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Abstract

We explore various 4d Yang-Mills gauge theories (YM) living as boundary conditions of 5d gapped
short/long-range entangled (SRE/LRE) topological states. Specifically, we explore 4d time-reversal
symmetric pure YM of an SU(2) gauge group with a second-Chern-class topological term at θ = π
(SU(2)θ=π YM). Its higher ’t Hooft anomalies of generalized global symmetries indicate that the 4d
SU(2)θ=π YM, in order to realize all global symmetries locally, necessarily couples to a 5d higher
symmetry-protected topological state (SPTs, as an invertible TQFT, or as a 5d 1-form-center-symmetry-
protected interacting “topological superconductor” in condensed matter). We revisit the 4d SU(2)θ=π
YM-5d SRE-higher-SPTs coupled systems in [arXiv:1812.11968] and find their “Fantastic Four Siblings”
with four sets of new higher anomalies associated with the Kramers singlet/doublet and bosonic/fermionic
properties of Wilson lines. Following Weyl’s gauge principle, by dynamically gauging the 1-form center
symmetry, we transform a 5d bulk SRE SPTs into an LRE symmetry-enriched topologically ordered
state (SETs); thus we obtain the 4d SO(3)θ=π YM-5d LRE-higher-SETs coupled system with dynamical
higher-form gauge fields. Apply the tool introduced in [arXiv:1612.09298], we derive new exotic any-
onic statistics of extended objects such as 2-worldsheet of strings and 3-worldvolume of branes, which
physically characterize the 5d SETs. We discover new triple and quadruple link invariants poten-
tially associated with the underlying 5d higher-gauge TQFTs, hinting a new intrinsic relation between
non-supersymmetric 4d pure YM and topological links in 5d. We provide lattice simplicial complex
regularizations and “condensed matter” realizations.
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1 Introduction and Summary

The world where we reside, to our best present understanding, can be described by quantum theory and
the underlying long-range entanglement. Quantum gauge field theory, under the spell of “Gauge Principle”
following the insights since Maxwell, Hilbert, Weyl, Pauli, and others (See a historical review [1]) embodies
the quantum, special relativity and long-range entanglement into a systematic framework. Yang-Mills
(YM) gauge theory [2], generalizing the U(1) gauge group to a non-abelian Lie group, has been proven to
be powerful to describe the Standard Model physics.

A pure YM theory with an SU(N) gauge group (i.e., SU(N)-YM) in 4-dimensional spacetime (i.e.,
4d),1 without additional matter fields, without supersymmetry and without a Chern-class topological
term (θ = 0), is believed to be confined and trivially gapped in Euclidean spacetime R4 [3]. Formally, YM
Euclidean path integral (or partition function) Z4d

YM of a non-abelian Lie group G is

Z4d
YM ≡

∫
[Da] exp

(
− SYM+θ[a]

)
≡∫

[Da] exp
(
− SYM[a]

)
exp

(
− Sθ[a]

)
≡
∫

[Da] exp

(
−
∫
M4

1

g2
TrFa ∧ ?Fa +

∫
M4

iθ

8π2
TrFa ∧ Fa

)
, (1.1)

with the standard notations, where readers who are unfamiliar about the notations can access this infor-
mation from our footnote.2

1 We denote nd for an n-dimensional spacetime. We denote m+ 1D for an m-dimensional space and 1-dimensional time.
We denote mD for an m-dimensional spatial object.

2 Here a is locally the 1-form SU(N)-gauge field connection obtained from parallel transporting the principal-G bundle
over the spacetime manifold M4. Locally a = aµdxµ = aαµT

αdxµ with Tα is the generator of Lie algebra g for the gauge
group (G), constrained by the commutator [Tα, T β ] = ifαβγT γ , where fαβγ is a fully anti-symmetric structure constant.
Locally dxµ is a differential 1-form, the µ runs through the indices of coordinate of M4. Then aµ = aαµT

α is the Lie algebra
valued gauge field, valued in the adjoint representation of the Lie algebra. The [Da] is the path integral measure, for a
certain configuration of the gauge field a(t, x) over the spacetime (t, x). The path integral measures

∫
[Da] integrated over all

allowed gauge inequivalent configurations, where gauge redundancy is removed or mod out later. The integration is under
a weight factor exp

(
− SYM+θ[a]

)
. The g is YM coupling constant. The Fa = da − ia ∧ a is the G-gauge field strength or

curvature, while d is the exterior derivative and ∧ is the wedge product; the ?Fa is Fa’s Hodge dual. The Tr (Fa ∧ ?Fa) is
the Yang-Mills Lagrangian [2] (a non-abelian generalization of Maxwell U(1) gauge theory). The Tr denotes the trace as an
invariant quadratic form of the Lie algebra of gauge group G. Under the variational principle, YM theory’s classical equation
of motion (EOM) is non-linear. The θ-topological term in physics ( θ

8π2 TrFa ∧ Fa) = θ(−c2 + 1
2
c21) is formally related to the

second and first Chern classes, with c2(E) = − 1
8π2 Tr(Fa∧Fa)+ 1

8π2 (TrFa)∧ (TrFa) for the E-gauge (complex vector) bundle,

where c1(E) = TrFa
2π

= 0 if G = SU(N). This path integral is sensible for physicists, but may not be precisely mathematically
well-defined. We will also point out how to grasp the meaning of YM path integral on unorientable manifolds in Sec. 2.
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The YM without any Chern-class topological term, say the 4d SU(N)θ=0 theory (θ = 0 in Eq. (1.1) and
footnote 2), has a trivially energy gap and is in the confinement phase [3], with no ’t Hooft anomaly [4].
Recently, Ref. [5] discovers that for SU(N)-YM with a second Chern-class topological term at θ = π,
denoted the 4d SU(N)θ=π theory, there is a subtle ’t Hooft anomaly [4] of the generalized global symmetries
[6] of the mixed types at an even integer N, mixing between a linear 0-form time-reversal global symmetry
(say ZT2 ) transformation and quadratic 1-form ZN-center global symmetry (say ZeN,[1]) transformations.3

Intuitively speaking, since the 4d ’t Hooft anomaly is captured by a 5d topological term through the
anomaly inflow [7], schematically, Ref. [5] suggests an analogous 5d form of topological term:

∼ T BB. (1.2)

Where T implies a “1-form background field” for time-reversal symmetry ZT2 transformation and B ≡ B2

implies a 2-form background field for 1-form center symmetry ZeN,[1] transformation.

Further recently, Ref. [8] suggests that there are additional new higher ’t Hooft anomalies for some
4d SU(N)θ=π theories at even N: From one perspective, Ref. [8] suggests that, at N = 2, there is a
mixed anomaly of a cubic power of 0-form ZT2 time-reversal symmetry transformation and a linear 1-form
ZeN,[1]-center symmetry transformation. Schematically and intuitively, Ref. [8] suggests an analogous 5d
topological term to capture a new higher ’t Hooft anomaly:

∼ T T T B. (1.3)

From another perspective, Ref. [8] suggests that 4d SU(N)θ=π at an even integer N ≥ 4 contains new
mixed anomalies mixing between ZT2 , ZeN,[1] and a 0-form charge conjugation (a Z2 outer-automorphism)

symmetry. Schematically, Ref. [8] suggests new analogous 5d topological terms to capture new higher ’t
Hooft anomalies:

∼ T AAB, (1.4)

∼ T T AB. (1.5)

Here A implies a “1-form background field” for 0-form ZC2 charge conjugation or outer-automorphism
transformation. Other notations follow earlier statements. In the following, we will make the above
schematic 5d topological terms Eq. (1.2), Eq. (1.3), Eq. (1.4), and Eq. (1.5) mathematically precise, by
following the setup in Ref. [8] and Ref. [9].

The above 5d topological terms can be regarded as the semi-classical partition functions (definable on
closed 5-manifolds with appropriate structures) whose functional values depend on the couplings to global
symmetry-background probed fields. In the present work, we will further dynamically gauge the higher
1-form symmetry ZeN,[1] associated to the coupled systems of 4d YM and 5d topological terms above, in
order to transform these 5d “short-range entangled” topological terms into a 5d “long-range entangled”
topological quantum field theory (TQFT). Then, to the punchline of our work, we apply the methods
developed in Refs. [10,11] and [12] to analytically compute the physical observables of the higher-gauge 5d
TQFTs with dynamical 2-form gauge fields. The physical observables of 5d TQFTs include, for example,
(i) the partition functions Z[M5] on closed manifolds M5, (b) braiding statistics of anyonic strings and
anyonic branes (whose spacetime trajectories forming 2-worldsheets and 3-worldvolumes, respectively) and
link invariants of these 2-surfaces and 3-surfaces in a spacetime 5-manifold. We uncover new spacetime
braiding process and link invariants, including a triple-linking, its quadratic enhancement, and a quadruple
linking analogous to previous works in [10,11,13–15], except that we are now studying the phenomena in
a higher dimensional spacetime in 5d.4

3When we say “symmetry” in this article, we always mean “global symmetry,” unless we state explicitly otherwise. (We
hardly mean gauge symmetry, since it is only a redundancy.)

4 Here we comment on the physical and mathematical meanings of fractional statistics or non-abelian statistics associated
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to the spacetime braiding process for 0D anyonic particles, 1D anyonic strings or 2D anyonic branes, or other extended
objects, etc. Note that in the below discussions, we take a generalized definition of “anyonic.”
• In a more restricted definition, “anyonic” means the self-exchange statistics can go beyond bosons or fermions [16].
• In our generalized definition, “anyonic” means that either self-exchange statistics (of identical objects) or the mutual statistics
(of multiple n distinguishable objects, where n can be 2, 3, 4, or more) can go beyond bosonic or fermionic statistics.
— In 3d (2+1D) spacetime M3, braiding statistics of particles can be fractional (such as the exchange statistics of two
identical particles, or mutual statistics of two different particles) which are called anyonic particles (see an excellent historical
overview [16]). As an example, this can be understood from a 3d TQFT Chern-Simons action with local 1-form gauge field
a integrated over a spacetime 3-manifold M3

∼
∫
M3

aI daJ

which modifies the quantum statistics of particle worldline whose open ends host the anyonic particles.
— In 4d (3+1D) spacetime M4, braiding statistics of particles cannot be fractional as the two 1-worldlines cannot be
intrinsically linked in 4d. Thus there is no anyonic particle and no fractional particle statistics (beyond bosons or fermions)
in 4d. However, braiding statistics of strings can be fractional which we may call anyonic strings. As an example, this can
be understood from a 4d TQFT term with local 1-form gauge field a and 2-form gauge field b, as

∼
∫
M4

bda

which modifies the mutual quantum statistics of a 0D particle from 1-worldline a linked with a 1D string from 2-worldsheet
b in 4d spacetime.
anyonic strings and anyonic branes. Since particle cannot carry fractional charge in 4d, we can interpret as the anyonic
string carry fractional flux in 4d. Another way to interpret the fractional statistics of anyonic strings, is through the
dimensional reduction picture from 4d to 3d, where we can see that the anyonic strings can become anyonic particles in the
dimensionally reduced 3d through an S1 compactification, where the closed anyonic strings wrap around the compact S1 —
see demonstrations in the earlier work [17–19] on such 4d-to-3d dimensional reduction interpretation on braiding statistics.
From the field theory side, these additions of 4d TQFT terms with local 1-form gauge field a, as

∼
∫
M4

aIaJ daK , ∼
∫
M4

aIaJaKaL

can modify the braiding statistics of strings, see the formulations in [10, 11, 20–24]. See the relations between Dijkgraaf-
Witten’s group cohomology gauge theory [25] and these TQFTs discussed in [10,11,20]. Besides, a 4d TQFT term with local
2-form gauge field b can be still made gauge invariant with

∼
∫
M4

bIbJ ,

which can restrict the particle (worldline) must be attached to strings (worldsheet), see the formulations in [6, 11,26].
— In 5d (4+1D) spacetime M5, for example, we can have a self or mutual coupling type of 5d TQFT term with local 2-form
gauge fields b, bI , bJ , etc.,

∼
∫
M5

bdb, ∼
∫
M5

bI dbJ .

The self coupling term
∫
M5 bdb actually follows the restricted definition [16] to introduce new “anyonic” string, which means

the self-exchange statistics of string can go beyond bosonic or fermionic statistics. The mutual coupling term
∫
M5 bI dbJ obeys

our generalized definition, “anyonic” means that mutual statistics (of distinguishable 1D strings) can go beyond bosonic or
fermionic statistics. Both terms modify the quantum statistics of string worldsheet whose open ends host the 1D anyonic
string.
We can have another Aharonov-Bohm like topological term with local 1-form gauge field a and 3-form gauge field c.

∼
∫
M5

cda,

which we interpret that the 0D particle from 1-worldline a is not anyonic (with an integrally quantized charge), but the 2D
brane from 3-worldvolume (with a fractional “generalized flux”), can be anyonic branes. Again we can also let an anyonic
brane become anyonic particles in the dimensionally reduced 5d to 3d through an T 2 compactification, where a closed anyonic
brane wraps around the compact T 2 generalizing the idea of [17–19].
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The analogous phenomena happen in various dimensions.5

Now let us take a step back to digest the physical meanings of these 5d topological terms Eq. (1.2)-
Eq. (1.5). The dd ’t Hooft anomaly of ordinary 0-form global symmetries is known to be captured by a
(d + 1)d invertible topological field theory6 (i.e., iTQFT, or the so-called (d + 1)d Symmetry-Protected
Topological State [SPTs] in condensed matter physics, see recent reviews [27–30]). For a short account of
the recent development on the relations between SPT terms and response probed field theories/partition
functions, we should mention that these have been systematically studied, selectively, in [20, 31–36] (and
References therein), and climax to the hint of cobordism formulation/classification of SPTs pointed out
by [37,38].

Recently the iTQFTs and SPTs are found to be systematically classified and computed by a powerful
cobordism theory framework of Freed-Hopkins [39], following the earlier work of Thom-Madsen-Tillmann
spectra [40, 41]. Further recently, Ref. [9] generalizes the above Thom-Madsen-Tillmann-Freed-Hopkins
cobordism theory [39–41] to include the higher-form and generalized higher global symmetries [6]. So,
the generalized cobordism group computation of Ref. [9], which involves the bordism group of higher
classifying spaces and their fibrations, e.g. BG, can capture the dd higher ’t Hooft anomaly of generalized
global symmetries G by (d+ 1)d bordism invariants (again, certain more general iTQFTs). Similar earlier
or recent pursuits on a systematic framework to obtain higher-SPTs, higher-anomalies and higher-gauge
theory through cobordism theories or cohomology theories include the pioneers and the recent works
of [42–51] and citations therein.

In other words, we should be able to identify the 4d anomalies of Eq. (1.2)-Eq. (1.5) and their cor-
responding 5d topological terms as mathematically precise 5d bordism invariants,7 or equivalently 5d
higher-SPTs in condensed matter terminology. The goal of this Introduction Sec. 1 and Sec. 2 are first to
summarize some of the results obtained in Refs. [8] and [9], then introduce additional new results obtained
in this work.

1.1 The Outline and The Plan

Here are the outlines of the goals of our present work and the plan of our article.

• Sec. 2 — By identifying these 5d bordism invariants and 5d higher-SPTs that couple to 4d SU(N)θ=π YM
theory (especially at N = 2) thanks to higher-anomaly matching, as illustrated in Figure. The anomaly
matching is of course done in a non-perturbative exact analytical way. This issue is addressed in Sec. 2.

5There are many other terms allowed to be added in 5d and in higher dimensional TQFTs, see [20].
Note that in the above case, when we have a Aharonov-Bohm like topological term of∫

cmdcn ∼
∫
cndcm

(see [11]), say we have local n and m-differential forms with n < m, we always take the higher-dimensional object from the
cm-field to have fractional statistics (the analogs of fractional flux), while we take the lower-dimensional object from the
cn-field to have a regular statistics (the analogs of integrally quantized charge).

6 By invertible topological field theory (iTQFT), physically it means that the absolute value of partition function |Z| = 1
on any closed manifold. Thus whose Z can only be a complex phase Z = e iθ, which can thus be inverted and cancelled by
e− iθ as another “inverse” iTQFT.

7 For the mathematical terminology, we call:
• the bordism group generators as the manifolds or manifold generators, which generate finite Abelian groups, e.g., Zn.
• the cobordism group generators as the topological terms or iTQFTs, which generate Abelian groups, e.g., Zn or Z, etc.
• the co/bordism invariants (people call bordism invariants as cobordism invariants with the same meaning) mean that they
are invariant under the bordism class of manifolds; thus co/bordism invariants mean the topological terms or iTQFTs, which
again generate Abelian groups, Zn or Z, etc.

6



• Sec. 3 — Clarify and enumerate the possible distinct classes of 4d SU(2)θ=π YM theories. Here we
focus on their high-energy UV (ultraviolet) completion (such as on a lattice, by quantum many-body or
condensed matter systems) requires only the bosonic systems, instead of fermionic systems. These types of
YM theories, we may call them the bosonic YM theories. As we will find later these bosonic YM theories
still can allow Wilson line operators as worldlines of particles being (1) either bosonic or fermionic in
quantum statistics, (2) either Kramers doublet or Kramers singlet under the time-reversal symmetry. We
will see that this result supplements as a partial classification of 4d SU(2)θ=π bosonic YM theories. We
apply the tools in Ref. [36] to understand the relation between gauge bundle constraint, the properties of
line/surface operators towards the classification of gauge theories. This issue is addressed in Sec. 3.

In fact, from Sec. 2 and Sec. 3, we will see that there are at least four closely related 4d SU(2)θ=π non-
supersymmetric pure YM theories (which we nickname the “Fantastic Four Siblings” of 4d SU(2)θ=π YM
theories) with a bosonic UV completion say on a lattice. Each of them carries distinct 4d ’t Hooft anomaly,
thus they correspond to four distinct 5d higher-SPTs. The four distinct 5d higher-SPTs labeled by four
distinct 5d bordism invariants, are actually the physical analogs of 5d (4+1D) one-form-center-symmetry-
protected interacting topological superconductors in a condensed matter language. In short, there are
also four distinct (“Fantastic Four Siblings”) of 4d SU(2)θ=π YM-5d-higher-SPTs coupled systems.

• Sec. 4 — We dynamically gauge the 1-form center symmetry ZeN,[1], such that this procedure turns the 4d

SU(N)θ=π YM-5d-higher-SPTs coupled systems in [8] into a 4d PSU(N)θ=π YM-5d-higher-SETs coupled
systems. The SETs stands for the symmetry-enriched topologically ordered state (SETs), see the overview
of such states in comparison with SPTs in [29,30] or the footnote.8 In particular, we focus on N=2 case,
this dynamically gauging procedure turns the 4d SU(2)θ=π YM-5d-higher-SPTs coupled systems in [8]
into a 4d SO(3)θ=π YM-5d-higher-SETs coupled systems. This issue is addressed in Sec. 4.

• Sec. 4 and Sec. 5 — We then explore the detailed properties of various 5d higher-SETs obtained in
Sec. 4. The 5d higher-SETs are actually 5d time-reversal symmetric higher-TQFTs with (emergent)
2-form dynamical gauge fields. Thus they are also 5d higher-gauge TQFTs (including at least 2-form
gauge fields). We mainly focus on the “Fantastic Four Siblings” of 5d higher-SETs, although we also
consider other highly relevant exotic 5d higher-SETs. To characterize these 5d time-reversal symmetric
higher-gauge 2-form TQFTs, we compute and derive their properties:

1. Partition function Z[M5] without extended operator (1-line, 2-surface, 3-submanifold) insertions on
5-manifold M5. We compute Z[M5] following the techniques and tools built from [11] and [12]. This
issue is addressed in Sec. 4.

2. Topological ground state degeneracy (the so-called topological GSD) on a spatial M4, obtained from
computing Z[M4×S1]. We compute Z[M5] following the techniques and tools built from [12]. This
issue is addressed in Sec. 4.

3. Braiding statistics of anyonic 1D string/2D branes, etc. And the associated link invariants of the
spacetime 2-worldsheet/3-worldvolume, etc. To achieve this goal, we compute the path integral
Z[M5;W,U, . . . ] with submanifold extended-operator insertions (W,U, . . . ), following the techniques
and tools built from [10,11,14,15]. This issue is addressed in Sec. 5.

• Sec. 6 — We provide the exemplary spacetime braiding process of anyonic string/brane in 5d, and the

8 Symmetry-Protected Topological State (SPTs) is a short-ranged entangled (SRE) quantum state defined on a lattice
(UV complete such as on a triangulable manifold or a simplicial complex) — once we break global symmetry, SPTs can be
deformed to a trivial product state under local unitary transformation. Symmetry-enriched topologically ordered state (SETs)
is a long-ranged entangled (LRE) quantum state defined on a lattice (UV complete such as on a triangulable manifold or a
simplicial complex) — even if we break all of global symmetries, SETs cannot be deformed to a trivial product state under
local unitary transformation. SETs have the same LRE nature as topologically ordered states. See recent reviews [27–30].
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link configurations of extended operators, which can be detected by the link invariants that we derived in
Sec. 5.

• Sec. 7 — We come back to make more comments on the 4d SO(3)θ=π YM, which lives on the boundary
of 5d-higher-SETs. In particular, we re-examine these 4d SO(3)θ=π YM-5d-higher-SETs coupled systems
in Sec. 4.

• Sec. 8 — We construct the lattice regularization and UV completion of some of our systems. This includes
a lattice realization of 5d higher-SPTs and higher-gauge SETs by implementing on 5d simplicial complex
spacetime path integral, and a 4+1D “condensed matter” realization on the spatial Hamiltonian opera-
tor. We also provide a lattice regularization of (1) higher-symmetry-extended and (2) higher-symmetry-
preserving anomalous 3+1D topologically ordered gapped boundaries by generalizing the method of [52].

• Sec. 9 — We conclude and make connections to physics and mathematics in other perspectives.

Before we proceed to the detailed discussions in the main text, we first give a quick overview on more
colloquial and pedestrian summaries in terms of schematic descriptions and Table 1, in Sec. 1.2. Readers
who are not familiar certain mathematical information or physical motivations may seek for additional
helps from Refs. [36] (and its Appendices), [8] and [9].

1.2 Summaries and Tables

As we mention, in Sec. 2 and Sec. 3, we will see that there are at least four closely related 4d SU(2)θ=π
non-supersymmetric pure YM theories (nicknamed the “Fantastic Four Siblings” of 4d SU(2)θ=π YM
theories) with a bosonic UV completion. All of them carry distinct 4d higher ’t Hooft anomaly, thus
they correspond to four distinct 5d higher-SPTs labeled by four distinct 5d bordism invariants, (physical
analogs of 5d (4+1D) one-form-center-symmetry-protected interacting “topological superconductors” in
a condensed matter language.9) Here we advertise these results in a colloquial and pedestrian manner.

1. The 1st sibling of 4d SU(2)θ=π with Kramers singlet (T 2 = +1) bosonic Wilson line has the 4d
anomaly/5d bordism invariant schematically as:

∼ w1(TM)BB, (1.6)

with w1(TM) the Stiefel-Whitney (SW) class of spacetime M ’s tangent bundle TM . Mathematically
precisely, w1(TM)BB is given by 1

2 w̃1(TM) ∪ P(B), explained in [8] and later sections.

2. The 2nd sibling of 4d SU(2)θ=π with Kramers doublet (T 2 = −1) bosonic Wilson line has the 4d
anomaly/5d bordism invariant schematically as:

∼ w1(TM)BB + w1(TM)3B. (1.7)

3. The 3rd sibling of 4d SU(2)θ=π with Kramers singlet (T 2 = +1) fermionic Wilson line has the 4d
anomaly/5d bordism invariant schematically as:

∼ w1(TM)BB + w3(TM)B. (1.8)

9 In condensed matter, “topological superconductors” refers to electronic systems with time-reversal symmetry but without
U(1) electron charge conservation symmetry (see an overview [28,29]), for example due to the Cooper pairing breaking U(1)
down to a discrete subgroup or down to nothing.
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4. The 4th sibling of 4d SU(2)θ=π with Kramers doublet (T 2 = −1) fermionic Wilson line has the 4d
anomaly/5d bordism invariant schematically as:

∼ w1(TM)BB + w1(TM)3B + w3(TM)B. (1.9)

All these anomalies that we discussed above are the mod 2 non-perturbative global anomalies, like the
SU(2) anomalies [53, 54]. We remark that our investigations on Kramers time reversal properties and
bosonic/fermionic statistics of line operators (for non-abelian gauge theories here) give rise to a further
refined “classification” of gauge theories somehow beyond the previous framework of Ref. [55] and [6].
(See Ref. [56, 57] for the case of abelian U(1) gauge theories. See also [58] and [59] for other examples of
non-abelian gauge theories.)

A schematic illustration of 4d SU(2)θ=π Yang-Mills theory (YM)-5d short-ranged entangled (SRE)-
higher-SPTs coupled systems is shown in Fig. 1. See Table 1 for a short summary for these “Fantastic
Four Siblings” of 4d SU(2)θ=π YM theories and coupling to 5d systems, and their physical properties. See
Table 2 for a summary of 5d TQFT’s link invariants and link configurations, and references/hyperlinks to
their Sections.

5d higher-SPT or iTQFT

(5d SRE state)

4d SU(2)θ=π YM

w/ higher-’t Hooft anomaly

(a)

z

w

x y

Gauging 1-form Ze2,[1] center symmetry

5d SET or TQFT

(5d LRE state)

4d SO(3)θ=π YM

(b)

z

w

x y

Figure 1:
(a) Schematic illustration of 4d-5d coupled system: SU(2)θ=π Yang-Mills theory (YM)-5d short-ranged
entangled (SRE)-higher-SPTs (invertible TQFT) coupled systems studied in Ref. [5] and [8]. We revisit
the system and follow the mathematically notations prescribed in [8]. We find “Fantastic Four Siblings”
of such systems with bosonic UV completion, summarized in Table 1. Locally we use x, y, z (and the time
t) to label the spacetime coordinates of 4d (3+1D) YM, and we introduce an extra w to label an extra
spacetime coordinate of 5d higher SPTs.
(b) Schematic illustration of 4d-5d coupled system: 4d SO(3)θ=π Yang-Mills theory (YM)-5d long-ranged
entangled (LRE)-higher-SETs (higher-gauge TQFT with 2-form gauge fields) coupled systems obtained
via gauging 1-form Ze2,[1] center symmetry for the whole bulk-boundary system in Fig. 1 (a). We study
“Fantastic Four Siblings” of such 5d SET systems with bosonic UV completion, summarized in Table
1. Locally we use x, y, z (and the time t) to label the spacetime coordinates of 4d (3+1D) YM, and we
introduce an extra w to label an extra spacetime coordinate of 5d higher SETs.
See also Fig. 16.
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“Fantastic Four Siblings” of 5d SRE-higher-SPTs-4d SU(2)θ=π YM coupled systems

and their gauged analogous

“Fantastic Four Siblings” of 5d LRE-higher-SETs-4d SO(3)θ=π YM coupled systems

(i). 5d higher-anomaly polynomial

(5d bordism invariants of ΩO
5 (B2Z2))

involving 1-form center Ze2,[1]
time-reversal ZT2 -symmetries

5d iTQFT / SPT partition function :
Z5d

SPT(K1,K2)
[M5].

5d TQFT / SET path integral :
Z5d

SET(K1,K2)
[M5].

(ii). 4d SU(2)θ=π YM obtained via
dynamical gauging 4d SPTs

(4d bordism invariants of ΩG
′

4 )

G′ for a group extension:

1→ SU(2)→ G′ → O(d)→ 1.

Gauge and spacetime
bundle/connection constraints

Wilson line operator W properties

(iii). 5d-spacetime-braiding process

of anyonic-1D-strings/2D-branes

from 2-worldsheet and 3-worldvolume

of 5d Higher-Gauge TQFTs/SETs:

Path-integral Z[M5,Link]/Z[M5]

≡ 〈Link〉

New 5d Topological Link Invariants

1st system (K1 = 0,K2 = 0) :
1
2 w̃1(TM) ∪ P(B)= BSq1B + Sq2Sq1B

∼ w1BB

iTQFT: Z5d
SPT(0,0)

[M5] of Eq. (2.19)

TQFT: Z5d
SET(0,0)

[M5] of Eq. (4.1)

Eq. (3.2)

G′ = O(d)× SU(2) in Eq. (3.6)

w2(VPSU(2)) = B

Kramers singlet (T 2 = +1) bosonic W

Eq. (5.25)

#(V 4
X ∩ V 3

U(i)
∩ V 3

U(ii)
)

≡ Tlk
(5)
w1BB

(Σ3
X ,Σ

2
U(i)

,Σ2
U(ii)

)

2nd system (K1 = 1,K2 = 0) :
1
2 w̃1(TM) ∪ P(B) + w1(TM)3B

= BSq1B + w2(TM)Sq1B

∼ w1BB + (w1)3B

iTQFT: Z5d
SPT(1,0)

[M5] of Eq. (2.19)

TQFT: Z5d
SET(1,0)

[M5] of Eq. (4.1)

Eq. (3.2)

G′ = E(d)×Z2
SU(2) in Eq. (3.8)

w2(VPSU(2)) = B + w1(TM)2

Kramers doublet (T 2 = −1) bosonic W

Eq. (5.96)

1
2#(V 3

Uh
∩ Σ2

Ub
)

≡ 1
2Lk

(5)
w2 dB(Σ2

Uh
,Σ2

Ub
)

3rd system (K1 = 0,K2 = 1) :
1
2 w̃1(TM) ∪ P(B) + w3(TM)B

= BSq1B + w1(TM)2Sq1B

∼ w1BB + w3B

iTQFT: Z5d
SPT(0,1)

[M5] of Eq. (2.19)

TQFT: Z5d
SET(0,1)

[M5] of Eq. (4.1)

Eq. (3.2)

G′ = Pin+(d)×Z2 SU(2) in Eq. (3.10)

w2(VPSU(2)) = B + w2(TM)

Kramers singlet (T 2 = +1) fermionic W

Eq. (5.96)

#(V 4
X(i)
∩ V 4

X(ii)
∩ Σ2

U )

≡ Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U )

4th system (K1 = 1,K2 = 1) :
1
2 w̃1(TM)P(B) + w1(TM)3B + w3(TM)B

= BSq1B

∼ w1BB + (w1)3B + w3B

iTQFT: Z5d
SPT(1,1)

[M5] of Eq. (2.19)

TQFT: Z5d
SET(1,1)

[M5] of Eq. (4.1)

Eq. (3.2)

G′ = Pin−(d)×Z2 SU(2) in Eq. (3.12)

w2(VPSU(2)) =
(
B+

w1(TM)2 + w2(TM)
)

Kramers doublet (T 2 = −1) fermionic W

Eq. (5.96)

#(V 3
Ub
∩ Σ2

Ub
)

≡ Lk
(5)
B dB(Σ2

Ub
,Σ2

Ub
)

Table 1: A short summary of some results obtained in our work for the “Fantastic Four Siblings” of 4d pure non-
supersymmetric SU(2)θ=π YM theories or SO(3) YM theories, and for the 4d-5d-SPT coupled systems or 4d-5d-higher-SET
coupled systems.
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Section and Link Invariant

Link Configuration Intersecting Number Configuration

Sec. 5.1 and Sec. 6.2: #(V 4
X ∩ V 3

U(i)
∩ V 3

U(ii)
) ≡ Tlk

(5)
w1BB

(Σ3
X ,Σ

2
U(i)

,Σ2
U(ii)

)

×

D4

S3

S1
S1

D2

Σ3
X

Σ2
U(i)

Σ2
U(ii)

×

D4

S3

D2
S1

D2

V 4
X

V 3
U(i)

V 3
U(ii)

Sec. 5.2.2, Sec. 5.4 and Sec. 6.3: #(V 4
X(i)
∩ V 4

X(ii)
∩ Σ2

U ) ≡ Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U )

S2D3

(1)

(2) (3)

×

S2D3

S1
(1)

S1
(3)

S2
(2)

Σ3
X(ii) Σ2

U

Σ3
X(i)

T 2

S2D3

(1)

(2) (3)

×

S2D3

S1
(1)

S1
(3)

S2
(2)

V 4
X(ii) Σ2

U

V 4
X(i)

D2 × S1

Sec. 5.2.1 and Sec. 6.4: #(V 4
X(i)
∩ V 4

X(ii)
∩ V 4

X(iii)
∩ V 3

U ) ≡ Qlk(5)(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U )

×

D3

S2 S2

D3Σ3
X(i)

Σ3
X(ii)

Σ3
X(iii)

Σ2
U

×

D3

S2 S2

D3V 4
X(i)

V 4
X(ii)

V 4
X(iii)

V 3
U

Sec. 5.4 and Sec. 6.5: #(V 3
U(i)
∩ Σ2

U(ii)
) ≡ Lk

(5)
B dB(Σ2

U(i)
,Σ2

U(ii)
)

×D3

S2 S2

D3

Σ2
U(i)

Σ2
U(ii)

×D3

S2 S2

D3

V 3
U(i)

Σ2
U(ii)

Sec. 5.3, Sec. 5.4 and Sec. 6.6: #(V 3
U ′ ∩ Σ2

U ) ≡ Lk
(5)
w2 dB(Σ2

U ,Σ
2
U ′)

×D3

S2 S2

D3

Σ2
U′ Σ2

U

×D3

S2 S2

D3

V 3
U′ Σ2

U

Sec. 6.7: #(V 4
X(i)
∩ Σ3

X(ii)
∩ V 3

U ) ≡ Tlk
(5)
(AdA)B(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U )

×

D3

S2 S2

D3

Σ3
X(i)

Σ3
X(ii)

Σ2
U

×

D3

S2 S2

D3

V 4
X(i)

Σ3
X(ii)

V 3
U

Table 2: Link invariants and link configurations of 2-worldsheet and 3-worldvolume from the “anyonic”-1D-Strings/2D-
Branes’ spacetime braiding process in 5d TQFTs, here 5d higher-gauge time-reversal SETs in Sec. 5 and 6.
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2 4d SU(2)θ=π Yang-Mills Gauge Theories coupled to the Boundary of
5d SPTs/Short-Range Entangled Invertible-TQFTs

2.1 Derivation of New Higher-Anomalies of SU(2) Yang-Mills at θ = π

We start with SU(2) Yang-Mills theory with θ = π, denoted SU(2)θ=π. The Euclidean action SE is

SE [M4] =
1

g2

∫
M4

TrF ∧ ?F − iπ

8π2

∫
M4

TrF ∧ F. (2.1)

Since the anomaly is a renormalization group flow invariant, in the following discussion, the kinetic term
which is proportional to the running coupling constant 1/g2 will not play a role. Hence we only consider
the theta term (the second term involving θTrF ∧ F ). To probe the anomaly, we turn on the background
gauge fields B for the Ze2,[1] 1-form symmetry. Here B is a Z2 2-form gauge field, with

∮
Σ B = πZ for

any closed surface Σ, and it is related to the 2-cochain B via B ∼ πB, and we also convert the wedge
product “∧” to the cup product “∪.” To couple the SU(2) Yang-Mills to the background gauge field B,
one promotes the SU(2) gauge field b to a U(2) gauge field b̂, and the theta term at θ = π reads10

π

8π2

∫
X

Tr
(
F̂ − BI2

)
∧
(
F̂ − BI2

)
(2.2)

where F̂ = db̂− i b̂∧ b̂ is the U(2) field strength, and I2 is the two dimensional identity matrix. To restore
the SU(2) gauge field, the U(2) field strength should satisfy the gauge bundle constraint

w2(VPSU(2)) = w2(VSO(3)) =
TrF̂

2π
=

2B
2π

= B mod 2. (2.3)

Here w2(VPSU(2)) = w2(VSO(3)) is the Stiefel-Whitney class of the associated vector bundle of the PSU(2) =
SO(3) (the principal gauge bundle of PSU(2) = SO(3)).

To activate the background field for the time reversal symmetry, we formulate Eq. (2.2) on an un-
orientable manifold M4. On an unorientable manifold, the top differential form is not well defined, due
to the lack of the volume form whose definition needs an orientation. To make sense of Eq. (2.2) on an
unorientable manifold, we apply the 1st and the 2nd Chern classes of the associated vector bundles of
U(N) (which we denote as cj(VU(N)) for the jth Chern class for the principal gauge bundle of U(N)):

c1(VU(N)) =
TrF̂

2π
,

c2(VU(N)) = − 1

8π2
Tr(F̂ ∧ F̂ ) +

1

8π2
(TrF̂ ) ∧ (TrF̂ ).

(2.4)

Here P ≡ P2 is the Pontryagin square. Replacing 1
8π2 Tr(F̂ ∧ F̂ ) by P(c1)

2 − c2, Eq. (2.2) is rewritten as

π

∫
M4

(
P(c1(VU(2)))

2
− c2(VU(2))−

1

2
B ∪ c1(VU(2)) +

P(B)

4

)
. (2.5)

On an unorientable manifold M = M4, w1(TM) is nontrivial and one can consider it as the background
gauge field for the time reversal symmetry. This allows us to modify the gauge bundle constraint Eq. (2.3)
by an additional term K1w1(TM)2, with K1 = 0, 1.

10 The topological term for the Euclidean action SE,topological in the Euclidean partition function Z = exp(−SE,topological)
contains a factor of imaginary i , namely SE = − i (. . . ) in Eq. (2.1). However, by converting exp(−SE) = exp(iS), we have
the following “Minkowski” S in Eq. (2.2).
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Furthermore, we also activate the term K2w2(TM) with K2 = 0, 1, since the underlying manifold does
not necessarily allow a Spin/Pin structure. In summary, there are four choices of gauge bundle constraints

w2(VPSU(2)) = w2(VSO(3)) = c1(VU(2)) = B +K1w1(TM)2 +K2w2(TM) mod 2, K1,2 ∈ Z2 . (2.6)

The value of K1,2 has physical consequences: when K1 = 0, 1, the SU(2) charge is Kramer singlet (T 2 =
+1) or Kramer doublet (T 2 = −1) under time-reversal transformation; when K2 = 0, 1, the SU(2) charge
is a boson (quantum spin as an integer) or a fermion (quantum spin as a half-integer). (More details
about the Wilson line properties are derived in Sec. 3.)

Since the time reversal and 1-form Ze2,[1] symmetry background gauge fields are activated, we would like

to check whether the action Eq. (2.5) is gauge invariant. Failure to be gauge invariant implies the existence
of ’t Hooft anomaly for the global symmetries. Under the 1-form background gauge transformation

B → B + δλ, (2.7)

c1 also transforms c1 → c1 + δλ due to the gauge bundle constraint Eq. (2.6). The variation of the theta
term Eq. (2.5) is

π

∫
M4

(
1

2
δλ ∪ c1(VU(2)) +

P(δλ)

4

)
= π

∫
M4

(
1

2
δλ ∪ (B + Sq1λ+K1w1(TM)2 +K2w2(TM))

)
. (2.8)

The right hand side of Eq. (2.8) does not vanish.

To interpret such non-invariance as a 4d higher-anomaly (associated to a 5d bordism invariant, or
physically to a 5d higher-SPTs, given in [8] and [9], more in the next subsection 2.2), we need to examine
Eq. (2.8) can not be cancelled by adding 4d counter terms of the background gauge field. The 4d counter
terms that we can add to the action are the topological terms characterizing 4d SPTs, whose general form
are

π

∫
M4

(
L1

2
P(B) + L2w2(TM)2 + L3w1(TM)4 + L4w1(TM)2B + L5w2(TM)B

)
, (2.9)

where L1 ∈ Z4, and Lj ∈ Z2 for j = 2, 3, 4, 5 characterize distinct 4d (higher-)SPT phases. These 4d
(higher-)SPTs topological terms have been classified in Ref. [8, 9] via a generalized cobordism theory for
higher global symmetries. Under the 1-form gauge transformation Eq. (2.7), the variation of Eq. (2.9) is

π

∫
M4

δλ ∪
(
L1B + L1Sq1λ+ L4w1(TM)2 + L5w2(TM)

)
(2.10)

which does not cancel Eq. (2.8). We conclude that there is indeed a higher ’t Hooft anomaly involving
the time reversal 0-form ordinary global symmetry and the Ze2,[1] 1-form center global symmetry.

2.2 Proof of Anomaly Matching of 5d-4d Inflow and Cobordism Group Data

In this section, we propose that the nontrivial variation Eq. (2.8) is cancelled by a 5d anomaly polynomial

π

∫
M5

(
B ∪ Sq1B + Sq2Sq1B +K1w1(TM)3 ∪B +K2w3(TM) ∪B

)
. (2.11)

The last two term terms are new higher ’t Hooft anomalies in 4d, which we will explain.

We prove and explain the 5d anomaly polynomials from two complimentary perspectives:
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1. From the mathematical perspective, we compare Eq. (2.11) with the bordism group data given in [8]
and [9]. Since the global symmetries of 4d SU(2)θ=π YM theory that we concern include only ZT2
0-form time-reversal and Ze2,[1] 1-form center symmetry, we apply the cobordism classification of

5dSPTs/4d anomaly via the 5d bordism group

ΩO
5 (B2Z2) = Z4

2. (2.12)

Hence there are four independent generators of the bordism group ΩO
5 (B2Z2) of degree two, which

we enumerate below

BSq1B,

Sq2Sq1B = (w2(TM) + w1(TM)2)Sq1B = (w3(TM) + w1(TM)3)B,

w1(TM)2Sq1B = w1(TM)3B,

w2(TM)w3(TM).

(2.13)

Clearly, our proposal Eq. (2.11) is a bordism invariant based on an appropriate linear combination
of Eq. (2.13), which specifies a 5d higher-SPT and 4d anomaly by a 5d topological term:

exp

[
iπ

∫
M5

(
BSq1B + (1 +K2)Sq2Sq1B + (K1 +K2)w1(TM)3B

)]
(2.14)

2. From the quantum field theoretical perspective, we match the anomaly of the 4d SU(2)θ=π YM
theory Eq. (2.8) with the anomaly inflow from the 5d SPTs Eq. (2.11) (or equivalently Eq. (2.14)).
This will be demonstrated explicitly below.

To show that Eq. (2.11) is the correct 5d anomaly polynomial, we consider the gauge transformation
Eq. (2.7) and examine, when M5 has a boundary ∂M5 = M4, whether the variation of Eq. (2.11) is
cancelled by the higher ’t Hooft anomaly of the SU(2)θ=π YM theory. Under Eq. (2.7), the variation of
Eq. (2.11) is

π

∫
M5

(
δλSq1B2 +B2Sq1δλ+ δλSq1δλ+ Sq2Sq1δλ+K1w1(TM)3δλ+K2w3(TM)δλ

)
. (2.15)

Let us simplify the first four terms in Eq. (2.15).

π

∫
M5

(
δλSq1B +BSq1δλ+ δλSq1δλ+ Sq2Sq1δλ

)
= π

∫
M5

(
Sq1(δλB) +

1

2
Sq1(δλδλ) + Sq2Sq1δλ

)

= π

∫
M5

(
Sq1(δλB) +

1

2
Sq1(δλδλ)

)
= π

∫
M4

1

2
δλ ∪

(
B + Sq1λ

)
,

(2.16)

where in the second equality we used δ = 2Sq1 or 1
2δ = Sq1, and discarded the last term on the first line

since Sq1Sq1 = 0. Therefore, we have shown the first two terms in Eq. (2.15) cancel the first two terms
in Eq. (2.8).

To show that the last two terms in Eq. (2.15) cancel the corresponding last two terms in Eq. (2.8), we
perform integration by parts which allows us to write the 5d terms as 4d terms:

π

∫
M5

(
K1w1(TM)3δλ+K2w3(TM)δλ

)
= π

∫
M4

λ ∪
(
K1w1(TM)3 +K2w3(TM)

)
. (2.17)
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To show Eq. (2.17) matches the anomaly in Eq. (2.8), we manipulate the 4d terms as follows

π

2

∫
M4

δλ ∪
(
K1w1(TM)2 +K2w2(TM)

)
= π

∫
M4

Sq1λ ∪
(
K1w1(TM)2 +K2w2(TM)

)

= π

∫
M4

Sq1

(
λ ∪ (K1w1(TM)2 +K2w2(TM))

)
+ π

∫
M4

λ ∪
(
K2w1(TM)w2(TM) +K2w3(TM)

)

= π

∫
M4

λ ∪
(
K1w1(TM)3 + 2K2w1(TM)w2(TM) +K2w3(TM)

)

= π

∫
M4

λ ∪
(
K1w1(TM)3 +K2w3(TM)

)
.

(2.18)

The last line precisely cancels Eq. (2.17). This demonstrates the matching of the anomaly. Namely, we
have shown all four terms in Eq. (2.15) from the 5d higher-anomaly polynomial (or 5d higher-SPTs),
matches the 4d higher-anomaly in Eq. (2.8) of the SU(2)θ=π YM theory.

2.3 5d SPTs/Bordism Invariants whose Boundary allows 4d SU(2)θ=π YM

Using the bordism group data and the identities given in Ref. [8] and [9], we can rewrite the 4d higher-
anomalies and 5d higher-SPTs/bordism invariants/anomaly polynomials Eq. (2.11) and Eq. (2.14) in
various equivalent ways

Z5d
SPT(K1,K2)

[M5]

≡ exp

(
iπ

∫
M5

1

2
w̃1(TM) ∪ P(B) +K1w1(TM)3B +K2w3(TM)B

)
(2.19)

= exp

(
iπ

∫
M5

1

4
δ(P2(B2)) +K1w1(TM)2Sq1B +K2w2(TM)Sq1B

)

= exp

(
iπ

∫
M5

BSq1B + Sq2Sq1B +K1w1(TM)2Sq1B +K2w2(TM)Sq1B

)

= exp

(
iπ

∫
M5

BSq1B + (w2(TM) + w1(TM)2)Sq1B +K1w1(TM)2Sq1B +K2w2(TM)Sq1B

)

= exp

(
iπ

∫
M5

BSq1B + (1 +K1)w1(TM)2Sq1B + (1 +K2)w2(TM)Sq1B

)
(2.20)

= exp

(
iπ

∫
M5

BSq1B + (w3(TM) + w1(TM)3)B +K1w1(TM)3B +K2w3(TM)B

)

= exp

(
iπ

∫
M5

BSq1B + (1 +K1)w1(TM)3B + (1 +K2)w3(TM)B

)
.
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3 Classification of 4d SU(2)θ=π Yang-Mills theories: Bosonic UV com-
pletions

In this section we aim to better digest the constraints between the Eq. (2.6), the gauge connection
w2(VSO(3)) and the spacetime connection wj(TM), i.e.,

w2(VSO(3)) = B +K1w1(TM)2 +K2w2(TM) mod 2, K1,2 ∈ Z2.

and discuss their physical consequences.

3.1 Kramers Time Reversal Even/Odd and Bosonic/Fermionic Wilson line

Below we provide some physical interpretations of the “Fantastic Four Siblings” of 4d SU(2) YM theories
based on its 1d Wilson line properties.

First, we introduce the standard 4d SU(2) Yang-Mills path integral Z4d
SU(2)YM[B] with background

2-form B field coupling. Here Z4d
SU(2)YM[B] is the combination of Eq. (1.1)’s Z4d

YM, with the field strength

coupling F̂ −B following in Eq. (2.2). The Stiefel-Whitney (SW) class of the associated vector bundle of
the gauge bundle E for the SU(2) gauge theory is constrained as the SW class of the associated vector
bundle of SO(3):

w2(E) = w2(VSO(3)) (3.1)

Conventionally we have the 4d YM coupling to a background 2-form B as [6] (our notation follows [8] )11∫
[DΛ] Z4d

SU(2)YM[B] exp
(
iπ

∫
Λ ∪ (w2(E)−B)

)
,

• Electric 2-surface Ue: Mathematically, integrating out the Lagrange multiplier Λ, set (w2(E)− B) = 0
mod 2. Physically, exp(iπ

∫
Λ) plays the role of an electric 2-surface Ue = exp(iπ

∫
Λ), which measures

1-form e-symmetry Ze2,[1]. The magnetic ’t Hooft line lives on the boundary of an electric 2-surface

Ue = exp(iπ
∫

Λ). Since Ue is dynamical, ’t Hooft line is not genuine thus not in the line spectrum for the
SU(2) gauge theory [6].

• Magnetic 2-surface Um is given by exp(iπ
∫
w2(E)). We can show from the fact that the 2-surface w2(E)

defined by a 2-surface defect (where each small 1-loop of ’t Hooft line linked with this w2(E) getting a
nontrivial π-phase e iπ). Thus, the w2(E) has its boundary with Wilson loop We = Tr(P exp(i

∮
a)) such

that UeUm ∼ exp(iπ
∫

Λ ∪ w2(E)) specifies that when a 2-surface Ue links with (i.e. wraps around) a
1-Wilson loop We, it yields a nontrivial statistical π-phase e iπ = −1.

Now we propose to modify YM partition function following a different bundle/connection constraint
Eq. (2.6), so we arrive at a new partition function:

Z4d
SU(2)YM(K1,K2)

[B] ≡
∫

[DΛ] Z4d
SU(2)YM[B] exp

(
iπ

∫
Λ ∪ (w2(E)−

(
B +K1w1(TM)2 +K2w2(TM)

)
)
)
,(3.2)

As we just deduce that the magnetic 2-surface Um ∼ exp(iπ
∫
w2(E)) has its boundary as 1-Wilson

loop We = Tr(P exp(i
∮
a)), together with the modified YM partition function Eq. (3.2) and its constraint

Eq. (2.6), now we can show that

11We can also introduce an additional Pontryagin square B term exp
(

i π
2
pP(B)) with p ∈ Z4 into the path integral, as

the pioneer works Ref. [55] and [6] do. However, this weight factor term only will result in shifting (thus relabeling) of the
classification of 4d SU(2)θ=π theories that we are going to reveal.
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1. (K1,K2) = (0, 0): The gauge bundle constraint is w2(E) = B mod 2. The magnetic 2-surface
Um ∼ exp(iπ

∫
w2(E)) has no decoration other than the 2-form background B field. Thus the

magnetic 2-surface Um’s boundary 1-Wilson line We is Kramer singlet (T 2 = +1) and bosonic.

2. (K1,K2) = (1, 0): The gauge bundle constraint becomes w2(E) = B + w1(TM)2 mod 2. The mag-
netic 2-surface Um ∼ exp(iπ

∫
w2(E)) has a decoration

∫
w1(TM)2 other than the 2-form B field.

But
∫
w1(TM)2 is a topological term in a cohomology group H2(ZT2 ,U(1)) also in bordism group

ΩO
2 (pt), which is effectively a 2d Haldane’s anti-ferromagnetic quantum spin-1 chain protected by

time-reversal symmetry. It is well-known that the 2d Haldane’s spin-1 chain’s each open 1d bound-
ary has two-fold degeneracy due to Kramer doublet (T 2 = −1). Thus due to

∫
w1(TM)2 decoration,

the magnetic 2-surface Um’s boundary 1-Wilson line We is Kramer doublet (T 2 = −1) and bosonic.

3. (K1,K2) = (0, 1): The gauge bundle constraint becomes w2(E) = B + w2(TM) mod 2. The mag-
netic 2-surface Um ∼ exp(iπ

∫
w2(E)) has a decoration

∫
w2(TM) other than the 2-form B field.

But
∫
w2(TM) is associated to a spin structure. The 2d

∫
w2(TM)’s each open 1d boundary as

a worldline of particle has fermionic statistics. Thus due to
∫
w2(TM) decoration, the magnetic

2-surface Um’s boundary 1-Wilson line We is Kramer singlet (T 2 = +1) and fermionic.

4. (K1,K2) = (1, 1): The gauge bundle constraint is w2(E) = B + w1(TM)2 + w2(TM) mod 2. The
combined effects mean that the magnetic 2-surface Um’s boundary 1-Wilson line We is Kramer
doublet (T 2 = −1) and fermionic.

In fact, our above discussions are universal applicable to more general SU(N) YM theories!12 This way
of enumerating gauge theories (based on new gauge bundle constraints) guides us to obtain new classes
of gauge theories beyond the frame work of Ref. [55]. The implications are not restricted to merely 4d
SU(2)θ=π YM.

3.2 Enumeration of Gauge Theories from Dynamically Gauging 4d SPTs

We have discussed the “Fantastic Four Siblings” of SU(2)θ=π YM theories given by Z4d
SU(2)YM(K1,K2)

[B] in

Eq. (3.2), with four distinct sets of new anomalies derived in Sec. 2, and with Kramer singlet/doublet
(T 2 = +1/ − 1) or bosonic/fermionic Wilson lines in Sec. 3.1. With these properties shown, we are
confident that they are really four distinct classes of SU(2)θ=π YM theories (at least at the UV high
energy). The distinct ’t Hooft anomalies of (K1,K2) also shows that the four classes of SU(2)θ=π YM
theories are distinct.

In this subsection, we like to construct and enumerate these “Fantastic Four Siblings” of SU(2)θ=π
YM theories by dynamically gauging the SU(2) symmetry from 4d time-reversal symmetric SU(2)-SPTs.
To this end, we follow Freed-Hopkins [39] to consider a suitable group extension from the time-reversal
symmetry (where the spacetime d-manifold requires the O(d)-structure) via a SU(2) extension:

1→ SU(2)→ G′ → O(d)→ 1. (3.3)

These 4d SPTs can be regarded as 4d co/bordism invariants of

ΩG′
4,tor, (3.4)

and the 4d SPTs are classified by this torsion subgroup ΩG′
4,tor of the bordism group ΩG′

4 for all the possible

G′ under the above group extension. The extension is classified by H2(BO(d),Z2) = Z2 × Z2 for d > 1,
generated by w2

1(TM) and w2(TM).

12 Related studies along this line of analysis have also appeared in [58] and [59].

17



The solution G′ of this extension problem 1→ SU(2)→ G′ → O→ 1, is given in [39] with indeed four
choices of G′ = O× SU(2) or E×Z2 SU(2) or Pin+ ×Z2 SU(2) or Pin− ×Z2 SU(2).

Follow the similar study in Ref. [36], there is a correspondence between the element b = K1w1(TM)2 +
K2w2(TM) and H2(BO(d),Z2) = (Z2)2. It will soon become clear that b is related to w2(VSO(3)) − B
(i.e., the difference of the gauge bundle E = VSO(3) connection and the background gauge connection B).
Then the 4 central extension choices labeled by b are:

1. b = 0 ⇒ G′ = O(d)× SU(2) ⇒ After gauging SU(2), we gain the gauge bundle constraint with
K1 = K2 = 0,

w2(VSO(3))−B = 0.

One can compute the co/bordism group in Table 3 (also given in [36]), we obtain in 4d:

Ω
O(d)×SU(2)
4,tor = Z3

2 , (3.5)

whose bordism invariants are generated by three generators of mod 2 classes:
w4

1(TM),
w2

2(TM),
c2 mod 2.

(3.6)

2. b = w1(TM)2 ⇒ G′ = E(d)×Z2 SU(2)⇒ After gauging SU(2), we gain the gauge bundle constraint
with K1 = 1 and K2 = 0,

w2(VSO(3))−B = w1(TM)2.

We compute the co/bordism group in Table 4, we obtain in 4d:

Ω
E(d)×Z2

SU(2)

4,tor = Z2 , (3.7)

whose bordism invariant is generated by one generator of mod 2 class:{
b̃w2(VSO(3)). (3.8)

The E(d) is defined in [39] where E(d) is a subgroup of O(d)× Z4, described by two data (M, j) ∈
(O(d),Z4) where such that the detM = j2. We define b̃ = b mod 2 where b is the generator of
H2(BZ4,Z4).

3. b = w2(TM) ⇒ G′ = Pin+ ×Z2 SU(2) ⇒ After gauging SU(2), we gain the gauge bundle constraint
with K1 = 0 and K2 = 1,

w2(VSO(3))−B = w2(TM).

The co/bordism group is computed in [36,39] and in Table 5, we obtain in 4d:

Ω
Pin+×Z2

SU(2)

4,tor = Z4 × Z2, (3.9)

whose bordism invariants are generated by generators of mod 4 and mod 2 classes:{
νηSU(2),with a ν ∈ Z4 class

w2
2(TM).

(3.10)

This is related to the interacting version of CI class topological superconductor in condensed matter
physics ( [60], [39], and [36]). Details of these topological terms are discussed in [36].

4. b = w2(TM)+w1(TM)2 ⇒ G′ = Pin− ×Z2 SU(2)⇒ After gauging SU(2), we gain the gauge bundle
constraint with K1 = K2 = 1,

w2(VSO(3))−B = w2(TM) + w1(TM)2.
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The co/bordism group is computed in [36,39] and in Table 6, we obtain in 4d:

Ω
Pin−×Z2

SU(2)

4,tor = (Z2)3, (3.11)

whose bordism invariants are generated by three generators of mod 2 classes:
N ′0 mod 2,
w4

1(TM),
w2

2(TM).
(3.12)

This is related to the interacting version of CII class topological insulator in condensed matter
physics ( [60], [39], and [36]). Details of these topological terms are discussed in [36].

More information about these (co)bordism group calculations can be read from [36,39]. See Appendix
of [36] for a quick background review. In particular, since the computation involve no odd torsion, we can
use Adams spectral sequence to compute ΩG′

n = πn(MTG′):

Exts,tA2
(H∗(MTG′,Z2),Z2)⇒ πt−s(MTG′)∧2 . (3.13)

Here πt−s(MTG′)∧2 is the 2-completion of the group πt−s(MTG′). For example, MT (O × SU(2)) =
MO∧BSU(2)+, MT (E×Z2 SU(2)) = MSO∧Σ−2MZ4 ∧Σ−3MSO(3), MT (Pin+ ×Z2 SU(2)) = MSpin∧
Σ−3MO(3), MT (Pin− ×Z2 SU(2)) = MSpin ∧Σ3MTO(3). BSU(2)+ is the disjoint union of BSU(2) and
a point, Σ is the suspension.

Let M be an n-manifold, VSO(3) be the associated vector bundle of the SO(3) gauge bundle. Below
we compute the Stiefel-Whitney classes of (TM − n) ⊗ VSO(3). They are used to express the cobordism

invariants of Ω
Pin±×Z2

SU(2)

d . Below wi means the i-th Stiefel-Whitney class, w means the total Stiefel-
Whitney class, namely, we have w = 1+w1 +w2 +w3 + · · · . Denote w′i = wi(VSO(3)), wi = wi((TM −n)⊗
VSO(3)). In addition, the wi(TM) means specifically the i-th Stiefel-Whitney class of spacetime tangent
bundle TM .

w((TM − n)⊗ VSO(3))

=
w(TM ⊗ VSO(3))

w(VSO(3))n

=
1 + w1(TM) + w1(TM)2 + w2(TM) + nw′2 + w1(TM)3 + nw1(TM)w′2 + w3(TM) + nw′3 + · · ·

(1 + w′2 + w′3 + · · · )n
= 1 + w1(TM) + w1(TM)2 + w2(TM) + w1(TM)3 + w3(TM) + · · · (3.14)

So w1 = w1(TM), w2 = w1(TM)2 + w2(TM), w3 = w1(TM)3 + w3(TM), etc.

We also use the notation “TP” for the classification of topological phases defined in [39], such that

TPd,tor(G
′) = ΩG′

d,tor. (3.15)

Here are the list of tables summarizing the results in 4d and in 5d:

We conclude this section with some comments. The “Fantastic Four Siblings” of 4d SU(2)θ=π YM
theories are obtained, specifically, from summing over the SU(2) gauge connections of following four
topological terms (i.e., gauging the SU(2) symmetry four distinct SPTs):

1. (−1)c2 in Eq. (3.6).
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d TPd,tor(O(d)× SU(2)) co/bordism invariants

4 Z3
2 w4

1(TM), w2
2(TM), c2 mod 2

5 Z2 w2(TM)w3(TM)

Table 3: Cobordism groups TPi(O(d) × SU(2)) and co/bordism invariants. Here wi(TM) is the i-th
Stiefel-Whitney class of the spacetime tangent bundle, c2 is the second Chern class of the SU(2) gauge
bundle.

d TPd,tor(E(d)×Z2 SU(2)) cobordism invariants

4 Z2 b̃w′2
5 Z3

2 × Z2
4 w2(TM)w3(TM), w′2w

′
3, ãb̃w

′
2, ab

2, aP2(w2(TM))

Table 4: Cobordism groups TPd(E(d) ×Z2 SU(2)) and cobordism invariants. Here ã = a mod 2 where
a is the generator of H1(BZ4,Z4), and b̃ = b mod 2 where b is the generator of H2(BZ4,Z4), wi(TM) is
the i-th Stiefel-Whitney class of the spacetime tangent bundle, w′i is the i-th Stiefel-Whitney class of the
SO(3) gauge bundle. Note that there is a short exact sequence of groups: 1→ SO(d)→ E(d)→ Z4 → 1,
and MT (E(d)×Z2 SU(2)) = MTE(d) ∧ Σ−3MSO(3) = MSO(d) ∧ Σ−2MZ4 ∧ Σ−3MSO(3).

d TPd,tor(Pin+(d)×Z2 SU(2)) cobordism invariants

4 Z2 × Z4 w2
2, ηSU(2)

5 Z2 w2w3

Table 5: Cobordism groups TPd(Pin+(d)×Z2 SU(2)) and cobordism invariants. Here wi is the i-th Stiefel-
Whitney class of (TM − n) ⊗ VSO(3) where VSO(3) is the associated vector bundle of the SO(3) gauge
bundle. The wi is computed in Eq. (3.14). The ηSU(2) is an eta invariant of Dirac operator defined in [36].
More details of computation can be read from [36,39].

d TPd,tor(Pin−(d)×Z2 SU(2)) cobordism invariants

4 Z3
2 w2

2, w
4
1, (N

′(4)
0 mod 2) ∼ w3η̃

5 Z2
2 w2w3, (N

′(5)
0 mod 2) ∼ w3Arf

Table 6: Cobordism groups TPd(Pin−(d)×Z2 SU(2)) and cobordism invariants. Here wi is the i-th Stiefel-
Whitney class of (TM − n) ⊗ VSO(3) where VSO(3) is the associated vector bundle of the SO(3) gauge

bundle. The wi is computed in Eq. (3.14). The N
′(4)
0 is the number of the zero modes of the Dirac

operator in 4d. Its value mod 2 is a spin-topological invariant known as the mod 2 index defined as N ′0
mod 2 in [36]. More details of computation can be read from [36,39]. We find that the bordism invariant

of N
′(4)
0 mod 2 read from Adams chart has the similar form related to w3η̃, where η̃ is the eta invariant

for 2d Dirac operator, given by the generator of the 2d spin bordism group ΩSpin
2,tor(pt) = Z2. The N

′(5)
0 is

the number of the zero modes of the Dirac operator in 5d. Its value mod 2 is a spin-topological invariant

known as the mod 2 index defined in [53, 54]. We find that the bordism invariant of N
′(5)
0 mod 2 read

from Adams chart has the similar form related to w3Arf, where Arf is an Arf invariant.

2. (−1)b̃w2(VSO(3)) in Eq. (3.8).

3. exp(2πiνηSU(2)) with an odd class of ν = 1, 3 ∈ Z4 in Eq. (3.10).

4. (−1)N
′
0 in Eq. (3.12).

These four theories exactly map to the enumeration of four gauge theories in Sec. 3.1. Adding other
SPTs/bordism invariants such as (−1)w

4
1(TM) and (−1)w

2
2(TM) (and then dynamically gauging them), do

not alter or gain new classes of gauge theories. They only affect a gauge theory to the same gauge theory
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tensor product with 4d SPTs, namely (4d SU(2)θ=π YM) ⊗ (4d SPTs).13

4 Time-Reversal Symmetry-Enriched 5d Higher-Gauge TQFTs

4.1 Partition Function of 5d Higher-Gauge TQFTs

Following the discussions of four classes of 5d time-reversal and 1-form (center) symmetry ZT2×Ze2,[1] higher-

SPTs Z5d
SPT(K1,K2)

[M5] in Sec. 2.3 with their partition functions in Eq. (2.19), we proceed to dynamically

gauge the 1-form (center) symmetry Ze2,[1]. Then we obtain the 5d time-reversal symmetric SET with

2-form Z2-valued B gauge field. We can define the four classes of 5d partition functions Z5d
SET(K1,K2)

[M5]
as:

Z5d
SET(K1,K2)

[M5] ≡ |H0(M,Z2)|
|H1(M,Z2)|

∑
B∈H2(M5,Z2)

e iπ
∫
M5

1
2
w̃1(TM)∪P(B)+K1w1(TM)3B+K2w3(TM)B (4.1)

=
|H0(M,Z2)|
|H1(M,Z2)|

∑
B∈H2(M5,Z2)

e iπ
∫
M5 BSq1B+(1+K1)w1(TM)2Sq1B+(1+K2)w2(TM)Sq1B (4.2)

=
|H0(M,Z2)|
|H1(M,Z2)|

∑
B,b,h∈C2(M5,Z2)

c∈C3(M5,Z2)

exp
(

iπ

∫
M5

δw1(TM) ∪ c+ δw2(TM) ∪ h+ b ∪ δB

+BSq1B + (1 +K1)w1(TM)2Sq1B + (1 +K2)w2(TM)Sq1B
)

(4.3)

∼=
∫

[DB][Db][Dh][Dc]exp
(

iπ

∫
M5

(dw1(TM))c+ (dw2(TM))h+ bdB

+B
1

2
dB + (1 +K1)w1(TM)2 1

2
dB + (1 +K2)w2(TM)

1

2
dB
)
. (4.4)

In the last step, we have convert the 5d higher-cochain TQFT to 5d higher-form gauge field continuum
TQFT for Z5d

SET(K1,K2)
[M5]. Moreover, we can insert extended operators (say U,X, Y, . . . ) into the path

integral:

Z5d
SET(K1,K2)

[M5;U,X, Y, . . . ] ≡
∫

[DB][Db][Dh][Dc] U ·X · Y . . .

exp
(

iπ

∫
M5

(dw1(TM))c+ (dw2(TM))h+ bdB

+B
1

2
dB + (1 +K1)w1(TM)2 1

2
dB + (1 +K2)w2(TM)

1

2
dB
)
. (4.5)

for the 5d higher-form continuum TQFT.

13 For the classification of gauge theory, we identify the following phases

(gauge theory) ⊗ (SPTs) ' (gauge theory).

For the classification of 4d SU(2)θ=π YM, we identify the following phases

(4d SU(2)θ=π YM) ⊗ (4d SPTs) ' (4d SU(2)θ=π YM).

See more physically motivated discussions in [36] and References therein.
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4.2 Partition Function and Topological Degeneracy

Below we compute the partition function Z(M5) on closed manifolds M = M5. When M5 = M4 × S1,
we can interpret it as topological ground state degeneracy (GSD) of TQFT. Our computations follow the
strategy in [12,14], while we directly summarize the results in Tables 7, 8, and 9.

4.2.1 5d SPTs as Short-Range Entangled Invertible TQFTs

Z(M5) with M5: (W, 0) (S1 × RP2 × RP2, γα1) (S1 × RP4, γζ) (RP2 × RP3, αβ)

Ztrivial
SPT (M5) 1 1 1 1

ZSPTBSq1B
(M5) 1 1 1 −1

ZSPTSq2Sq1B
(M5) 1 1 −1 1

ZSPTw1(TM)2Sq1B
(M5) 1 −1 −1 1

ZSPTw2(TM)Sq1B
(M5) 1 −1 1 1

Table 7: Partition Function Z(M5) and Topological Degeneracy (GSD) of 5d higher-SPTs, for example,

ZSPTBSq1B
(M5) := (−1)

∫
M5 BSq1B. The notations α, β, γ, ζ are explained in the computation below.

4.2.2 5d SETs, as Long-Range Entangled TQFTs

Z(M5) with M5: T 5 S1 × S4 S1 × RP4 T 2 × S3 S1 × S2 × S2 S1 × RP2 × RP2 RP2 × RP3 S5 W

Zuntwist
2-form B(M5) 210·2

25 = 64 20·2
21 = 1 22·2

22 = 2 21·2
22 = 1 22·2

21 = 4 25·2
23 = 8 23·2

22 = 4 20·2
20 = 2 4

ZSET(0,0)
(M5) 64 1 1 1 4 2 2 2 4

ZSET(1,0)
(M5) 64 1 1 1 4 2 2 2 4

ZSET(0,1)
(M5) 64 1 1 1 4 2 2 2 0

ZSET(1,1)
(M5) 64 1 1 1 4 2 2 2 0

Table 8: Partition Function Z(M5) and Topological Degeneracy (GSD) of 5d higher-SETs,

ZSET(K1,K2)
(M5) := |H0(M5,Z2)|

|H1(M5,Z2)|
∑

B∈H2(M5,Z2)(−1)
∫
M5 BSq1B+(1+K1)w1(TM)2Sq1B+(1+K2)w2(TM)Sq1B.
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Z(M5) with M5: W S1 × RP2 × RP2 S1 × RP4 RP2 × RP3

Zuntwist
2-form B(M5) 4 8 2 4

ZSETBSq1B
(M5) 0 2 1 2

ZSETSq2Sq1B
(M5) 0 8 0 4

ZSETw1(TM)2Sq1B
(M5) 4 0 0 4

ZSETw2(TM)Sq1B
(M5) 0 0 2 4

Table 9: Partition Function Z(M5) and Topological Degeneracy (GSD) of 5d higher-SETs, for example,

ZSETBSq1B
(M5) := |H0(M5,Z2)|

|H1(M5,Z2)|
∑

B∈H2(M5,Z2)(−1)
∫
M5 BSq1B.

Now we illustrate our computation:

1. For M = S1×RP4, let γ be the generator of H1(S1,Z2) = Z2 and ζ be the generator of H1(RP4,Z2) =
Z2. Note that w1(TM) = ζ. The H0(S1×RP4,Z2) = Z2, H1(S1×RP4,Z2) = Z2

2, H2(S1×RP4,Z2) =
Z2

2 whose two generators are γζ and ζ2. If B = λ1γζ + λ2ζ
2, then Sq1B = λ1γζ

2. Hence∫
S1×RP4

BSq1B = λ1λ2, (4.6)∫
S1×RP4

BSq1B + w1(TM)2Sq1B = λ1λ2 + λ1. (4.7)

On the other hand, since w2(TM) = 0 for S1 × RP4, we have

ZSET(0,0)
(S1 × RP4) = ZSET(0,1)

(S1 × RP4), (4.8)

ZSET(1,0)
(S1 × RP4) = ZSET(1,1)

(S1 × RP4). (4.9)

We have

ZSET(0,0)
(S1 × RP4) =

1

2

∑
λ1,λ2∈Z2

(−1)λ1(λ2+1), (4.10)

ZSET(0,1)
(S1 × RP4) =

1

2

∑
λ1,λ2∈Z2

(−1)λ1λ2 . (4.11)

Since the number of (λ1, λ2) satisfying the constraint λ1λ2 = 1 is only one:

#{(λ1, λ2) ∈ Z2
2|λ1λ2 = 1} = 1, (4.12)

also note that changing λ2 to λ2 + 1 doesn’t affect the sum, so

ZSET(0,0)
(S1 × RP4) = ZSET(1,1)

(S1 × RP4)

= ZSET(0,1)
(S1 × RP4) = ZSET(1,0)

(S1 × RP4) =
1

2
(3− 1) = 1. (4.13)

2. For M = RP2×RP3, let α be the generator of H1(RP2,Z2) = Z2, β be the generator of H1(RP3,Z2) =
Z2. Note that w1(TM) = α. H0(RP2 × RP3,Z2) = Z2, H1(RP2 × RP3,Z2) = Z2

2, H2(RP2 ×
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RP3,Z2) = Z3
2 whose three generators are α2, β2 and αβ. If B = λ1α

2 + λ2β
2 + λ3αβ, then

Sq1B = λ3α
2β + λ3αβ

2. Hence ∫
RP2×RP3

BSq1B = λ2
3 + λ2λ3, (4.14)∫

RP2×RP3
BSq1B + w1(TM)2Sq1B = λ2

3 + λ2λ3. (4.15)

On the other hand, since w2(TM) + w1(TM)2 = 0 for RP2 × RP3, so

ZSET(0,0)
(RP2 × RP3) = ZSET(1,1)

(RP2 × RP3), (4.16)

ZSET(0,1)
(RP2 × RP3) = ZSET(1,0)

(RP2 × RP3). (4.17)

We have

ZSET(0,0)
(RP2 × RP3) =

1

2

∑
λ1,λ2,λ3∈Z2

(−1)λ
2
3+λ2λ3 , (4.18)

ZSET(0,1)
(RP2 × RP3) =

1

2

∑
λ1,λ2,λ3∈Z2

(−1)λ
2
3+λ2λ3 . (4.19)

Since

#{(λ1, λ2, λ3) ∈ Z3
2|λ2

3 + λ2λ3 = 1} = 2, (4.20)

so

ZSET(0,0)
(RP2 × RP3) = ZSET(1,1)

(RP2 × RP3)

= ZSET(0,1)
(RP2 × RP3) = ZSET(1,0)

(RP2 × RP3) =
1

2
(6− 2) = 2. (4.21)

3. For M = S1 × RP2 × RP2, let γ be the generator of H1(S1,Z2) = Z2 and αi be the generator
of H1(RP2,Z2) = Z2 of the i-th factor RP2 (i = 1, 2). Note that w1(TM) = α1 + α2. H0(S1 ×
RP2 × RP2,Z2) = Z2, H1(S1 × RP2 × RP2,Z2) = Z3

2, H2(S1 × RP2 × RP2,Z2) = Z5
2 whose five

generators are α2
1, α2

2, γα1, γα2 and α1α2. If B = λ1α
2
1 + λ2α

2
2 + λ3γα1 + λ4γα2 + λ5α1α2, then

Sq1B = λ3γα
2
1 + λ4γα

2
2 + λ5α

2
1α2 + λ5α1α

2
2. Hence∫

S1×RP2×RP2
BSq1B = λ1λ4 + λ2λ3 + λ3λ5 + λ4λ5, (4.22)∫

S1×RP2×RP2
BSq1B + w1(TM)2Sq1B = λ1λ4 + λ2λ3 + λ3λ5 + λ4λ5 + λ3 + λ4. (4.23)

On the other hand, since w2(TM) + w1(TM)2 = 0 for S1 × RP2 × RP2, so

ZSET(0,0)
(S1 × RP2 × RP2) = ZSET(1,1)

(S1 × RP2 × RP2), (4.24)

ZSET(0,1)
(S1 × RP2 × RP2) = ZSET(1,0)

(S1 × RP2 × RP2). (4.25)

We have

ZSET(0,0)
(S1 × RP2 × RP2) =

1

4

∑
λ1,λ2,λ3,λ4,λ5∈Z2

(−1)λ1λ4+λ2λ3+λ3λ5+λ4λ5 , (4.26)

ZSET(0,1)
(S1 × RP2 × RP2) =

1

4

∑
λ1,λ2,λ3,λ4,λ5∈Z2

(−1)λ1λ4+λ2λ3+λ3(λ5+1)+λ4(λ5+1). (4.27)
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Since

#{(λ1, λ2, λ3, λ4, λ5) ∈ Z5
2|λ1λ4 + λ2λ3 + λ3λ5 + λ4λ5 = 1} = 12, (4.28)

also note that changing λ5 to λ5 + 1 doesn’t affect the sum, so

ZSET(0,0)
(S1 × RP2 × RP2) = ZSET(1,1)

(S1 × RP2 × RP2)

= ZSET(0,1)
(S1 × RP2 × RP2) = ZSET(1,0)

(S1 × RP2 × RP2) =
1

4
(20− 12) = 2. (4.29)

4. We remark that, for a 5d Wu manifold W = SU(3)/SO(3), with H0(W,Z2) = Z2, H1(W,Z2) = 0,
note that w1(TW) = 0, so we can actually distinguish some of the four classes of 5d SETs:

ZSET(0,0)
(W) = ZSET(1,0)

(W),

ZSET(0,1)
(W) = ZSET(1,1)

(W). (4.30)

H2(W,Z2) = Z2 which is generated by w2(TW). Sq1w2(TW) = w3(TW).

ZSET(0,0)
(W) = 2

∑
B=0,w2(TW)

(−1)BSq1B+w2(TW)Sq1B = 4, (4.31)

ZSET(0,1)
(W) = 2

∑
B=0,w2(TW)

(−1)BSq1B = 0. (4.32)

In the next section, we will use the anyonic string/brane braiding statistics and the link invariants of 5d
TQFTs to characterize and distinguish these 5d SETs.

5 Anyonic String/Brane Braiding Statistics and Link Invariants of 5d
TQFTs

Now we compute the path integral Eq. (4.5) with extended operator insertions. To recall the general
definitions, we have
• Partition or path integral w/out insertion is ∑

B∈C2(M,Z2)
...

(eiS).

• Physics vacuum expectation value (v.e.v) of a theory S is defined as

〈O〉(v.e.v) =
〈O〉(v.e.v)

〈1〉(v.e.v)
=

∑
B∈C2(M,Z2)

...

(eiSO)∑
B∈C2(M,Z2)

...

(eiS)
=

∑
B∈C2(M,Z2)

...

(eiSO)

Z

=
path integral with insertions O
path integral without insertions

. (5.1)

For example, this includes the link invariant that we will focus on in this section:

〈exp(i . . . (Link invariants of U,X, Y, . . .))〉(v.e.v) =
Z5d

SET(K1,K2)
[M5;U,X, Y, . . . ]

Z5d
SET(K1,K2)

[M5]
. (5.2)
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For conventions of our notations, we label the 1d Wilson line as W , the 2d surface operator as U,U ′, etc.
We label the 3d membrane operator as X and the 4d operator as Y , etc. We label the “dd-hyper-surface”
of general operators that we inserted as Σd, while we label this Σd’s “(d + 1)d-Seifert-hyper-volume” as
V d+1.

In this section 5, we focus on deriving the general link invariants for these 5d TQFTs/SETs.14 In the
next Sec. 6, we will provide explicit examples of the spacetime braiding process as the link configurations
that can be detected by these link invariants derived here Sec. 5. The techniques for computing all these
link invariants below are based on Ref. [11]. Below we simply apply the methods and notations introduced
in Ref. [11].

Caveat: Note that while in the first section 5.1, we explicitly study the discrete cochain version of
TQFT, the later sections instead we implement the continuum formulation of TQFT. The reason is related
to a fact that the graded non-commutativity of cochain fields is much more complicated to be dealt with
than the continuum differential form fields. The subtle fact will be commented further in footnotes 16 and
17. We also note that when we deal with the continuum differential form fields later in Sec. 5.2 to Sec. 5.4,
we choose a normalization of differential form fields as

∮
B ∈ Z with the periodicity

∮
B ∼

∮
B + 2 (thus

more similar to the convention of discrete cochain fields), instead of the more conventional
∮
B ∈ πZ with

the periodicity
∮
B ∼

∮
B + 2π.

5.1 1
2
w̃1(TM)P(B) and a Triple Link Invariant Tlk

(5)
w1BB

(Σ3
X ,Σ

2
U(i)
,Σ2

U(ii)
)

We start with a 5d TQFT obtained from summing over 2-form field B of 1
2 w̃1(TM)P(B) (gauging 1-form

Z2 of this 5d SPTs). This is equivalent to the ZSET(K1=0,K2=0)
example in Eq. (4.5).

Z =

∫
[DB][Dc̃][Db] exp(iS). (5.3)

Z =
∑

B,b∈C2(M5,Z2)

c̃∈C3(M5,Z4)

exp(iπ

∫
M5

1

2
δw̃1(TM) ∪ c̃+ b ∪ δB +

1

2
w̃1(TM) ∪ P(B)). (5.4)

The action is (see footnote 10)

S = π

∫
M5

(
1

2
δw̃1(TM) ∪ c̃+ b ∪ δB +

1

2
w̃1(TM) ∪ P(B)). (5.5)

We consider the gauge transformation:15

w̃1(TM) → w̃1(TM) + δα,

B → B + δβ,

c̃ → c̃+ δγ + λ,

b → b+ δζ + µ. (5.6)

The gauge variation shows:

S → π

∫
M5

1

2
(w̃1(TM) + δα)(B ∪B +B ∪ δβ + δβ ∪B + δβ ∪ δβ +B ∪

1
δB + δβ ∪

1
δB)

+
1

2
δw̃1(TM)(c̃+ λ) + (b+ µ)δB. (5.7)

14For more guidance on the physical interpretations of link invariants, please see [11] and its Introduction.
15One may consider add additional terms on the gauge transformations, such as w̃1(TM)→ w̃1(TM) + δα(t, x) + α1(t, x)

and B → B+ δβ(t, x) +α2(t, x), etc. However, terms such as α1(t, x) = α1 and α2(t, x) = α2 will need to be constant, which
act as the higher-form “global symmetry” transformation, instead of “gauge transformation.”
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Note that δ2β = 0. The gauge variance of the action is:

∆S = π

∫
M5

1

2
w̃1(TM)(δβ ∪ δβ + 2δβ ∪B + δ(δβ ∪

1
B))

+
1

2
δα(B ∪B +B ∪

1
δB + δβ ∪ δβ + 2δβ ∪B + δ(δβ ∪

1
B))

+
1

2
δw̃1(TM)λ+ µδB (5.8)

= π

∫
M5

1

2
δw̃1(TM)(βδβ) +

(
δw̃1(TM)(βB) + w̃1(TM)βδB

)
+

1

2
δw̃1(TM)(δβ ∪

1
B)

−
(
αBδB +

1

2
αu2δB

)
− αδβδB +

1

2
δw̃1(TM)λ+ µδB. (5.9)

In Eq. (5.8), we have used the formula16 and again δ2β = 0:

B ∪ δβ − δβ ∪B + δβ ∪
1
δB + δ2β ∪

1
B = δ(δβ ∪

1
B). (5.11)

In Eq. (5.9), we have used integration by part: for a closed 5-manifold without boundary, after integration
by part we can drop the boundary term δ(. . . ) where . . . only has effects on a 4-manifold (the 4d boundary
of an open 5-manifold). Since δ2B = δ2β = δ2α = 0 , we drop δα(δβ ∪ δβ+ δ(δβ ∪

1
B)) which has no effect

on a closed 5-manifold without boundary. Here u2 is the second Wu class, we have also used the formula
in footnote 16 as

B ∪ δB − δB ∪B + δB ∪
1
δB +B ∪

1
δ2B = δ(B ∪

1
δB), (5.12)

δB ∪
1
δB = Sq2δB = u2δB. (5.13)

So the above Eq. (5.9), we use δ(α(B∪B+B∪
1
δB)) = δα(B∪B+B∪

1
δB)+α(δB∪B+B∪δB+δ(B∪

1
δB)) =

δα(B ∪B +B ∪
1
δB) + α(2B ∪ δB + u2δB) and we drop the total derivative term on a closed 5-manifold.

The solution of gauge invariance imposes: ∆S = 0⇒

λ = −βδβ − 2βB − δβ ∪
1
B mod 4,

µ = −w̃1(TM)β + αB +
1

2
αu2 + αδβ mod 2, (5.14)

where we have imposed the gauge transformation for the sake of gauge invariance:17

16 This is based on Steenrod’s work “Products of Cocycles and Extensions of Mappings [61],” which derives

δ(u ∪
i
v) = (−1)p+q−iu ∪

i−1
v + (−1)pq+p+qv ∪

i−1
u+ δu ∪

i
v + (−1)pu ∪

i
δv (5.10)

where u ∈ Cp, v ∈ Cq.
17In general, when we study the action Eq. (5.5), we have made a convenient choice with a term δw̃1(TM) ∪ c̃ instead of

c̃∪δw̃1(TM). For a generic 3-cochain x, δw̃1(TM)x = xδw̃1(TM) is not true, by Steenrod’s formula in footnote 16 Eq. (5.10),
δw̃1(TM)x = xδw̃1(TM)+δx∪

1
δw̃1(TM)−δ(x∪

1
δw̃1(TM)), we can only drop the total derivative terms (i.e. the coboundary

terms). In our present case, we consider x = 1
2
βδβ + βB + 1

2
δβ ∪

1
B. So if δx ∪

1
δw̃1(TM) is a coboundary, then we can also

drop it, which results in
λ = −2x = −βδβ − 2βB − δβ ∪

1
B mod 4.

If δx ∪
1
δw̃1(TM) is not a coboundary, we need the extra term

δw̃1(TM)x = xδw̃1(TM) + δx ∪
1
δw̃1(TM) + a total derivative/coboundary term.

When δx ∪
1
δw̃1(TM) is not a coboundary, this results in a modified gauge transformation to λ. By writing the action as

in Eq. (5.5), we can avoid additional complications, thus we end up with a simpler gauge transformation Eq. (5.14). The
graded non-commutativity of cochain fields is much more complicated than the case for continuum differential form fields.
(JW thanks Pierre Deligne for a discussion on the related issues.)
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We derive the 3-submanifold operator, using P(B + δβ) = P(B) + δβ ∪ δβ + 2δβ ∪B + δ(δβ ∪
1
B),

X = exp(
iπ

2
k(

∫
Σ3

c̃+

∫
V 4

P(B)))

= exp(
iπ

2
k(

∫
M5

δ⊥(Σ3)c̃+ δ⊥(V 4)P(B))) (5.15)

is gauge invariant when we set δB = 0 on the 4-submanifold Seifert volume V 4. Where k is a Z4 integer
mod 4.

We derive the 2-submanifold (2-surface) operator

U = exp(iπ`(

∫
Σ2

b−
∫
V 3

w̃1(TM)B − 1

2

∫
V 3

w̃1(TM)u2))

= exp(iπ`(

∫
M5

bδ⊥(Σ2)− (w̃1(TM)B +
1

2
w̃1(TM)u2)δ⊥(V 3)))

= exp(iπ`(

∫
M5

bδ⊥(Σ2)− (w̃1(TM)B +
1

2
w̃1(TM)(w2(TM) + w1(TM)2))δ⊥(V 3))) (5.16)

which is gauge invariant when δB = δw̃1(TM) = 0 on the 3-submanifold Seifert volume V 3. Where ` is a
Z2 integer mod 2. Note Wu class u2 = w2(TM) + w1(TM)2 is a cocycle thus δu2 = 0 everywhere in the
5-manifold.

We insert X,U(i) and U(ii) into the path integral Z, and write the correlation function either in the
continuum field theory formulation, or in the discrete cochain field theory formulation, interchangeably
as

〈XU(i)U(ii)〉 =

∫
[DB][Dc̃][Db] XU(i)U(ii) exp(iS). (5.17)

〈XU(i)U(ii)〉 =
∑

B,b∈C2(M5,Z2)

c̃∈C3(M5,Z4)

XU(i)U(ii) exp(iπ

∫
M5

1

2
δw̃1(TM) ∪ c̃+ b ∪ δB +

1

2
w̃1(TM) ∪ P(B)).

Step 1, we integrate out c̃ in
∫

[Dc̃], we get

δw̃1(TM) = kδ⊥(Σ3
X),

w̃1(TM) = kδ⊥(V 4
X), (5.18)

while we also have δ2w̃1(TM) = δ(kδ⊥(Σ3
W )) = 0. So with the above configuration constraint, we get the

double-counting mod 2 cancellation in the exponent of exp( iπ
2 k(

∫
M5 δ

⊥(V 4
X)P(B))) exp(iπ

∫
M5

1
2 w̃1(TM)

P(B)) = 1. This boils down to

〈XU(i)U(ii)〉 =

∫
[DB][Db] U(i)U(ii) exp(iπ

∫
M5

b ∪ δB)|w̃1(TM)=kδ⊥(V 4
X). (5.19)

Step 2, we integrate out b in
∫

[Db], we get the constraint

δB = `(i)δ
⊥(Σ2

U(i)
) + `(ii)δ

⊥(Σ2
U(ii)

),

B = `(i)δ
⊥(V 3

U(i)
) + `(ii)δ

⊥(V 3
U(ii)

). (5.20)
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Step 3, finally we integrate out B in
∫

[DB], from Eq. (5.19):

〈XU(i)U(ii)〉

=

∫
[DB]e

(− iπ(
∫
M5 (w̃1(TM)B+ 1

2
w̃1(TM)(w2(TM)+w1(TM)2))(`(i)δ

⊥(V 3
U(i)

)+`(ii)δ
⊥(V 3

U(ii)
))))
∣∣∣∣ w̃1(TM) = kδ⊥(V 4

X ),

B=`(i)δ
⊥(V 3

U(i)
)

+`(ii)δ
⊥(V 3

U(ii)
).

=

∫
[DB]e(− iπ(

∫
M5 (w̃1(TM)B+ 1

2
w̃1(TM)(w2(TM)+w1(TM)2))B))

∣∣∣∣ w̃1(TM) = kδ⊥(V 4
X ),

B = `(i)δ
⊥(V 3

U(i)
) + `(ii)δ

⊥(V 3
U(ii)

).

=

∫
[DB]e(− iπ(

∫
M5 (w̃1(TM)BB+Sq2

(
1
2
w̃1(TM)B

)
)))

∣∣∣∣ w̃1(TM) = kδ⊥(V 4
X ),

B = `(i)δ
⊥(V 3

U(i)
) + `(ii)δ

⊥(V 3
U(ii)

).
(5.21)

=

∫
[DB]e(− iπ(

∫
M5 (w̃1(TM)BB+ 1

2
w̃1(TM)BB+ 1

2
( 1

2
δw̃1(TM))( 1

2
δB)
)

)))

∣∣∣∣ w̃1(TM) = kδ⊥(V 4
X ), δw̃1(TM) = kδ⊥(Σ3

X );

B=`(i)δ
⊥(V 3

U(i)
)+`(ii)δ

⊥(V 3
U(ii)

).

δB=`(i)δ
⊥(Σ2

U(i)
)+`(ii)δ

⊥(Σ2
U(ii)

).

(5.22)

= e
(− iπ

(
k`(i)`(ii)·#(V 4

X∩V
3
U1
∩V 3

U2
)+ 1

8
δ⊥(Σ3

X)
(
δ⊥(Σ2

U(i)
)+δ⊥(Σ2

U(ii)
)
))

) · (Self-intersecting # terms) (5.23)

∼= e
(− iπ

(
k`(i)`(ii)·Tlk(5)(Σ3

X ,Σ
2
U(i)

,Σ2
U(ii)

)

)
)
. (5.24)

In Eq. (5.21), we use the fact by Wu formula on a 5-manifold that w̃1(TM)(w2(TM) + w1(TM)2))B =
w̃1(TM)u2B = Sq2

(
w̃1(TM)B

)
.

In Eq. (5.22), to derive the link invariant of 1
2 w̃1(TM)P(B), we use18

1

2
w̃1(TM)u2B = Sq2(

1

2
w̃1(TM)B) =

1

2
w̃1(TM)BB + Sq1(

1

2
w̃1(TM))Sq1B

=
1

2
w̃1(TM)BB +

1

2
(
1

2
δw̃1(TM))(

1

2
δB).

We plug in all the constraints into the path integral Eq. (5.22) to obtain Eq. (5.23).19 We propose a
set-up to remove or renormalize the (Self-intersecting # terms) appeared in Eq. (5.24), described in the
footnote 19. Also the second exponent in Eq. (5.23) shows that

∫
M5 δ

⊥(Σ3
W )
(
δ⊥(Σ2

U(i)
) + δ⊥(Σ2

U(ii)
)) =

18We use the Steenrod product formula: Sq2(uv) = (Sq2u)v + (Sq1u)(Sq1v) + uSq2(v) when u, v ∈ H∗(M,Z2).
19 Here are some more explanations to derive Eq. (5.23).

• For
∫

[DB]e− iπ(
∫
M5 (w̃1(TM)BB))

∣∣∣∣ w̃1(TM)=kδ⊥(V 4
X ),

B=`(i)δ
⊥(V 3

U(i)
)+`(ii)δ

⊥(V 3
U(ii)

).
, we get a mutual-quadratic crossing term V 3

U(i)
∩ V 3

U(ii)
with

a multiple 2π exponent in e
i 2π#(V4

X∩V3
U(i)
∩V3

U(ii)
)

which does not contribute to the expectation value. There are also two
self-quadratic terms V 3

U(n)
∩ V 3

U(n)
for (n) = (i) or (ii). These self-quadratic terms contribute, in principle, infinite many

intersecting numbers in #(V 4
X ∩ V 3

U(n)
∩ V 3

U(n)
) for (n) = (i) or (ii). Since a multiple 2π exponent have zero contribution to

the expectation value, therefore either we can design an even but infinite number of points on each of #(V 4
X ∩ V 3

U(n)
∩ V 3

U(n)
)

for (n) = (i) or (ii), or we can absorb them into the (Self-intersecting # terms) in Eq. (5.23). In either cases, this term does
not have any net contribution in the end at Eq. (5.24).

• For
∫

[DB]e− iπ(
∫
M5 ( 1

2
w̃1(TM)BB))

∣∣∣∣ w̃1(TM)=kδ⊥(V 4
X ),

B=`(i)δ
⊥(V 3

U(i)
)+`(ii)δ

⊥(V 3
U(ii)

).
, we get a mutual-quadratic crossing term V 3

U(i)
∩ V 3

U(ii)
with

a multiple π exponent in e
iπ#(V4

X∩V3
U(i)
∩V3

U(ii)
)
, which does contribute to the expectation value when this intersecting number

# is odd, in a 1 mod 2 effect. There are also two self-quadratic terms V 3
U(n)
∩ V 3

U(n)
for (n) = (i) or (ii). Again either we can

design an quadruple/four-multiplet but infinite number of points for each of #(V 4
X ∩ V 3

U(n)
∩ V 3

U(n)
), or we can absorb them

into the (Self-intersecting # terms) in Eq. (5.23).

• For
∫

[DB]e(− iπ(
∫
M5 ( 1

8
δw̃1(TM)δB)))

∣∣∣∣ δw̃1(TM) = kδ⊥(Σ3
X );

δB=`(i)δ
⊥(Σ2

U(i)
)+`(ii)δ

⊥(Σ2
U(ii)

)
= e

− iπ
∫
M5 ( 1

8
(kδ⊥(Σ3

X ))

(
`(i)δ

⊥(Σ2
U(i)

)+`(ii)δ
⊥(Σ2

U(ii)
)

)
)
, we

find the exponent depends on the intersecting number #(Σ3
X ∩Σ2

U(n)
) for (n) = (i) or (ii), between 3-surface and 2-surface in

a 5 manifold — although generically this number #(Σ3
X∩Σ2

U(n)
) is finite but can be nonzero, we design by default that there is

no intersection between any of our insertions of 3-surface and 2-surface into the path integral. Thus we set #(Σ3
X ∩Σ2

U(n)
) = 0

by default.
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#(Σ3
X ∩ Σ2

U(i)
) + #(Σ3

X ∩ Σ2
U(ii)

), which counts the number of intersections between our insertions of 3-

surface and 2-surface. However, we choose by default that our insertions of 3-surface and 2-surface have no
intersections (to avoid unnecessary singularities) into the path integral. Namely, we set #(Σ3

W ∩Σ2
U(n)

) = 0

for (n) = (i) or (ii), and #(Σ2
U(i)
∩ Σ2

U(ii)
) = 0 by default. Overall, under the default assumption and

the footnote 19 clarification, we obtain a final relation between Eq. (5.23) and our final effective answer
Eq. (5.24). We use the congruence symbol (∼=) to express that other unwanted terms can be removed by
default design.

We derive the link invariant for the 5d TQFT ZSET(K1=0,K2=0)
[M5] in Eq. (5.24):

#(V 4
X ∩ V 3

U(i)
∩ V 3

U(ii)
) ≡ Tlk

(5)
w1BB

(Σ3
X ,Σ

2
U(i)

,Σ2
U(ii)

) . (5.25)

The path integral with appropriate extended operators insertions become Eq. (5.24) which provides the
above link invariant.

5.2 w1(TM)3B = w1(TM)2Sq1B

5.2.1 Version I: w1(TM)3B and a Quartic Link Invariant Qlk(5)(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U )

As a test example, now we consider a 5d TQFT obtained from summing over 2-form field B of w1(TM)3B
(gauging 1-form Z2 of this 5d SPTs), below we convert the cochain TQFT to differential form continuum
TQFT. Whose partition function and action (see footnote 10) are:

Z =

∫
[DB][Db][Dc] exp(iS). (5.26)

S = π

∫
M5

cdw1(TM) + bdB + w1(TM)3B. (5.27)

This 5d TQFT is distinct from any of four classes of ZSET(K1,K2)
, but it still serves as a useful toy model.

Gauge transformations are (see footnote 15):

w1(TM) → w1(TM) + dα,

B → B + dβ,

c → c+ dγ + λ,

b → b+ dζ + µ. (5.28)

The gauge variation shows:

S → S + π

∫
M5

dγdw1(TM) + λdw1(TM) + dζdB + µdB

+(dαdαw1(TM) + w1(TM)2 dα+ dαdαdα)B

+(w1(TM)3 + dαdαw1(TM) + w1(TM)2 dα+ dαdαdα)dβ (5.29)

= S + π

∫
M5

λdw1(TM) + µdB + (αdαBdw1(TM)− αdαw1(TM)dB)

−αw1(TM)2 dB − αdαdαdB + w1(TM)2βdw1(TM) + αdαdβdw1(TM) (5.30)

where we have used integration by part: for a closed 5-manifold without boundary, after integration by
part then we can drop the boundary term d(. . . ) where . . . only has effects on a 4-manifold (the 4d
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boundary of an open 5-manifold) and we drop the total derivative terms which have no effect on a closed
5-manifold without boundary. The gauge variance of the action is: ∆S = 0⇒

λ = −αdαB − w1(TM)2β − αdαdβ,

µ = αdαw1(TM) + αw1(TM)2 + αdαdα. (5.31)

We derive the 3-submanifold operator:

X = exp(iπk(

∫
Σ3

c+

∫
V 4

w1(TM)2B))

= exp(iπk(

∫
M5

(δ⊥(Σ3)c+ δ⊥(V 4)w1(TM)2B))) (5.32)

and 2-surface operator:

U = exp(iπ`(

∫
Σ2

b−
∫
V 3

w1(TM)3))

= exp(iπ`(

∫
M5

(δ⊥(Σ2)b− δ⊥(V 3)w1(TM)3))) (5.33)

are gauge invariant when dw1(TM) = dB = 0 on the 2-surface and 3-submanifolds. Where k, ` are Z2

integers mod 2.

Insert X(i), X(ii), X(iii), U into the path integral Z, so we can write the continuum field theory formu-
lation as

〈X(i)X(ii)X(iii)U〉 =

∫
[DB][Dc][Db] X(i)X(ii)X(iii)U exp(iS). (5.34)

〈X(i)X(ii)X(iii)U〉 =

∫
[DB][Dc][Db]X(i)X(ii)X(iii)U exp(iπ

∫
M5

cdw1(TM) + bdB + w1(TM)3B).

Step 1, we integrate out c in
∫

[Dc], we get

dw1(TM) = k(i)δ
⊥(Σ3

X(i)
) + k(ii)δ

⊥(Σ3
X(ii)

) + k(iii)δ
⊥(Σ3

X(iii)
),

w1(TM) = k(i)δ
⊥(V 4

X(i)
) + k(ii)δ

⊥(V 4
X(ii)

) + k(iii)δ
⊥(V 4

X(iii)
). (5.35)

So with the above configuration constraint, we get the double-counting mod 2 cancellation in the expo-
nent of exp(iπ(

∫
M5 w1(TM)2B(k(i)δ

⊥(V 4
X(i)

)+k(ii)δ
⊥(V 4

X(ii)
)+k(iii)δ

⊥(V 4
X(iii)

)))) exp(iπ
∫
M5 w1(TM)3B) =

1. This boils down to

〈X(i)X(ii)X(iii)U〉 =

∫
[DB][Db] U exp(iπ

∫
M5

bdB)|w1(TM)=k(i)δ
⊥(V 4

X(i)
)+k(ii)δ

⊥(V 4
X(ii)

)+k(iii)δ
⊥(V 4

X(iii)
).

(5.36)

Step 2, we integrate out b in
∫

[Db], we get the constraint

dB = `δ⊥(Σ2
U ),

B = `δ⊥(V 3
U ). (5.37)
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Step 3, finally we integrate out B in
∫

[DB], from Eq. (5.36):

〈X(i)X(ii)X(iii)U〉

=

∫
[DB]e− iπ(

∫
M5 w1(TM)3`δ⊥(V 3

U ))

∣∣∣∣w1(TM) = k(i)δ
⊥(V 4

X(i)
) + k(ii)δ

⊥(V 4
X(ii)

) + k(iii)δ
⊥(V 4

X(iii)
),

B = `δ⊥(V 3
U

).

=

∫
[DB]e(− iπ(

∫
M5 w1(TM)3B))

∣∣∣∣w1(TM) = k(i)δ
⊥(V 4

X(i)
) + k(ii)δ

⊥(V 4
X(ii)

) + k(iii)δ
⊥(V 4

X(iii)
),

B = `δ⊥(V 3
U

).

(5.38)

= e
(− iπ

(
k(i)k(ii)k(iii)`

(
#(V 4

X(i)
∩V 4

X(ii)
∩V 4

X(iii)
∩V 3

U )+#(V 4
X(ii)

∩V 4
X(iii)

∩V 4
X(i)
∩V 3

U )+#(V 4
X(iii)

∩V 4
X(i)
∩V 4

X(ii)
∩V 3

U )

#(V 4
X(i)
∩V 4

X(iii)
∩V 4

X(ii)
∩V 3

U )+#(V 4
X(iii)

∩V 4
X(ii)

∩V 4
X(i)
∩V 3

U )+#(V 4
X(ii)

∩V 4
X(i)
∩V 4

X(iii)
∩V 3

U )
))

)

·(· · · ) · (Self-intersecting # terms) (5.39)

∼= e
(− iπ

(
k(i)k(ii)k(iii)`·6#(V 4

X(i)
∩V 4

X(ii)
∩V 4

X(iii)
∩V 3

U )

)
) · (· · · ) (5.40)

∼= e
(− iπ

(
k(i)k(ii)k(iii)`·6Qlk(5)(Σ3

X(i)
,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U )

)
) · (· · · ) . (5.41)

We propose a set-up to remove or renormalize the (Self-intersecting # terms) appeared in Eq. (5.39),
following the same strategy as footnote 19.

For S = π
∫
M5 cdw1(TM)+bdB+w1(TM)3B, we derive the link invariant for the 5d TQFT ZSET[M5]

in Eq. (5.39) and Eq. (5.40):

#(V 4
X(i)
∩ V 4

X(ii)
∩ V 4

X(iii)
∩ V 3

U ) ≡ Qlk(5)(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U ) . (5.42)

The path integral with appropriate extended operators insertions become Eq. (5.40) which provides the
above link invariant. Note however the factorial 3! = 6 causes the complex e iπ phase becoming e i 6π

thus undetectable. It may be possible to take into account (see footnote 17) from the subtle graded non-
commutativity of cochain field effect. Thus one may need to go beyond the continuum differential form
TQFT formulation by using the cochain TQFT formulation in order to see the subleading effect.

5.2.2 Version II: w1(TM)2Sq1B and a Triple Link Invariant Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U )

As another test example, we consider a 5d TQFT obtained from summing over 2-form fieldB of w1(TM)2Sq1B
(gauging 1-form Z2 of this 5d SPTs), below we convert the cochain TQFT to differential form continuum
TQFT.20 Whose partition function and action (see footnote 10) are: Below we convert the cochain TQFT
to a differential form continuum TQFT. Its partition function and action are (see footnote 10):

Z =

∫
[DB][Db][Dc] exp(iS), (5.43)

S = π

∫
M5

cdw1(TM) + bdB + w1(TM)2Sq1B, (5.44)

S = π

∫
M5

cdw1(TM) + bdB + w1(TM)2 1

2
dB. (5.45)

20Even though w1(TM)2Sq1B is a rewriting of w1(TM)3B, it turns out that we still gain new insights about an additional
link invariant.
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Gauge transformations are:

w1(TM) → w1(TM) + dα,

B → B + dβ,

c → c+ dγ + λ,

b → b+ dζ + µ. (5.46)

The gauge variation shows:

S → S + π

∫
M5

dγdw1(TM) + λdw1(TM) + dζdB + µdB

+(w1(TM)dα+ dαw1(TM) + dαdα)
1

2
dB

+(w1(TM)2 + w1(TM)dα+ dαw1(TM) + dαdα)
1

2
d2β (5.47)

= S + π

∫
M5

λdw1(TM) + µdB +
1

2
(w1(TM)dα+ dαw1(TM) + dαdα)dB (5.48)

where we have used integration by part: for a closed 5-manifold without boundary, after integration by
part then we can drop the boundary term d(. . . ) where . . . only has effects on a 4-manifold (the 4d
boundary of an open 5-manifold) and we drop the total derivative terms which have no effect on a closed
5-manifold without boundary. The gauge variance of the action is: ∆S = 0⇒

λ = 0,

µ = −1

2
(w1(TM)dα+ dαw1(TM) + dαdα). (5.49)

We derive that the 3-submanifold operator:

X = exp(iπk(

∫
Σ3

c))

= exp(iπk(

∫
M5

(δ⊥(Σ3)c))) (5.50)

and 2-surface operator:

U = exp(iπ`(

∫
Σ2

(b+
1

2
w1(TM)2)))

= exp(iπ`(

∫
M5

(δ⊥(Σ2)(b+
1

2
w1(TM)2))) (5.51)

are gauge invariant. Where k, ` are Z2 integers mod 2.

Insert X(i), X(ii), U into the path integral Z, so we can write the continuum field theory formulation
as

〈X(i)X(ii)U〉 =

∫
[DB][Dc][Db] X(i)X(ii)U exp(iS). (5.52)

〈X(i)X(ii)U〉 =

∫
[DB][Dc][Db]X(i)X(ii)U exp(iπ

∫
M5

cdw1(TM) + bdB + w1(TM)2 1

2
dB).

Step 1, we integrate out c in
∫

[Dc], we get

dw1(TM) = k(i)δ
⊥(Σ3

X(i)
) + k(ii)δ

⊥(Σ3
X(ii)

),

w1(TM) = k(i)δ
⊥(V 4

X(i)
) + k(ii)δ

⊥(V 4
X(ii)

). (5.53)
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So

〈X(i)X(ii)U〉 =

∫
[DB][Db] U exp(iπ

∫
M5

bdB + w1(TM)2 1

2
dB)|w1(TM)=k(i)δ

⊥(V 4
X(i)

)+k(ii)δ
⊥(V 4

X(ii)
).

(5.54)

Step 2, we integrate out b in
∫

[Db], we get the constraint

dB = `δ⊥(Σ2
U ),

B = `δ⊥(V 3
U ). (5.55)

Step 3, finally we integrate out B in
∫

[DB], from Eq. (5.54):

〈X(i)X(ii)U〉

=

∫
[DB]e− iπ(

∫
M5

1
2
w1(TM)2`δ⊥(Σ2

U )+w1(TM)2 1
2

dB)

∣∣∣∣w1(TM) = k(i)δ
⊥(V 4

X(i)
) + k(ii)δ

⊥(V 4
X(ii)

),

B = `δ⊥(V 3
U

)

=

∫
[DB]e(− iπ(

∫
M5

1
2
w1(TM)2 dB+w1(TM)2 1

2
dB))

∣∣∣∣w1(TM) = k(i)δ
⊥(V 4

X(i)
) + k(ii)δ

⊥(V 4
X(ii)

),

B = `δ⊥(V 3
U

).

(5.56)

= e
(− iπ

(
k(i)k(ii)`

(
#(V 4

X(i)
∩V 4

X(ii)
∩Σ2

U )+#(V 4
X(ii)

∩V 4
X(i)
∩Σ2

U )
))

)

·(· · · ) · (Self-intersecting # terms) (5.57)

∼= e
(− iπ

(
k(i)k(ii)`·(Tlk

(5)
w1w1 dB(Σ3

X(i)
,Σ3
X(ii)

,Σ2
U )+Tlk

(5)
w1w1 dB(Σ3

X(ii)
,Σ3
X(i)

,Σ2
U ))

)
) · (· · · ) . (5.58)

We propose a set-up to remove or renormalize the (Self-intersecting # terms) appeared in Eq. (5.57),
following the same strategy as footnote 19.

For S = π
∫
M5 cdw1(TM) + bdB + w1(TM)2 1

2 dB, we derive the link invariant for the 5d TQFT
ZSET[M5] in Eq. (5.57) and Eq. (5.58):

#(V 4
X(i)
∩ V 4

X(ii)
∩ Σ2

U ) ≡ Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U ) . (5.59)

The path integral with appropriate extended operators insertions become Eq. (5.58) which provides the
above link invariant. Note however the two terms on the exponent of Eq. (5.58) are the same, which
causes the complex e iπ phase becoming e i 2π thus undetectable. It may be possible to take into account
(see footnote 17) from the subtle graded non-commutativity of cochain field effect. Thus one may need to
go beyond the continuum differential form TQFT formulation by using the cochain TQFT formulation in
order to see the subleading effect.

5.3 w3(TM)B = w2(TM)Sq1B and a Quadratic Link Invariant Lk
(5)
w2 dB(Σ2

U ′ ,Σ
2
U)

As another interesting test example, now we consider a 5d TQFT obtained from summing over 2-form
field B of w3(TM)B = w2(TM)Sq1B (gauging 1-form Z2 of this 5d SPTs), below we convert the cochain
TQFT to differential form continuum TQFT. Whose partition function and action (see footnote 10) are:

Z =

∫
[DB][Db][Dh] exp(iS), (5.60)

S = π

∫
M5

hdw2(TM) + bdB + w2(TM)Sq1B, (5.61)

S = π

∫
M5

hdw2(TM) + bdB + w2(TM)
1

2
dB. (5.62)
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Gauge transformations are:

w2(TM) → w2(TM) + dα,

B → B + dβ,

h → h+ dγ + λ,

b → b+ dζ + µ. (5.63)

The gauge variation shows:

S → S + π

∫
M5

dγdw2(TM) + λdw2(TM) + dζdB + µdB

+dα
1

2
dB + w2(TM)

1

2
d2β + dα

1

2
d2β (5.64)

= S + π

∫
M5

λdw2(TM) + µdB + (
1

2
dα)dB + (−1

2
dβ)dw2(TM). (5.65)

The gauge variance of the action is: ∆S = 0⇒

λ = (
1

2
dβ),

µ = −(
1

2
dα). (5.66)

We derive 2-surface operator:

U ′ = exp(iπk(

∫
Σ2

h−
∫
V 3

1

2
dB))

= exp(iπk(

∫
M5

(δ⊥(Σ2)h− δ⊥(V 3)
1

2
dB))) (5.67)

= exp(iπk(

∫
M5

(δ⊥(Σ2)(h− 1

2
B)))) (5.68)

and 2-surface operator:

U = exp(iπ`(

∫
Σ2

b+

∫
V 3

1

2
dw2(TM)))

= exp(iπ`(

∫
Σ2

b+

∫
Σ2

1

2
w2(TM)))

= exp(iπ`(

∫
M5

δ⊥(Σ2)(b+
1

2
w2(TM)))) (5.69)

are gauge invariant. Where k, ` are Z2 integers mod 2.

Insert U ′, U into the path integral Z, so we can write the continuum field theory formulation as

〈U ′U〉 =

∫
[DB][Dh][Db]U ′U exp(iπ

∫
M5

hdw2(TM) + bdB + w2(TM)
1

2
dB).

Step 1, we integrate out h in
∫

[Dh], we get

dw2(TM) = kδ⊥(Σ2
U ′),

w2(TM) = kδ⊥(V 3
U ′). (5.70)

We get the double-counting mod 2 cancellation in the exponent of exp(iπ(
∫
M5 δ

⊥(V 3
U ′)

k
2 dB+w2(TM)1

2 dB)) =
1. This boils down to

〈U ′U〉 =

∫
[DB][Db] U exp(iπ

∫
M5

bdB)|w2(TM)=kδ⊥(V 3
U′ )
.

(5.71)
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Step 2, we integrate out b in
∫

[Db], we get the constraint

dB = `δ⊥(Σ2
U ),

B = `δ⊥(V 3
U ). (5.72)

Step 3, finally we integrate out B in
∫

[DB], from Eq. (5.71):

〈U ′U〉

=

∫
[DB]e− iπ(

∫
M5

1
2
w2(TM)`δ⊥(Σ2

U ))

∣∣∣∣w2(TM) = kδ⊥(V 3
U′ ),

B = `δ⊥(V 3
U

)

=

∫
[DB]e(− iπ(

∫
M5

1
2
w2(TM)dB))

∣∣∣∣w2(TM) = kδ⊥(V 3
U′ ),

B = `δ⊥(V 3
U

)

(5.73)

= e
(− iπ

(
k`
2
·#(V 3

U′∩Σ2
U )

)
)

(5.74)

∼= e
(− iπ

(
k`
2
·Lk(5)(Σ2

U′ ,Σ
2
U )

)
)
. (5.75)

We derive the link invariant for the 5d TQFT ZSET[M5] for S = π
∫
M5 hdw2(TM) + bdB+w2(TM)Sq1B

(Version 2) in Eq. (5.75):

#(V 3
U ′ ∩ Σ2

U ) ≡ Lk
(5)
w2 dB(Σ2

U ′ ,Σ
2
U ) . (5.76)

The path integral with appropriate extended operators insertions become Eq. (5.75) which provides the
above link invariant.

5.4 BSq1B + (1 +K1)w1(TM)2Sq1B + (1 +K2)w2(TM)Sq1B and More Link Invariants:

Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U), Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
) and Lk

(5)
w2 dB(Σ2

U ′ ,Σ
2
U(ii)

)

Finally we consider the generic form including any of the four classes of Z5d
SET(K1,K2)

in Eq. (4.5) obtained

from gauging Z5d
SPT(K1,K2)

in Eq. (2.20), with (K1,K2) ∈ (Z2,Z2) labeling the four siblings. Denote

K ′1 := 1 +K1 mod 2 and K ′2 := 1 +K2 mod 2. 21 The partition function and action (see footnote 10) are:

Z =

∫
[DB][Db][Dh][Dc] exp(iS). (5.77)

S = π

∫
M5

K ′1cdw1(TM) +K ′2hdw2(TM) + bdB +BSq1B +K ′1w1(TM)2Sq1B +K ′2w2(TM)Sq1B. (5.78)

S = π

∫
M5

K ′1cdw1(TM) +K ′2hdw2(TM) + bdB +B
1

2
dB +K ′1w1(TM)2 1

2
dB +K ′2w2(TM)

1

2
dB. (5.79)

As we will see, the ordering of the path integral measures
∫

[DB][Db][Dh][Dc] is based on the ordering of
integrating out later. Later we will integrate out the first c, then the second h, then the third b, then the
fourth B.

21 Although in the partition function, K′i and K′i + 2 are equivalent, we only consider K′i ∈ {0, 1}.
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5.4.1 Gauge Invariance

Gauge transformations are:

w1(TM) → w1(TM) + dα1,

w2(TM) → w2(TM) + dα2,

B → B + dβ,

c → c+ dγ1 + λ1,

h → h+ dγ2 + λ2,

b → b+ dζ + µ. (5.80)

The gauge variation shows:

S → S + π

∫
M5

K ′1 dγ1 dw1(TM) +K ′1λ1 dw1(TM) +K ′2 dγ2 dw2(TM) +K ′2λ2 dw2(TM) + dζdB + µdB

+dβ
1

2
dB +B

1

2
d2β + dβ

1

2
d2β

+K ′1(w1(TM)dα1 + dα1w1(TM) + dα1 dα1)
1

2
dB

+K ′1(w1(TM)2 + w1(TM)dα1 + dα1w1(TM) + dα1 dα1)
1

2
d2β

+K ′2 dα2
1

2
dB +K ′2w2(TM)

1

2
d2β +K ′2 dα2

1

2
d2β (5.81)

= S + π

∫
M5

K ′1λ1 dw1(TM) +K ′2λ2 dw2(TM) + µdB +K ′2(
1

2
dα2)dB +K ′2(−1

2
dβ)dw2(TM)

+K ′1
1

2
(w1(TM)dα1 + dα1w1(TM) + dα1 dα1)dB (5.82)

where we have used integration by part: for a closed 5-manifold without boundary, after integration by
part then we can drop the boundary term d(. . . ) where . . . only has effects on a 4-manifold (the 4d
boundary of an open 5-manifold) and we drop the total derivative terms which have no effect on a closed
5-manifold without boundary.

The gauge variance of the action is: ∆S = 0⇒

K ′1λ1 = 0,

K ′2λ2 = K ′2
1

2
dβ,

µ = −K ′1
1

2
(w1(TM)dα1 + dα1w1(TM) + dα1 dα1)−K ′2

1

2
dα2. (5.83)

5.4.2 Extended 2-Surface/3-Brane Operators and Link Invariants

We derive 3-manifold operator:

X = exp(iπkK ′1(

∫
Σ3

c))

= exp(iπk(1 +K1)(

∫
M5

(δ⊥(Σ3)c))). (5.84)

Note that when K ′1 = 1 +K1 = 0 mod 2, the X operator vanishes.
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We derive 2-surface operators:

U ′ = exp(iπk′K ′2(

∫
Σ2

h−
∫
V 3

1

2
dB))

= exp(iπk′K ′2(

∫
M5

(δ⊥(Σ2)h− δ⊥(V 3)
1

2
dB)))

= exp(iπk′K ′2(

∫
M5

(δ⊥(Σ2)(h− 1

2
B)))) (5.85)

= exp(iπk′(1 +K2)(

∫
M5

(δ⊥(Σ2)(h− 1

2
B)))).

Note that when K ′2 = 1 +K2 = 0 mod 2, the U ′ operator vanishes.

U = exp(iπ`(

∫
Σ2

(b+K ′1
1

2
w1(TM)2 +K ′2

1

2
w2(TM))))

= exp(iπ`(

∫
M5

(δ⊥(Σ2)(b+K ′1
1

2
w1(TM)2 +K ′2

1

2
w2(TM)))) (5.86)

= exp(iπ`(

∫
M5

(δ⊥(Σ2)(b+ (1 +K1)
1

2
w1(TM)2 + (1 +K2)

1

2
w2(TM)))).

All above extended operators are gauge invariant. Where k, k′, ` are Z2 integers mod 2.

Insert X(i), X(ii), U
′, U(i), U(ii) into the path integral Z, so we can write the continuum field theory

formulation as

〈X(i)X(ii)U
′U(i)U(ii)〉 =

∫
[DB][Db][Dh][Dc] X(i)X(ii)U

′U(i)U(ii) exp(iS). (5.87)

〈X(i)X(ii)U
′U(i)U(ii)〉 =

∫
[DB][Db][Dh][Dc]X(i)X(ii)U

′U(i)U(ii) exp(iπ

∫
M5

K ′1cdw1(TM)

+K ′2hdw2(TM) + bdB +B
1

2
dB +K ′1w1(TM)2 1

2
dB +K ′2w2(TM)

1

2
dB).

Step 1, we integrate out c in
∫

[Dc], we get

K ′1 dw1(TM) = K ′1
(
k(i)δ

⊥(Σ3
X(i)

) + k(ii)δ
⊥(Σ3

X(ii)
)
)
,

K ′1w1(TM) = K ′1
(
k(i)δ

⊥(V 4
X(i)

) + k(ii)δ
⊥(V 4

X(ii)
)
)
. (5.88)

We keep K ′1 on both sides, because when K ′1 = 1 mod 2, we have this constraint; when K ′1 = 0 mod 2,
there is no such constraint. So

〈X(i)X(ii)U
′U(i)U(ii)〉 =

∫
[DB][Db][Dh] U ′U(i)U(ii) exp(iπ

∫
M5

K ′2hdw2(TM) + bdB +B
1

2
dB

+K ′1w1(TM)2 1

2
dB +K ′2w2(TM)

1

2
dB)

∣∣∣∣K′1w1(TM) = K
′
1

(
k(i)δ

⊥
(V

4
X(i)

) + k(ii)δ
⊥

(V
4
X(ii)

)
). (5.89)

Step 2, we integrate out h in
∫

[Dh], we get

K ′2 dw2(TM) = K ′2 k
′δ⊥(Σ2

U ′),

K ′2w2(TM) = K ′2 k
′δ⊥(V 3

U ′). (5.90)

We keep K ′2 on both sides, because when K ′2 = 1 mod 2, we have this constraint; when K ′2 = 0
mod 2, there is no such constraint. We get the double-counting mod 2 cancellation in the exponent
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of exp(iπ(
∫
M5 K

′
2δ
⊥(V 3

U ′)
k′

2 dB +K ′2w2(TM)1
2 dB)) = 1. This boils down to

〈X(i)X(ii)U
′U(i)U(ii)〉 =

∫
[DB][Db] U(i)U(ii) exp(iπ

∫
M5

bdB +B
1

2
dB

+K ′1w1(TM)2 1

2
dB)

∣∣∣∣K′1w1(TM) = K′1
(
k(i)δ

⊥(V 4
X(i)

) + k(ii)δ
⊥(V 4

X(ii)
)
)
,

K′2w2(TM) = K′2k
′δ⊥(V 3

U′ ).
.

(5.91)

Step 3, we integrate out b in
∫

[Db], we get the constraint

dB = `(i)δ
⊥(Σ2

U(i)
) + `(ii)δ

⊥(Σ2
U(ii)

),

B = `(i)δ
⊥(V 3

U(i)
) + `(ii)δ

⊥(V 3
U(ii)

). (5.92)

Step 4, finally we integrate out B in
∫

[DB], from Eq. (5.89):

〈X(i)X(ii)U
′U(i)U(ii)〉

=

∫
[DB] exp(− iπ(

∫
M5

1

2
(K ′1w1(TM)2 +K ′2w2(TM))(`(i)δ

⊥(Σ2
U(i)

) + `(ii)δ
⊥(Σ2

U(ii)
))

+B
1

2
dB +K ′1w1(TM)2 1

2
dB))

∣∣∣∣ K′1w1(TM)=K′1
(
k(i)δ

⊥(V 4
X(i)

)+k(ii)δ
⊥(V 4

X(ii)
)
)
,

K′2w2(TM)=K′2k′δ⊥(V 3
U′ ),

B = `(i)δ
⊥(V 3

U(i)
) + `(ii)δ

⊥(V 3
U(ii)

)

=

∫
[DB] exp(− iπ(

∫
M5

1

2
(K ′1w1(TM)2 +K ′2w2(TM))dB +B

1

2
dB

+K ′1w1(TM)2 1

2
dB))

∣∣∣∣ K′1w1(TM)=K′1
(
k(i)δ

⊥(V 4
X(i)

)+k(ii)δ
⊥(V 4

X(ii)
)
)
,

K′2w2(TM)=K′2k′δ⊥(V 3
U′ ),

B = `(i)δ
⊥(V 3

U(i)
) + `(ii)δ

⊥(V 3
U(ii)

)

(5.93)

= exp(− iπ
(
K ′1k(i)k(ii) · 2#(V 4

X(i)
∩ V 4

X(ii)
∩ (`(i)δ

⊥(Σ2
U(i)

) + `(ii)δ
⊥(Σ2

U(ii)
)))

+K ′2(
k′`(i)

2
·#(V 3

U ′ ∩ Σ2
U(i)

) +
k′`(ii)

2
·#(V 3

U ′ ∩ Σ2
U(ii)

)) +
`(i)`(ii)

2
· (#(V 3

U(i)
∩ Σ2

U(ii)
) + #(V 3

U(ii)
∩ Σ2

U(i)
))
)

)

·(· · · ) · (Self-intersecting # terms) (5.94)

∼= exp(− iπ
(
K ′1(k(i)k(ii)`(i) · 2Tlk(5)(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U(i)
) + k(i)k(ii)`(ii) · 2Tlk(5)(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U(ii)
))

+K ′2(
k′`(i)

2
· Lk(5)(Σ2

U ′ ,Σ
2
U(i)

) +
k′`(ii)

2
· Lk(5)(Σ2

U ′ ,Σ
2
U(ii)

)) + `(i)`(ii) · Lk(5)(Σ2
U(i)

,Σ2
U(ii)

)
)

) · (· · · ). (5.95)

We propose a set-up to remove or renormalize the (Self-intersecting # terms) appeared in Eq. (5.94),
following the same strategy as footnote 19.

For S = π
∫
M5 K

′
1cdw1(TM) +K ′2hdw2(TM) + bdB +B 1

2 dB +K ′1w1(TM)2 1
2 dB +K ′2w2(TM)1

2 dB,
we derive the link invariant for the 5d TQFT ZSET[M5] in Eq. (5.94) and Eq. (5.95):

K ′1k(i)k(ii) · 2#(V 4
X(i)
∩ V 4

X(ii)
∩ (`(i)δ

⊥(Σ2
U(i)

) + `(ii)δ
⊥(Σ2

U(ii)
)))

+K ′2(
k′`(i)

2
·#(V 3

U ′ ∩ Σ2
U(i)

) +
k′`(ii)

2
·#(V 3

U ′ ∩ Σ2
U(ii)

)) +
`(i)`(ii)

2
· (#(V 3

U(i)
∩ Σ2

U(ii)
) + #(V 3

U(ii)
∩ Σ2

U(i)
))

≡ (1 +K1)(k(i)k(ii)`(i) · 2Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U(i)
) + k(i)k(ii)`(ii) · 2Tlk

(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U(ii)
))

+(1 +K2)(
k′`(i)

2
· Lk

(5)
w2 dB(Σ2

U ′ ,Σ
2
U(i)

) +
k′`(ii)

2
· Lk

(5)
w2 dB(Σ2

U ′ ,Σ
2
U(ii)

)) + `(i)`(ii) · Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
) .

(5.96)
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The path integral with appropriate extended operators insertions become Eq. (5.95) which provides the
above link invariant.

5.4.3 (K1,K2) = (0, 0): 1st Sibling

The Z5d
SET(K1=0,K2=0)

gives rise to a 5d triple link invariant:

• Tlk
(5)
w1BB

in Sec. 5.1’s Eq. (5.25). We present an exemplary link configuration later in (Sec. 6.2) that can

be detected by this link invariant. On another expression, Z5d
SET(K1=0,K2=0)

in Eq. (4.5) gives rise to other

link invariants in Eq. (5.96) including

• Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U), a second type of triple link in 5d (although seemly undetectable due to

an exponent factor 2π in the expectation value). We present an exemplary link configuration later in
(Sec. 6.3) that can be detected by this link invariant.

• Lk
(5)
w2 dB(Σ2

U ′ ,Σ
2
U ), another quadratic link of 2-surfaces in 5d. We present an exemplary link configuration

later in (Sec. 6.6) that can be detected by this link invariant.

• Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
), a quadratic link of 2-surfaces in 5d. We present an exemplary link configuration

later in (Sec. 6.5) that can be detected by this link invariant.

Physically, these link invariants may be related to each other by re-arranging the spacetime braiding
process of strings/branes. It will be interesting to find a precise mathematical equality to relate these link
invariants.

5.4.4 (K1,K2) = (1, 0): 2nd Sibling

Z5d
SET(K1=1,K2=0)

in Eq. (4.5) gives rise to link invariants in Eq. (5.96) including

• Lk
(5)
w2 dB(Σ2

U ′ ,Σ
2
U ), another quadratic link of 2-surfaces in 5d. We present an exemplary link configuration

later in (Sec. 6.6) that can be detected by this link invariant.

• Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
), a quadratic link of 2-surfaces in 5d. We present an exemplary link configuration

later in (Sec. 6.5) that can be detected by this link invariant.
Similarly to our comments above in Sec. 5.4.3, it will be interesting to find a precise mathematical equality
to relate these link invariants.

5.4.5 (K1,K2) = (0, 1): 3rd Sibling

Z5d
SET(K1=0,K2=1)

in Eq. (4.5) gives rise to link invariants in Eq. (5.96) including

• Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U), a second type of triple link in 5d (although seemly undetectable due to

an exponent factor 2π in the expectation value). We present an exemplary link configuration later in
(Sec. 6.3) that can be detected by this link invariant.

• Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
), a quadratic link of 2-surfaces in 5d. We present an exemplary link configuration

later in (Sec. 6.5) that can be detected by this link invariant.
Similarly to our comments above in Sec. 5.4.3, it will be interesting to find a precise mathematical equality
to relate these link invariants.
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5.4.6 (K1,K2) = (1, 1): 4th Sibling

Z5d
SET(K1=1,K2=1)

in Eq. (4.5) gives rise to link invariants in Eq. (5.96) including

• Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
).

Similarly to our comments above in Sec. 5.4.3, it will be interesting to find a precise mathematical equality
to relate these link invariants.
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6 Anyonic String/Brane Spacetime Braiding Process and Link Con-
figurations of Extended Operators

Now we provide the exemplary spacetime braiding process of anyonic string/brane (in 5d and in other
dimensions), and the link configurations of extended operators, which can be detected by the link invariants
that we derived in Sec. 5.

6.1 Quadratic Link (Aharanov-Bohm) Configuration in Any Dimension

To warm up, first let us recall the quadratic link, by the Aharanov-Bohm statistics in dd due to the linking
of charged particle’s 1-worldline and the fractional flux’s (d − 2)d-worldsheet. In 3d spacetime, we have
the following presentation

×D2

S1 S1

D2

where gluing two solid tori D2×S1 gives rise to a 3-sphere: (D2
L×S1

R)∪(S1
L×D2

R) = S3. We can represent
the two solid tori gluing as a blue solid tori and a red solid tori gluing: (D2

L × S1
R)∪ (S1

L ×D2
R) = S3. It is

well-known that the link invariant (quadratic link) detecting this Aharanov-Bohm configuration is given
by ( [11] and References therein): Lk((0pt)L × S1

R, S
1
L × (0pt)R), which we also express as

Lk((0pt)L × S1
R, S

1
L × (0pt)R) (6.1)

based on the color labeling of the inclusion of two S1 circles in which of two solid tori. This link invariant
can be computed from the intersection number,

×D2

S1 S1

D2

as #((0pt)L × S1
R) ∩ (D2

L × (0pt)R,−)) = 1, which becomes

#((0pt)L × S1
R) ∩ (D2

L × (0pt−)R)) = 1. (6.2)

again based on the color labeling of the inclusion of S1 and D2 in which of two solid tori. Importantly,
(0pt−) means the point (0pt) now is attached with a line due to this particular way we represent the S3

into two D2 × S1. We see the intersection number #((0pt)L × S1
R) ∩ (D2

L × (0pt−)R)) = 1 is right at the
black dot •.
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In dd spacetime, we have the following presentation for the gluing to Sd sphere by (Dd−1
L × S1

R) ∪
(Sd−2

L ×D2
R) = Sd or

(Dd−1
L × S1

R) ∪ (Sd−2
L ×D2

R) = Sd. (6.3)

While the link configuration is

×Dd−1

Sd−2 S1

D2

given by Lk((0pt)L × S1
R, S

d−2
L × (0pt)R), or

Lk((0pt)L × S1
R, S

d−2
L × (0pt)R) (6.4)

with the coloring presentation explained earlier. This link invariant can be computed from the intersection
number,

×Dd−1

Sd−2 S1

D2

given by #((0pt)L × S1
R) ∩ (Dd−1

L × (0pt)R,−)) = 1, or

#((0pt)L × S1
R) ∩ (Dd−1

L × (0pt−)R)) = 1. (6.5)

with the coloring presentation explained earlier. Importantly, (0pt−) means the point (0pt) now is attached
with a line due to this particular way we represent the Sd. We see the intersection number #((0pt)L × S1

R)∩
(Dd−1

L × (0pt−)R)) = 1. is right at the black dot •.
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6.2 The 1st Triple Link #(V 4
X ∩ V 3

U(i)
∩ V 3

U(ii)
) ≡ Tlk

(5)
w1BB

(Σ3
X ,Σ

2
U(i)
,Σ2

U(ii)
) Configuration in

5d

We move on to discuss the triple link configuration for Tlk
(5)
w1BB

(Σ3
X ,Σ

2
U(i)

,Σ2
U(ii)

) derived in Sec. 5.1.22

We propose that this link invariant derived in Sec. 5.1 can detect Fig. 2.

×

D4

S3

S1
S1

D2

Σ3
X

Σ2
U(i)

Σ2
U(ii)

Figure 2: S5 = ∂D6 = ∂(D4×D2) = S3×D2∪D4×S1 = S3×D2∪D2×D2×S1, the intersection of the
two copies of D2×S1 in the second piece (D2×0pt×S1 and 0pt×D2×S1) is 0pt×0pt×S1 = 0pt×S1, this
0pt×S1 and S3× 0pt in the first piece are linked. In this figure, Σ3

X = S3× 0pt, Σ2
U(i)

= ∂(D2× 0pt×S1),

Σ2
U(ii)

= ∂(0pt ×D2 × S1).

×

D4

S3

D2
S1

D2

V 4
X

V 3
U(i)

V 3
U(ii)

Figure 3: Following the last figure, V 4
X = D4× 0pt which bounds Σ3

X , V 3
U(i)

= D2× 0pt×S1 which bounds

Σ2
U(i)

, V 3
U(ii)

= 0pt × D2 × S1 which bounds Σ2
U(ii)

. The intersection of V 3
U(i)

and V 3
U(ii)

is 0pt × S1, the

intersection of V 4
X and this 0pt × S1 is a point which is the point in black in this figure.

To explain, we start by gluing into a 5-sphere via S5 = ∂D6 = ∂(D4 ×D2) = S3 ×D2 ∪D4 × S1 =
S3×D2 ∪D2×D2×S1. We write S5 = (S3

L×D2
R)∪ (D4

L×S1
R) = (S3

L ×D2
R)∪ (D4

L × S1
R). We also have

S5 = (S3
L ×D2

R) ∪ (D2
L ×D2

L × S1
R) = (S3

L ×D2
R) ∪ (D2

L ×D2
L × S1

R).

Consider the link invariant defined by #(V 4
X ∩ V 3

U(i)
∩ V 3

U(ii)
) ≡ Tlk

(5)
w1BB

(Σ3
X ,Σ

2
U(i)

,Σ2
U(ii)

), we see that

the link configuration in Fig. 2 gives the intersection number 1 in Fig. 3. Again in the #(V 4
X ∩ V 3

U(i)
∩ V 3

U(ii)
)

presentation in Fig. 3, (0pt−) means the point (0pt) now is attached with a line due to this particular way
we represent the Sd. We see the intersection number #(V 4

X ∩ V 3
U(i)
∩ V 3

U(ii)
) = 1 is right at the black dot •.

22Effectively, Tlk
(5)
w1BB

(Σ3
X ,Σ

2
U(i)

,Σ2
U(ii)

) can be also regarded as Tlk
(5)
ABB(Σ3

X ,Σ
2
U(i)

,Σ2
U(ii)

) where A is other Zn 1-form
gauge field.

44



6.3 The 2nd Triple Link #(V 4
X(i)
∩ V 4

X(ii)
∩ Σ2

U) ≡ Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U) Configuration

in 5d

We now discuss Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U ) (or Tlk
(5)
AAdB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U )). This link invariant is derived

in Sec. 5.2.2.

S2D3

(1)

(2) (3)

×

S2D3

S1
(1)

S1
(3)

S2
(2)

Σ3
X(ii) Σ2

U

Σ3
X(i)

T 2

Figure 4: S5 = ∂D6 = ∂(D3 × D3) = S2 × D3 ∪ D3 × S2. Put a 2-torus (denoted by (1)) in D3 × 0pt,
and put a Hopf link (the two circles are denoted by (2) and (3) respectively) in the solid 2-torus. Put
two circles (denoted by S1

(1) and S1
(3) respectively) which intersect in only one point in 0pt × S2 (denoted

by S2
(2)). In this figure, Σ3

X(i)
is the cartesian product of the 2-torus (1) and S1

(1), Σ3
X(ii)

is the cartesian

product of the circle (2) and S2
(2), Σ2

U is the cartesian product of the circle (3) and S1
(3).

S2D3

(1)

(2) (3)

×

S2D3

S1
(1)

S1
(3)

S2
(2)

V 4
X(ii) Σ2

U

V 4
X(i)

D2 × S1

Figure 5: Following the last figure, if we fill in Σ3
X(i)

and Σ3
X(ii)

, we get V 4
X(i)

= D2 × S1 × S1 and

V 4
X(ii)

= D2 × S2, V 4
X(i)

, V 4
X(ii)

and Σ2
U will intersect in only one point which is the point in black in this

figure.
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Consider the link invariant defined by #(V 4
X(i)
∩ V 4

X(ii)
∩ Σ2

U ) ≡ Tlk
(5)
w1w1 dB(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U ), we see

that the link configuration in Fig. 4 gives the intersection number 1 in Fig. 5.

6.4 Quadruple Link #(V 4
X(i)
∩ V 4

X(ii)
∩ V 4

X(iii)
∩ V 3

U ) ≡ Qlk
(5)
w1w1w1B

(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U) Con-

figuration in 5d

We now discuss Qlk
(5)
aaab(Σ

3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

) (or Qlk
(5)
w1w1w1B

(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

) ).This link invariant is

derived in Sec. 5.2.1.

×

D3

S2 S2

D3Σ3
X(i)

Σ3
X(ii)

Σ3
X(iii)

Σ2
U

Figure 6: S5 = ∂D6 = ∂(D3 ×D3) = S2 ×D3 ∪D3 × S2. Put Borromean rings in D3 × 0pt, If we fill in
each of the three circles of the Borromean rings, then we get an intersection point, we can think of this
point as 0pt in D3, then the cartesian product of each of the three circles and S2 (denoted by Σ3

X(i)
, Σ3

X(ii)

and Σ3
X(iii)

respectively) will intersect in 0pt×S2, this 0pt×S2 and S2× 0pt (Σ2
U in this figure) are linked.

×

D3

S2 S2

D3V 4
X(i)

V 4
X(ii)

V 4
X(iii)

V 3
U

Figure 7: Following the last figure, we denote the three D2 × S2 which bound the cartesian product of
the three circles and S2 as V 4

X(i)
, V 4

X(ii)
, V 4

X(iii)
respectively. The intersection of V 4

X(i)
, V 4

X(ii)
and V 4

X(iii)
is

0pt × S2. The intersection of V 3
U = D3 × 0pt which bounds Σ2

U and 0pt × S2 is a point which is the point
in black in this figure.

Consider the link invariant defined by #(V 4
X(i)
∩ V 4

X(ii)
∩ V 4

X(iii)
∩ V 3

U ) ≡ Qlk
(5)
w1w1w1B

(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U ),

we see that the link configuration in Fig. 6 gives the intersection number 1 in Fig. 7.
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6.5 Quadratic Link #(V 3
U(i)
∩ Σ2

U(ii)
) ≡ Lk

(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
)

Now we discuss Lk
(5)
BdB(Σ2

U(i)
,Σ2

U(ii)
). This link invariant is derived in the special case (K1,K2) = (1, 1) in

Sec. 5.4.

×D3

S2 S2

D3

Σ2
U(i)

Σ2
U(ii)

Figure 8: S5 = ∂D6 = ∂(D3 ×D3) = S2 ×D3 ∪D3 × S2. The S2 × 0pt in the first piece and the 0pt × S2

in the second piece are linked. In this figure, Σ2
U(i)

= S2 × 0pt, Σ2
U(ii)

= 0pt × S2.

×D3

S2 S2

D3

V 3
U(i)

Σ2
U(ii)

Figure 9: Following the last figure, if we fill in S2×0pt, we get V 3
U(i)

= D3×0pt, the intersection of D3×0pt

and 0pt × S2 is a point which is the point in black in this figure.

Consider the link invariant defined by #(V 4
X(i)
∩ V 4

X(ii)
∩ V 4

X(iii)
∩ V 3

U ) ≡ Qlk
(5)
w1w1w1B

(Σ3
X(i)

,Σ3
X(ii)

,Σ3
X(iii)

,Σ2
U ),

we see that the link configuration in Fig. 8 gives the intersection number 1 in Fig. 9.

6.6 Quadratic Link #(V 3
U ′ ∩ Σ2

U) ≡ Lk
(5)
w2 dB(Σ2

U ,Σ
2
U ′)

Now we discuss Lk
(5)
w2 dB(Σ2

U ′ ,Σ
2
U ) or Lk

(5)
B′ dB(Σ2

U ′ ,Σ
2
U ). This link invariant is derived in Sec. 5.3.

×D3

S2 S2

D3

Σ2
U′ Σ2

U

Figure 10: S5 = ∂D6 = ∂(D3×D3) = S2×D3 ∪D3×S2. The S2× 0pt in the first piece and the 0pt×S2

in the second piece are linked. In this figure, Σ2
U ′ = S2 × 0pt, Σ2

U = 0pt × S2.

×D3

S2 S2

D3

V 3
U′ Σ2

U

Figure 11: Following the last figure, if we fill in S2×0pt, we get V 3
U ′ = D3×0pt, the intersection of D3×0pt

and 0pt × S2 is a point which is the point in black in this figure.
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Consider the link invariant defined by #(V 3
U ′ ∩ Σ2

U ) ≡ Lk
(5)
w2 dB(Σ2

U ,Σ
2
U ′), we see that the link configu-

ration in Fig. 10 gives the intersection number 1 in Fig. 11.

6.7 The 3rd Triple Link #(V 4
X(i)
∩ Σ3

X(ii)
∩ V 3

U ) ≡ Tlk
(5)
(AdA)B(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U) Configuration

in 5d

Finally, we discuss a third triple link invariant #(V 4
X(i)
∩ Σ3

X(ii)
∩ V 3

U ) ≡ Tlk
(5)
(AdA)B(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U ). We

have not derived these from 4d YM-5d SET coupled systems. However, to get this, we need a topological
term (w1(TM)dw1(TM))B. This is possible however from (AI dAJ)B type of TQFTs. We indeed can
extend the dimensions to 5d from some 4d theories studied in [11] and [62].

×

D3

S2 S2

D3

Σ3
X(i)

Σ3
X(ii)

Σ2
U

Figure 12: S5 = ∂D6 = ∂(D3 ×D3) = S2 ×D3 ∪D3 × S2, put a Hopf link in D3 × 0pt. In this figure,
Σ3
X(i)

and Σ3
X(i)

are the cartesian product of the two circles in the Hopf link and S2 respectively, namely,

they are both S1 × S2, Σ2
U = S2 × 0pt.

×

D3

S2 S2

D3

V 4
X(i)

Σ3
X(ii)

V 3
U

Figure 13: Following the last figure, if we fill in Σ3
X(i)

, we get V 4
X(i)

= D2 × S2, the intersection of V 4
X(i)

and Σ3
X(ii)

is the cartesian product of a point (we can think of the point as 0pt) and S2. If we fill in Σ2
U

further, we get V 3
U = D3 × 0pt, the intersection of D3 × 0pt and 0pt × S2 is a point which is the point in

black in this figure.

Consider the link invariant defined by #(V 4
X(i)
∩ Σ3

X(ii)
∩ V 3

U ) ≡ Tlk
(5)
(AdA)B(Σ3

X(i)
,Σ3

X(ii)
,Σ2

U ), we see

that the link configuration in Fig. 12 gives the intersection number 1 in Fig. 13.
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7 4d SO(3)θ=π Yang-Mills Gauge Theories coupled to the Boundary of
5d SETs/Long-Range Entangled TQFTs

In Sec. 2, we have shown that that the SU(2) Yang-Mills theory with θ = π, with the gauge bundle
constraint w2(VPSU(2)) = B +K1w1(TM)2 +K2w2(TM), has four distinct t’ Hooft anomalies Eq. (2.11).
In this section, we further comment on gauging the 1-form Ze2,[1] center symmetry of the four siblings of

SU(2)θ=π YM to obtain SO(3)θ=π YM theories. Since the ’t Hooft anomalies involve the 1-form center
symmetry and the spacetime symmetries (whose background is the Stiefel-Whitney classes wi(TM)),
depending on which manifold we formulate the SU(2) Yang Mills, one obtains different theories.

7.1 From SU(2) to SO(3) Gauge Theory

To illustrate, we start with gauging the 1-form symmetry [6, 63] of the time reversal symmetric and
anomaly free SU(2)θ=0 YM theories. There are still four choices of gauge bundle constraints labeled by
(K1,K2), i.e. Eq. (3.2) except the 2-form Z2 gauge field is promoted to a dynamical field. Denoting
Z4d

SU(2)YM[B] as the path integral without specifying the gauge bundle constraint, the partition function

with the gauge bundle constraint w2(E) = (B +K1w1(TM)2 +K2w2(TM)) mod 2 is

Z4d
SU(2)YM(K1,K2)

[B] ≡
∫

[DΛ] Z4d
SU(2)YM[B] exp

(
iπΛ ∪ (w2(E)−

(
B +K1w1(TM)2 +K2w2(TM)

)
)
)
,

More generally, we can add Pontryagin square term pπ
2 P(B) labeled by an integer p, and define a partition

function:

Z4d
SU(2)YM(K1,K2)

[B] ≡
∫

[DΛ] Z4d
SU(2)YM[B] exp

(
iπ(Λ∪(w2(E)−

(
B+K1w1(TM)2+K2w2(TM)

)
)+
p

2
P(B))

)
,

(7.1)
Below we like to obtain SO(3) YM by gauging 1-form Ze2,[1] center symmetry. The theta angle of the

resulting theory is 2πp. If w2(TM) is nontrivial, the resulting SO(3) theory is time reversal symmetric
only when p ∈ 2Z and p ∼ p + 4. When w2(TM) is trivial, the resulting SO(3) theory is time reversal
symmetric for p ∈ Z and p ∼ p+2. In the following, we always restrict to the time reversal symmetric case.
Gauging 1-form center symmetry amounts to summing over the background gauge field B (promoting B
to a dynamical gauge field),

Z4d
SO(3)YM(K1,K2)

=∫
[DΛ][DB] Z4d

SU(2)YM[B] exp
(
iπ(Λ ∪ (w2(E)−

(
B +K1w1(TM)2 +K2w2(TM)

)
) +

p

2
P(B))

)
, (7.2)

By integrating out Λ enforces the relation between SO(3)-gauge bundles/connections and 2-form dynamical
gauge field B. This outputs the SO(3)-gauge theory Z4d

SO(3)YM(K1,K2)
with θ = 2πp.

7.2 Comment on Gauging 1-form Ze
2,[1] of SU(2) Gauge Theory with θ = π

We proceed to discuss gauging the 1-form symmetry of SU(2) Yang Mills with θ = π.

If one formulates the SU(2) Yang Mills on an orientable and spin manifold, i.e., w1 = w2 = 0 (hence
w3 = 0 as well), then one has the freedom to ignore the time reversal as a symmetry of the theory. The
only symmetry of interest is the 1-form symmetry, which does not have anomaly with itself. Hence one
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can gauge the 1-form symmetry and the resulting theory is PSU(2) = SO(3) Yang-Mills with θ = π.
Indeed, SO(3) Yang-Mills with θ = π does not respect time reversal, which maps θ = π to θ = 3π due to
the identification θ ∼ θ + 4π.

If one formulates the SU(2) Yang Mills on an orientable and non-spin manifold, one still has the
freedom to ignore the time reversal as a symmetry of the theory. However, in this case, there is still
nontrivial anomaly ∫

M5

K2πw2(TM) ∪ Sq1B =

∫
M5

K2πw3(TM) ∪B (7.3)

which does not vanish on an orientable manifold if K2 = 1. Denoting the partition function of the
SU(2)θ=π Yang-Mills coupled to B as ZSU(2)YM(0,K2)

[M4, B], after promoting B to a dynamical field, the
partition function of the entire 4d-5d system is

∑
B

ZSU(2)YM(0,K2)
[M4, B] exp

(
iπ

∫
M5

K2w3(TM) ∪B
)
. (7.4)

If K2 = 0, the 4d-5d system reduces to a intrinsic 4d system. Physically, this corresponds to the case
where the gauge charge is a boson. It makes sense to gauge the 1-form symmetry which again gives raise
to the SO(3) Yang-Mills theory. If K2 = 1, only the entire 4d-5d system is well defined, and it does not
make sense to discuss the 4d theory alone, in contrast with the case where w1 = w2 = 0. Physically, this
corresponds to the case where the gauge charge is a fermion.

If one formulates the SU(2) Yang Mills on an unorientable manifold, time reversal symmetry is bulit
in and too late to give it up. Promoting B to a dynamical gauge field, the partition function for the total
system is

∑
B

ZSU(2)YM(K1,K2)
[M4, B] exp

[
iπ

∫
M5

(
BSq1B+Sq2Sq1B+K1w1(TM)3∪B+K2w3(TM)∪B

)]
. (7.5)

Since M5 is unorientable, for all four choices of (K1,K2), the 5d terms do not vanish (because πBSq1B+
πSq2Sq1B is always non-vanishing on unorientable manifold). Hence one can only discuss the 4d-5d system
rather than discussing the 4d system alone. We summarize all the above scenarios in Table 10.

(w1, w2)\(K1,K2) (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) X X X X
(1, 0) × × × ×
(0, 1) X X × ×
(1, 1) × × × ×

Table 10: Possibilities of gauging the SU(2)θ=π Yang-Mills theory with gauge bundle constraint (K1,K2)
on a manifold with Stiefel-Whitney class (w1, w2). The X means that there is a way to make sense of the
resulting gauged theory as a purely 4d theory. The theories labeled by × means that it only makes sense
to discuss the combined 4d-5d systems.
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8 Lattice Regularization and UV completion

In this section, we formulate the background-probed-field 5d partition function of the higher SPT
Z5d

SPT(K1=0,K2=0)
[M5;B] of a background 2-cochain B field on a simplicial complex spacetime. This provides

a lattice regularization of the 5d SPT. We also provide lattice realization of (i) 4d higher-symmetry-
extended boundary theory or (ii) 4d higher-symmetry-enriched anomalous topologically ordered boundary
theory. We will generalize the approach in [52] and follow the Section IX of [64]. In condensed matter
physics, this (ii) phenomenon is known as the anomalous surface topological order firstly noticed in [65]
(typically the 2+1D boundary of 3+1D SPTs, see a review [28]).

8.1 Lattice Realization of 4d Higher-SPTs and Higher-Gauge TQFT: 4d Simplicial
Complex and 3+1D Condensed Matter Realization

We warm up by considering a lattice realization of 4d Higher-SPTs given by

Z4d
SPT[M4;B] = exp

(
i
π

2

∫
M4

P(B)

)
= exp

(
i
π

2

∫
M4

B ∪B +B ∪
1
δB

)
. (8.1)

The path integral can be regularized on a triangulated 4-manifold M4. The building blocks of M4 are
4-simplices. Without loss of generality, we consider an arbitrary 4-simplical which we denote as (01234)
where each number labels one vertex. See Fig. 14 for a graphical representation of a 4-simplex. We
denote Bijk as restricting the 2-cochain B on the 2-simplex (ijk). We label the path integral amplitude
on (01234) as ω4(01234), i.e.,

ω4(01234) = exp

[
iπ

(
1

2
B ∪B +

1

2
B ∪

1
δB

)
01234

]

= exp

[
i
π

2

(
B012B234 +B034(B123 −B023 +B013 −B012) +B014(B234 −B134 +B124 −B123)

)]
.

(8.2)

It is straightforward to verify that ω4(01234) satisfies the cocycle condition:

(δω4)(012345) =
ω4(12345) · ω4(01345) · ω4(01235)

ω4(02345) · ω4(01245) · ω4(01234)
= 1. (8.3)

8.2 Lattice Realization of 5d Higher-SPTs and Higher-Gauge SETs: 5d Simplicial
Complex and 4+1D Condensed Matter Realization

The 5d partition function with (K1 = 0,K2 = 0) is

Z5d
SPT(K1=0,K2=0)

[M5] = exp

(
iπ

∫
M5

BSq1B + Sq2Sq1B

)
. (8.4)

We start by triangulating the 5d closed spacetime manifold (without boundary) into 5-simplicial complex.
We denote Bijk as restricting the 2-cochain B on the 2-simplex (ijk). Using the identities

Sq1B = B ∪
1
B =

1

2
δB,

Sq2Sq1B = (Sq1B) ∪
1

(Sq1B) =
1

4
(δB) ∪ (δB).

(8.5)
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0

1

2

3
4

1

Figure 14: Graphical representation of a 4-simplex (01234).

Note that the second equality in both lines hold only when B is a cocycle, i.e., δB = 0. Since B is the
classical background gauge field of Z2 discrete symmetry, B should obey the flat condition, hence for
simplicity, one can use all the equalities in Eq. (8.5). One can express the SPT action Eq. (8.4) in terms
of the sum of cup-products of B cochains over 5-simplices

Z5d
SPT(K1=0,K2=0)

[M5] = exp

(
i
π

2

∑
M5

B ∪ δB + i
π

4

∑
M5

δB ∪
1
δB

)
. (8.6)

0

1

2

3
4

5

1

Figure 15: Graphical representation of a 5-simplex (012345).

Without loss of generality, we consider an arbitrary 5-simplex which we denote as (012345) where each
number labels one vertex. See Fig. 15 for a graphical representation of a 5-simplex. We will label the path
integral amplitude on the simplex (012345) as ω5(012345), i.e.,

ω5(012345) = exp

[
iπ

(
1

2
B ∪ δB +

1

4
δB ∪

1
δB

)
012345

]
(8.7)
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so that the partition function can be simplified as Z5d
SPT(K1=0,K2=0)

[M5] =
∏

(ijklmn)∈M5 ω(ijklmn). Using

the definition of the cup products on simplices and the identities Eq. (8.5), we have(
Sq1B

)
0123

=
1

2

(
B123 −B023 +B013 −B012

)
(
Sq2Sq1B

)
012345

=
1

4

(
(δB)0345(δB)0123 + (δB)0145(δB)1234 + (δB)0125(δB)2345

)
,

=
1

4

(
(−B045 −B034 +B035 +B345) (−B023 −B012 +B013 +B123)

+ (−B045 −B014 +B015 +B145) (−B134 −B123 +B124 +B234)

+ (−B025 −B012 +B015 +B125) (−B245 −B234 +B235 +B345)

)
.

(8.8)

Hence the path integral amplitude on the simplex (012345) is

ω5(012345) = exp

[
iπ

2
B012(−B245 −B234 +B235 +B345)

+
iπ

4
(−B045 −B034 +B035 +B345) (−B023 −B012 +B013 +B123)

+
iπ

4
(−B045 −B014 +B015 +B145) (−B134 −B123 +B124 +B234)

+
iπ

4
(−B025 −B012 +B015 +B125) (−B245 −B234 +B235 +B345)

]
.

(8.9)

It is straightforward to verify that ω5(012345) satisfies the cocycle condition:

(δω5)(0123456) =
ω5(123456) · ω5(013456) · ω5(012356) · ω5(012345)

ω5(023456) · ω5(012456) · ω5(012346)
= 1. (8.10)

We emphasize that ω(012345) is a cocycle only when B is a cocycle, i.e., δB = 0. If B is a cochain rather
than a cocycle, Eq. (8.4) is not a cocycle, hence can not be a partition function of a topological field
theory. 23

We further comment on the lattice regularization of theory with various choices of (K1,K2).

1. When (K1,K2) = (0, 0), as we derived above, there is a lattice regularization of the 5d SPT partition
function.

2. When (K1,K2) = (1, 0), the path integral amplitude depends on the first Stiefel-Whitney class
w1(TM). Using the method of [27], one can write down the simplicial form of w1(TM)2 using the
twisted cocycle, with the coefficient in U(1)T due to anti-unitary symmetry nature of time-reversal
(in the Hamiltonian formalism of [27]). We will not write down the explicit expression for the
cocycle.

3. When (K1,K2) = (0, 1), we can use the expression

Z5d
SPT(K1=0,K2=1)

[M5] = exp

(
iπ

∫
M5

BSq1B + (w1(TM)2)Sq1B

)
. (8.11)

We will see that both BSq1B can be written on the lattice (see the next (K1 = 1,K2 = 1)), while
the (w1(TM)2)Sq1B can be written on the lattice using the method of [27].

23The cocycle condition is crucial in proving the partition function to be invariant under re-triangulating the spacetime
manifold M5.
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4. When (K1,K2) = (1, 1), there is also a lattice regularization of the 5d SPT partition function. To
see this, we rewrite the partition function,

Z5d
SPT(K1=1,K2=1)

[M5] = exp

(
iπ

∫
M5

BSq1B + Sq2Sq1B + (w1(TM)2 + w2(TM))Sq1B

)

= exp

(
iπ

∫
M5

BSq1B

)
.

(8.12)

where we have used Sq2Sq1B+(w1(TM)2+w2(TM))Sq1B = 0. Using Eq. (8.5), we obtain a cochain
expression

Z5d
SPT(K1=1,K2=1)

[M5] =
∏

(ijklmn)∈M5

ω5(ijklmn),

ω5(ijklmn) = exp

[
iπ

2
Bijk(−Bkmn −Bklm +Blmn +Bkln)

]
.

(8.13)

Other than the probed field partition function Z5d
SPT(K1,K2)

[M5], we can also sum over B to get the the

topologically ordered 5d SET Z5d
SET(K1,K2)

[M5].

Given that the 5d SPT and 5d SET path integral can be regularized on a lattice, following [27],
one can write down the quantum wavefunction via the spacetime path integral. It is also possible to
construct a lattice quantum Hamiltonian on the 4D space (on a constant time slice), for both SPTs and
SETs, similar to the formulations of [27,66–68]. For the topologically ordered 5d SET, we implement the
method of [67,68]:

Ĥ = −
∑

1-link `

Â` −
∑

3-simplex

B̂3-simplex (8.14)

where Â` is an operator acting on the plaquettes (2-simplex) adjacent to the 1-link `, and B̂3-simplex is

an operator acting on the boundary of a given 3-simplex which again are plaquettes (2-simplex). The Â`

has its effect on imposing the time evolution constraint as the same as the path integral formulation: Â`

lifting the state vector to a next time slice locally around the 1-link `. The B̂3-simplex imposes the zero flux
condition enclosed by the 3-simplex (which is a 2-sphere S2 in topology). We will not give the explicit
expression of the quantum Hamiltonian Ĥ in this paper.

8.3 Lattice Regularization of Higher-Symmetry-Extended and Higher-Symmetry-
Preserving Anomalous 3+1D Topologically Ordered Gapped Boundaries

One option to saturate the anomaly inflow from the bulk 5d (4+1D) SPT is to extend the global symmetry
on the 4d (3+1D) boundary. We consider the four siblings of 5d higher-SPTs labeled by (K1,K2), whose
partition functions are

Z5d
SPT(K1,K2)

[M5] = exp

[
iπ

∫
M5

(
B + (1 +K1)w1(TM)2 + (1 +K2)w2(TM)

)
∪ Sq1B

]
. (8.15)

Using the schematic way in [52], we find that the boundary of 5d SPT can support a 4d TQFT via

symmetry extension from Z2 to Z4. Schematically, let ω
(K1,K2)
5 be the 5-cocycle whose product over
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the 5d manifold M5 gives the 5d SPT partition function Eq. (8.15). Let β
(K1,K2)
4 be a 4-cochain which

trivializes the 5d cocycle, i.e.,

ω
(K1,K2)
5 = δβ

(K1,K2)
4 . (8.16)

We find that the following β
(K1,K2)
4 satisfies Eq. (8.16):

β
(K1,K2)
4 = exp

[
iπ

∫
M4

(B + (1 +K1)w1(TM)2 + (1 +K2)w2(TM)) ∪ γ(C)

]
. (8.17)

where C is a Z4 valued 2-cochain satisfying B = C mod 2, and γ : Z4 → Z2 is a function which maps the
Z4 2-cochain to a Z2 2-cochain:

(γ(C))ijk =
(Cijk)

2 − Cijk
2

. (8.18)

We comment on the lattice realization of the boundary partition function β
(K1,K2)
4 :

1. When (K1,K2) = (1, 1), the 4d partition function has a simple cocycle form, hence it shows that
the partition function can be regularized on the lattice

β
(1,1)
4 = exp

[
iπ

∫
M4

B ∪ γ(C)

]
=

∏
(ijklm)∈M4

exp

[
iπBijk(γ(C))klm

]
. (8.19)

2. When (K1,K2) = (1, 0), β
(K1,K2)
4 depends explicitly on w2(TM). One can use the identity πw2(TM)∪

γ(C) = πP(γ(C)) mod 2π to rewrite the path integral amplitude as

β
(1,0)
4 = exp

[
iπ

∫
M4

B ∪ γ(C) + P(γ(C))

]
=

∏
(ijklm)∈M4

(
ω

(1,0)
4

)
ijklm

(8.20)

where(
ω

(1,0)
4

)
01234

=

exp

[
iπ

(
B012(γ(C))234 + (γ(C))034((γ(C))123 − (γ(C))023 + (γ(C))013 − (γ(C))012)

+ (γ(C))014((γ(C))234 − (γ(C))134 + (γ(C))124 − (γ(C))123)

)]
.

(8.21)

3. When (K1,K2) = (0, 1) and (0, 0), β
(K1,K2)
4 explicitly depends on w1(TM). Following [27], it is

possible to write down a cocycle expression of the path integral amplitude via the time reversal
twisted cochains. We will not write it down in the present paper.

In summary, we find that for all choices of (K1,K2), there exist lattice realizations of the symmetry
extended theory on the boundary of higher SPTs Eq. (2.19).
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9 Conclusions and Discussions

1. Summary : In this work, we show and prove (physically from quantum field theory) that new higher
’t Hooft anomalies, given by a 5d topological term Eq. (2.11) and Eq. (2.19):

π

∫
M5

(
B ∪ Sq1B + Sq2Sq1B +K1w1(TM)3 ∪B +K2w3(TM) ∪B

)
,

of 4d time-reversal symmetric pure YM of an SU(2) gauge group with a second-Chern-class topo-
logical term at θ = π (i.e., SU(2)θ=π YM). We find that there are at least four siblings of SU(2)θ=π
YM with bosonic UV completion, labeled by (K1,K2) ∈ (Z2,Z2). Their higher ’t Hooft anoma-
lies of generalized global symmetries indicate that 4d SU(2)θ=π YM, in order to realize all global
symmetries locally, necessarily couple to 5d higher symmetry-protected topological states (SPTs,
as invertible TQFTs [iTQFTs], as 5d 1-form-center-symmetry-protected interacting “topological
superconductors” in condensed matter).

We explore various 4d Yang-Mills gauge theories (YM) living as boundary conditions of 5d gapped
short/long-range entangled (SRE/LRE) topological states. We revisit 4d SU(2)θ=π YM-5d SRE-
higher-SPTs coupled systems [5, 8] and find these “Fantastic Four Siblings” with four sets of new
higher anomalies Eq. (2.19). Follow Weyl’s gauge principle, by dynamically gauging the 1-form
center symmetry, we transform a 5d bulk SRE SPTs into an LRE symmetry-enriched topologically
ordered state (SETs); thus we obtain the 4d SO(3)θ=π YM-5d LRE-higher-SETs coupled system
with dynamical higher-form gauge fields. We illustrate such 4d-5d systems schematically in Fig. 1
and Fig. 16.

(a)

4d

SU(2)θ=π YM

5d time-reversal

and 1-form Ze2,[1]
higher-SPTs

(invertible TQFT)

(b)

4d

SO(3)θ=π YM

5d time-reversal

2-form gauge

higher-SETs

(TQFT)

Figure 16: An alternative illustration of Fig. 1.

The 4d SO(3) YM has a θ periodicity θ ∼ θ + 4π on a spin manifold, and θ ∼ θ + 8π on a non-spin
manifold. Since time-reversal symmetry is preserved if and only if θ → −θ is identified, thus SO(3)
YM has explicitly broken the time-reversal symmetry. In the right-hand side (b) of Fig. 1 and
Fig. 16, we actually have a 5d SETs whose 4d boundary has an explicitly time-reversal symmetry
breaking.

Apply the tool introduced in [11], we derive new exotic anyonic statistics of extended objects such
as 2-worldsheet of strings and 3-worldvolume of branes, which physically characterize the 5d SETs.
We discover new triple and quadruple link invariants associated with the underlying 5d higher-gauge
TQFT, hinting a new intrinsic relation between non-supersymmetric 4d pure YM and topological
links in 5d.

2. Appearances of mod 2 anomalies: We note that the anomaly associated to the 5d term exp(iπ
∫
w3(TM)B)

has also appeared in the context of an adjoint QCD4 theory [64,69,70]. The exp(iπ
∫
w2(TM)w3(TM))
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has also appeared as a new SU(2) anomaly in the SU(2) gauge theory [54]. All these anomalies and
all our anomalies in Eq. (2.19) are mod 2 non-perturbative global anomalies, like the SU(2) anoma-
lies [53,54].

3. Mathematical relation between 5d and 4d bordism groups: Mathematically there seems to be an
amusing relation between (1) gauging the SU(2) gauge bundle/connection under the coupling of 4d
YM with 4d SPTs (4d bordism invariants of ΩG′

4 ) with G′ derived from a group extension:

1→ SU(2)→ G′ → O(d)→ 1.

and (2) some of the 5d bordism invariants given by ΩO
5 (B2Z2) = Z4

2. It will be illuminating to explore
this relation in the future.

4. Classes of 4d SU(2)θ=π YM : In Ref. [36], it was noted that the Pin+ and Pin− version of the
above group extensions G′ = Pin+ ×Z2 SU(2) and G′ = Pin− ×Z2 SU(2) provide two different SPTs
vacua after dynamically gauging the SU(2) symmetry give rise to two distinct 4d SU(2)θ=π YM
theories. Although Ref. [36] suggested that the Pin+ and Pin− of 4d SU(2)θ=π YM are secretly
indistinguishable by correlators of local operators on orientable spacetimes nor by gapped SPT
states, can be distinguished on non-orientable spacetimes or potentially by correlators of extended
operators.

In this work, we haven shown that Pin+ and Pin− of 4d SU(2)θ=π YM indeed have distinct new higher
’t Hooft anomalies, given by Eq. (2.11) and Eq. (2.19), with (K1,K2) = (0, 1) and (K1,K2) = (1, 1)
respectively. Thus we confirm that Pin+ and Pin− of 4d SU(2)θ=π YM are indeed distinct vacua.

5. Quantum spin liquids in condensed matter : Strong coupled gauge theories have condensed matter
implications as quantum spin liquids. Time-reversal symmetric U(1) gauge theories as quantum spin
liquids [28] are explored and classified based on the quantum numbers of gapped electric and magnetic
excitations (Wilson and ’t Hooft line operators) in Ref. [56, 57]. We will leave the interpretation of
our results of non-abelian SU(2) gauge theories in the context of quantum spin liquids for a future
work.

6. Relations of link invariants and braiding statistics in various dimensions: We have applied the tools
developed in [11] to compute link invariants of 5d TQFTs. We remark that several link invariants
that we find here in 5d have dimensionally reduction analogy to 4d and 3d, such that the “dimensional
reduced” links in 4d and 3d are related to what had been studied in [10], [11] and References therein.

7. Fate of IR dynamics of gauge theories, UV completion and lattice regularizations: For the 4d-5d
systems that we explore (schematically in Fig. 1 and Fig. 16), we mainly focus on their “Fantastic
Four Siblings” as the UV theories. We do not yet know the IR fate of their dynamics of these strongly
coupled gauge theories. However, given the potentially complete ’t Hooft anomalies in Eq. (2.11) and
Eq. (2.19) (at zero temperature), we can constrain the IR dynamics by UV-IR anomaly matching.
The consequence of anomaly matching implies that the IR theories must be at least one of the
following:

• Time-reversal ZT2 symmetry broken (spontaneously or explicitly).

• 1-form center Ze2,[1] symmetry broken (spontaneously or explicitly).

• Full symmetry-preserving anomalous TQFT. (Or a symmetry-extended anomaly-free TQFT
discussed in [52], but in a more artificial setup).

• Full symmetry-preserving gapless theory (CFT).

In fact, in Sec. 8, we construct the 4d boundary based of the third type above as a boundary TQFT
with a lattice spacetime path integral or a lattice Hamiltonian regularization; in this case, the full
spacetime partition function Z[M ] of 4d-5d system can be explicitly computed as a number (by
following Sec. 9 of [52]). We will revisit the issue of dynamics in the future.
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