrivial inhomogeneous G×G-cocycle ωG×G = ωGI (g) ·1 for the gauge theory with ωGII = 1,
and that ωG×G can be pulled back to H as lower dimensional H-cochains to construct the
interface gauge theory.

3. Consider H → G×H, where we choose L = H, G I = G and G II = H in eqn.(F.1). It is not
surjective to G × H, but it has a group homomorphism from h ∈ H to (r(h), h) = (g, h) ∈
G×H. From the gauging SPTs perspective of (a), the construction is obtained by first doing
a local unitary transformation on the right sector to a trivial product state. The dynamically
gauging procedure on the left sector and the interface is the same as the previous case, but
we also gauge the right sector to a untwisted usual G II = H-gauge theory. From the gauge
theory perspective of (b), the H → G × H construction means that we have a nontrivial
inhomogeneous G×H-cocycle ωG×H = ωGI (g) ·1 for the gauge theory with ωHII = 1, and that
ωG×H can be pulled back to H as lower dimensional H-cochains to construct the interface
gauge theory.

More concretely, for a specific example, we can choose G = Z2 and H = Z4; from the perspective
of gauging 2+1D SPTs (a) from eqn.(D.1), we choose 1 → ZK2 → ZH4

r→ ZG2 → 1. The above
constructions have the following implications. The first item above offers ZH4 → ZG2 × 1, which
indicates that the left sector is a 2+1D Z2 double-semion model (i.e. a twisted Z2 gauge theory),
the interface is a 1+1D Z4 gauge theory (with a ZG2 anomaly), while the right sector is a trivial
vacuum (no gauge theory). The second item above offers ZH4 → ZG2 ×ZG2 , which indicates the left
sector is a 2+1D Z2 double-semion model, the interface is a 1+1D Z4 gauge theory (with a ZG2
anomaly), while the right sector is a 2+1D Z2 toric code (i.e., a Z2 gauge theory). The second item
above offers ZH4 → ZG2 × ZH4 , which indicates the left sector is a 2+1D Z2 double-semion model,
the interface is a 1+1D Z4 gauge theory (with a ZG2 anomaly), and the right sector is a 2+1D Z4

gauge theory.

The above construction requires a group homomorphism map, and we additionally need to
impose the zero gauge flux constraint (more precisely, zero gauge holonomy for a shrinkable loop)
everywhere, on the left sector, the interface and the right sector. The previous three examples in
Appendix F.2 all satisfy these constraints. However, other proposals may fail the constraints, for
example, by considering H → G×K for the gauge interface construction. This H → G×K requests
for a construction of a d-dimensional G-twisted gauge theory on the left, a (d− 1)-dimensional H
gauge theory (with G-anomaly) on the interface, and a d-dimensional untwisted usual K-gauge
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theory on the right — Will this be a valid construction? If we consider the H → G ×K map as
h → (r(h), k) = (g, k), then it is not a group homomorphism, and the zero gauge flux constraint
on the closed loop sitting between the interface (in H) and the right sector (in K) is generally
non-zero. Thus H → G×K is illegal for a gauge interface construction between a G-twisted gauge
theory and a K-gauge theory, at least from the perspective (a) of dynamically gauging a global
symmetry extended SPTs.

However, we can make H → G ×K work for a gapped interface, if we consider it as a group
homomorphism H × 1 → G × K, so (h, 1) ∈ H × 1 → (r(h), 1) ∈ G × K. This implies that we
have a gauge symmetry-extended construction from the left sector H → G, but a gauge symmetry-
breaking construction from the right sector 1 → K. In short, the mixed symmetry-extension
and symmetry-breaking construction can support an H-gauge interface between a G-twisted gauge
theory on the left and a untwisted usual K-gauge theory on the right.

Overall, we show that the perspective (a) of gauging global symmetries of SPTs is within the
construction of the perspective (b) of gauge interfaces of gauge theories based on eqn.(F.1). This
supports the generality of eqn.(F.1).
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