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Abstract. The SFLASH signature scheme stood for a decade as the
most successful cryptosystem based on multivariate polynomials, before
an efficient attack was finally found in 2007. In this paper, we review its
recent cryptanalysis and we notice that its weaknesses can all be linked
to the fact that the cryptosystem is built on the structure of a large
field. As the attack demonstrates, this richer structure can be accessed
by an attacker by using the specific symmetry of the core function being
used. Then, we investigate the effect of restricting this large field to a
purely linear subset and we find that the symmetries exploited by the
attack are no longer present. At a purely defensive level, this defines
a countermeasure which can be used at a moderate overhead. On the
theoretical side, this informs us of limitations of the recent attack and
raises interesting remarks about the design itself of multivariate schemes.
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1 Introduction

Multivariate schemes are asymmetric primitives based on hard computational
problems involving multivariate polynomials. Reference problems are for instance
solving a system of multivariate polynomial equations, or deciding whether two
sequences of multivariate polynomials are isomorphic. The research for such
schemes originates from Matsumoto and Imai’s work in the early 80s, but has re-
ally been active for a decade. The practical interest for considering such schemes,
besides the obvious diversification effort, comes from their usual high perfor-
mances which make them well-suited for implementation on small devices. On
the other side, the area is young and much cryptanalytic effort is still to be done
to understand well what their security might rely on.

Multivariate schemes are all based on a construction method inspired from
McEliece [12]: an easy-to-invert multivariate vectorial function is transformed
into a random-looking one by applying secret linear bijections on both variables
and coordinates. Of course, such a linear hiding has the nice feature to be very
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easy to undo by the legitimate user, but it also has the drawback of leaking the
invariant properties of the internal function. Whenever such invariant properties
can be used in order to devise a cryptanalytic attack (e.g. elimination properties
enhancing Gröbner basis computation), one uses additional transformations to
destroy them.

SFLASH is a signature scheme proposed by Patarin, Goubin and Courtois [17],
following a design they had introduced at Asiacrypt’98 [15]. The easy-to-invert
internal function of SFLASH is defined from a single variable polynomial over
some field extension Fqn and turned into a function from (Fq)n to itself by using
the linear structure of Fqn over Fq. To allow efficient inversion, this function has
a specific shape as a polynomial over Fqn , namely this is a monomial which is
inverted by raising to the inverse exponent, like in RSA. The basic McEliece-
type hiding, i.e. using two linear bijections, of such a function was the initial
proposal – known as the C* cryptosystem – of Matsumoto and Imai [11], but it
was later seen by Patarin [14] that the hidden monomial structure implies some
algebraic properties of the public function which can be exploited for an attack.
However, Patarin, Goubin and Courtois later showed [15] that algebraic attacks
can be very easily avoided by using an additional transformation initially used
by Shamir [16] which consists in simply deleting a few coordinates of the public
function. Schemes obtained from the application of minus to C* are termed C*–

schemes; they are suitable for signature. SFLASH is a C*– scheme chosen as a
candidate for the selection organized by the NESSIE European consortium [1],
and accepted in 2003 [13].

Recently, Dubois, Fouque, Shamir and Stern discovered a new property of
C* monomials which is almost not affected by the minus transformation, and
which can be used to recover missing coordinates of the public function [4,3]. As
a consequence, all practical parameters choices for C*– schemes, including those
of SFLASH, were shown insecure. The attack found by Dubois et al. is the most
effective development of a new kind of cryptanalysis which targets geometrical
properties of multivariate functions. Consequences of this attack are of course a
reevaluation of related cryptosystems and a more careful study of the properties
of the internal functions being used. However it seems that the mere design
principle of multivariate schemes is here in question : can we effectively hide a
particular function such as a C* monomial using linear maps ?

Our results. In this paper, we review the recent cryptanalysis of SFLASH and
we notice that its weaknesses can all be linked to the fact that the cryptosys-
tem is built on the structure of a large field. As the attack demonstrates, this
richer structure can be accessed by an attacker by using the specific symmetry
of the internal C* function that can be perceived from even a small number of
public polynomials. Then, we study the effect of restricting this large field to a
purely linear subset, and we find that the symmetries exploited by the attack
are no longer present. We provide mathematical proofs for the target cases ex-
plaining this phenomenon in detail. As we will see, this result conveys additional
perspective on the general design of multivariate schemes.
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Organization of the Paper. In Section 2, we give a brief introduction to SFLASH.
In Section 3, we review its recent cryptanalysis [4,3]. In Section 4, we show
that the geometrical properties which are exploited by the attack do not hold
when restricting the internal function to a proper subspace of the large field. In
Section 5, we define a modified family of schemes which resists the attack. We
discuss our results in Section 6.

2 The SFLASH Scheme

2.1 The C* Scheme

The C* scheme was proposed by Matsumoto and Imai in 1988. It uses a monomial
over Fqn : F (x) = x1+qθ

, x ∈ Fqn , where x can be identified with an n coordinates
vector over Fq by fixing some basis of Fqn . The exponent 1+qθ is chosen invertible
modulo qn − 1 and raising to its inverse is inverting F . Since 1+ qθ has q-weight
2, F corresponds to a multivariate function from (Fq)n into itself of degree 2. On
the other hand, the inverse of 1 + qθ has very high q-weight O(n) for prescribed
values of θ [11], and the inverse of F then corresponds to a multivariate function
from (Fq)n into itself with very high degree O(n). A C* scheme is built by
transforming F with randomly chosen linear bijections S and T : P = T ◦F ◦S.
The resulting function P has the same multivariate properties as F , but the
twisting provided by S and T hides the single variable representation which
allows fast inversion. Unfortunately, Patarin showed in 1995 [14] that although
the plaintext x is a high degree function in term of the ciphertext y, the pairs
(x, y) satisfy many low degree algebraic relations, whose degree is independent
of the security parameter n. This implies vulnerability to algebraic attacks.

2.2 SFLASH

To avoid an attacker to possibly reconstruct existing algebraic relations on the
pairs (x, y), a simple idea is not to provide the entire description of how these
variables are related. The most easy way to realize this was used by Shamir in
1993 [16] and consists in simply removing a few coordinate-polynomials of the
public key, say the last r ones where r is an additional parameter. Furthermore,
Patarin, Goubin and Courtois showed in 1998 [15] that for a C* scheme, the
degree of algebraic relations between x and the partial y is quickly growing with
the parameter r. Of course, the resulting scheme is no longer bijective but it can
still be used for signature at no performance loss. These schemes were introduced
as C*– by Patarin, Goubin and Courtois [15]. A public key consists of the n − r
first coordinates of an initial C* public key P = T ◦ F ◦ S with T and S as the
secret key. A rationale for the parameter r is provided in [15]; choosing r with
qr ≥ 280 is then required for a 280 security level. Besides, no algebraic attack is
expected to succeed when r is not too small in regards to n, the initial number of
polynomials. SFLASH is a C*– scheme chosen by Patarin et al. for the NESSIE
selection. For the recommended parameters q = 27, n = 37, θ = 11 and r = 11,
the signature length is 239 bits and the public key size is 15 Kbytes.
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3 The Symmetry in SFLASH

The design of SFLASH was aimed at resisting algebraic attacks and stood chal-
lenging for almost ten years. However, in the last four years, a new kind of
cryptanalysis for multivariate schemes has been developed based on geometri-
cal properties of the so-called differential [8,5,6]. As defined in the initial paper
by Fouque, Granboulan and Stern [8], the differential transforms a quadratic
function P (x) into its bilinear symmetric associate, denoted DP (a, b). The dif-
ferential of P can be obtained by substituting monomials xixj by aibj + ajbi in
the expression of P (if P is not homogeneous, terms of degree 1 and 0 are dis-
carded). The interest of doing so is that DP is linear separately in a and b and
its properties relatively to these variables can then be described in terms of linear
algebra. Furthermore, when considering a multivariate scheme P = T ◦ F ◦ S,
these properties are isomorphic to those of F since S and T are linear bijections.

Recently, Dubois, Fouque, Shamir and Stern showed a very efficient cryptanal-
ysis of C*– schemes based on a class of geometrical invariants of the differential
of C* [4,3]. We summarize it below.

3.1 Skew-Symmetric Maps with Respect to the Differential

The differential of the internal C* function is DF (a, b) = a b qθ

+ aqθ

b for
a, b ∈ Fqn . When a and b are identified with n coordinates vectors over Fq,
DF is a bilinear symmetric function from (Fq)n × (Fq)n to (Fq)n. Each of the
n coordinates of DF is a multivariate polynomial in the coordinates a1, . . . , an

and b1, . . . , bn of a and b respectively, which is linear separately in a and b, and
where a and b play symmetric roles. Each such polynomial is written on the basis
of terms aibj + ajbi so it has n(n − 1)/2 coefficients. Now, it is observed in [4]
that linear maps consisting of multiplications by some element ξ of Fqn have a
specific action on DF . Indeed, we have

DF (ξ.a, b) + DF (a, ξ.b) = (ξ + ξqθ

).DF (a, b) (1)

For the particular elements ξ such that ξ + ξqθ

= 0 (at least 1 is solution), the
associated multiplication maps Mξ satisfy

DF (Mξ(a), b) + DF (a, Mξ(b)) = 0

that is, they are the skew-symmetric maps with respect to DF . The existence of
non-trivial (i.e. not colinear to the identity) such maps is of course very unusual
and even for a C* monomial it does not happen for all parameters. However,
even when it does not happen, the initial identity can also be interpreted as a
skew-symmetry property. Let us indeed define for any linear map M , the skew-
symmetric action of M over DF as the bilinear and symmetric function

Σ[M ](a, b) = DF (M(a), b) + DF (a, M(b))

Our basic identity infers that in the special case of multiplication maps,

Σ[Mξ](a, b) = Mζ ◦ DF (a, b)
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where Mζ is the multiplication by ξ + ξqθ

. As a consequence, for any element ξ
of Fqn , the coordinates of the bilinear and symmetric function Σ[Mξ](a, b) are
linear combinations of the coordinates of DF . Therefore, expressed in geomet-
rical terms, multiplication maps have the specific property to leave unchanged
under skew-symmetric action the subspace spanned by the coordinates of DF .
Note that this property is very strong because the subspace spanned by the n
coordinates of DF has dimension at most n while for a random linear map M ,
the coordinates of Σ[M ] might be any polynomials in the whole space of bilinear
symmetric polynomials of dimension n(n − 1)/2 and are very unlikely to all be
confined in the tiny subspace spanned by the coordinates of DF .

The public key P of a C* scheme inherits of the above properties; the only
difference is that the linear maps that play with regards to P the role of
multiplications with regards to F are the conjugates S−1 ◦ Mξ ◦ S. Now, a
crucial point is : although the latter maps depend on the secret bijection S,
they can be computed from their characteristic property with regards to the
public key P . For instance, considering the simple skew-symmetry condition,
DP (M(a), b) + DP (a, M(b)) = 0, we see that this equation is linear in M . It
can be seen [4] that each coordinate of DP provides us with n(n − 1)/2 linear
conditions on the n2 coefficients of M . Then, even a marginal number of co-
ordinates of the public key allows to solve the space of skew-symmetric maps.
Solving the more general skew-symmetry condition follows similar principles al-
though more theory is involved; we refer the reader to the original paper [3] for
the details.

3.2 Consequences

The properties described above allow an attacker to compute from a C*– public
key conjugates S−1 ◦ Mξ ◦ S of multiplications maps Mξ. This of course is very
annoying because these maps depend on the secret bijection S and were initially
considered as secret information. Furthermore, it is shown in [4] that the nature
of these maps is an additional problem. We do not consider these aspects here
and focus on the initial breach i.e. the existence of linear maps which can be
computed from the public key although they contain secret information. In the
sequel, we investigate the possibility to destroy the skew-symmetry property of
C*– schemes.

4 Breaking the Symmetry

As we have seen, for C*– schemes, the linear maps which are associated to the
skew-symmetry property are connected to the internal field structure, namely
they are multiplications by elements of Fqn . In principle, this means that the ex-
istence of these maps is tied to the internal field structure. A natural question is:
would skew-symmetric maps exist if the internal field structure were truncated,
i.e. restricted to a subspace of it?
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4.1 Projection Breaks the Skew-Symmetry Property of C*–

Schemes

Suppose we consider the internal function F restricted to some proper subspace
H of Fqn . We denote FH this restriction. The skew-symmetric maps with respect
to the differential DFH of FH are by definition the linear maps MH from H to
itself which satisfy :

DFH(MH(h), k) + DFH(h, MH(k)) = 0 , h, k ∈ H (2)

We expect the solutions MH to this condition to be the restrictions to H of
the skew-symmetric maps w.r.t DF which map H to itself. When H is an arbi-
trary subspace, we do not expect non-trivial multiplications Mξ to map H into
itself. Then, the only solutions to our condition should be the scalar multiples
of the Identity: MH = λ.IdH , λ ∈ Fq. Let us now show that our expectation
is correct using mathematical arguments. First, we characterize the linear maps
MH which are skew-symmetric with respect to DFH by transforming the above
condition (2) in a condition with respect to DF . That is, we embed the above
condition over H in a condition over Fqn . We can embed MH into a linear map
M̄H which is MH over H and zero elsewhere. The same way, we can embed
the Identity over H into the projection map to H , denoted πH . Then, (2) is
equivalent to:

DF (M̄H(a), πH(b)) + DF (πH(a), M̄H(b)) = 0 , a, b ∈ Fqn

Therefore, the linear maps M̄H are special solutions to the condition

DF (M(a), πH(b)) + DF (πH(a), M(b)) = 0 , a, b ∈ Fqn (3)

They are those solutions M left unchanged by composition with πH :

M = M ◦ πH = πH ◦ M

Our method to determine the linear maps M̄H is then clear : we first find the
solutions M to the condition (3), and then find those which are left unchanged
by composition with πH .

The Solutions to Condition 3. As we can see, obvious solutions to Condi-
tion 3 are the maps Mξ ◦ πH where Mξ is skew-symmetric with respect to DF .
Since our condition is greatly overdetermined, we do not expect any other so-
lutions. This is confirmed experimentally. In the most simple case when H is a
hyperplane, we can give it a mathematical proof.

Lemma 1. Let H be a hyperplane of Fqn and DF be the differential of a bijective
C* monomial. The linear maps M which satisfy the condition

DF (M(a), πH(b)) + DF (πH(a), M(b)) = 0 , a, b ∈ Fqn

are of the form Mξ ◦ πH where Mξ is skew-symmetric with respect to DF .
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Proof. The idea of the proof is to replace M and πH by their expressions as sums
of q-powerings, and to express our condition as the vanishing of a polynomial
in a, b over Fqn . We have M(a) =

∑n−1
i=0 μi aqi

and πH can be expressed as the
projection orthogonally to some element u, where the orthogonality is defined rel-
atively to the trace product (see [10] for a definition). Recalling tr(a) =

∑n−1
i=0 aqi

and that tr(a) is an element of Fq, we have πH(a) = a− tr(au)u. To simplify, we
consider in the sequel u = 1. We can rewrite our condition : A(a, b)−B(a, b) = 0,
where

A(a, b) = DF (M(a), b) + DF (a, M(b))
B(a, b) = tr(a)DF (M(b), 1) + tr(b)DF (M(a), 1)

Both expressions are written on the basis of symmetric terms of the form aqi

bqj

+
aqj

bqi

and their respective coefficients are :

A(a, b) : coefficient{i, 0} = μqθ

i−θ ; coefficient{i, θ} = μi

B(a, b) : coefficient{i, j} = μi + μj + (μi−θ + μj−θ)qθ

From these expressions, we easily resolve μ0 = 0 and μi = ξ for all i �= 0
where ξ satisfies ξqθ

+ ξ = 0 (see the full version for the details). Therefore,
M(a) = ξ(a − tr(a)) = Mξ ◦ πH(a) where Mξ is skew-symmetric with respect to
DF (which is obtained from ξqθ

+ ξ = 0). ��

Solutions Which are Left Unchanged by Composition with the Pro-
jection. As we have shown, the linear maps M̄H which correspond to the skew-
symmetric maps with respect to DFH , are the solutions to Condition 3 which
are left unchanged by composition with πH . As argued in the previous section,
the solutions to this condition are Mξ ◦ πH where Mξ is multiplication by some
element ξ. These maps are unchanged by composition with πH if and only if
Mξ commutes with πH , i.e. if and only if Mξ maps H to itself. Then, since for
any ξ, Mξ is bijective, we have ξ.H = H . Our goal is to show that, except for
specific choices of H which are very sparse, the only ξ satisfying this property
are the scalar multiples of 1. As a first step, we notice that these elements ξ
form a multiplicative group, independently of the choice of H . Therefore, they
actually form a subfield of Fqn and H is a linear space over this subfield. Finally,
the subspaces H for which our property is satisfied by non-trivial elements ξ
are subspaces over intermediate subfields of Fqn . As a second step, we upper-
bound the probability that a random subspace H of a prescribed dimension s is
a subspace over an intermediate subfield of Fqn . (In this case, we say that H is
degenerate). We show that this probability is negligible in terms of q and n.

Lemma 2. Degenerate subspaces of Fqn only exist at dimensions s not coprime
with n. Degenerate hyperplanes never exist. The proportion of degenerate sub-
spaces in Fqn of a prescribed dimension is always O(q−n).

Proof. When H is a subspace over Fqr , its dimension over Fq is a multiple of r.
Since r must itself be a divisor of n, degenerate subspaces only exist at dimensions
s not coprime with n. For instance, we deduce that degenerate hyperplanes never



698 J. Ding et al.

exist since n−1 is always coprime with n. Let r be a common divisor of s and n.
It can be shown that the number of subspaces of dimension s in a vector space
of dimension n is of the order of qs(n−s) [9]. Then, the number of Fqr -subspaces
of dimension s/r in Fqn is of the order of qs(n−s)/r. The number of degenerate
subspaces of dimension s in Fqn is dominated by the latter quantity considered
for the smallest common factor r of n and s. Since the smallest possible value of
r is 2, the proportion of degenerate subspaces of dimension s in Fqn is at most of
the order of q−s(n−s)/2. Since s(n−s) is minimal for s = 2 (2 is a common factor
of s and n), the searched proportion is dominated by q−(n−2) and therefore q−n

asymptotically. ��

Application to the General Skew-Symmetry Property of C*– Schemes.
In the preceding paragraphs, we have shown that restricting the internal function
F to some proper subspace H of Fqn destroys the simple skew-symmetry prop-
erty (2). In this paragraph, we consider the general skew-symmetry property of
C*– schemes. This property expresses that there exists non-trivial linear maps
which leave the space spanned by the coordinates of DF unchanged under skew-
symmetric action. The linear maps satisfying this condition are the whole space of
multiplications. Using similar techniques as before, we can show that this property
considered for the restricted function FH admits only trivial solutions.

4.2 Experimental Verifications

We checked experimentally, for various C* parameters n and θ, the effect of
restricting the internal function to a randomly chosen subspace H of various
dimensions s. For instance, for parameters n = 36 and θ = 4, we obtain the
table below for the solution space of the general skew-symmetry condition as
the number of coordinate-wise conditions grows.

5 Projected C*– Schemes

Based on the previous results, we are led to define a new family of schemes that
we call projected C*– schemes. As we will see, these schemes actually consists in
hiding a C* monomial using non-bijective linear maps. We next define the (ad-
hoc) computational problems on which the security of these schemes is based.
Finally, we discuss possible choices of parameters and suggest one concrete choice
with performances comparable to SFLASH.

Description. A projected C*– scheme is defined as follows. Start from a C*
scheme F (x) = x1+qθ

with secret linear maps S and T . Let r and s be two
integers between 0 and n. Let T− be the projection of T on the last r coordinates
and S− be the restriction of S on the last s coordinates. Compute P̂ = T− ◦
F ◦ S−. The generated function P̂ is used as the public key and the secret
linear bijections S and T are used as the secret key. Note that P̂ is a quadratic
function from (Fq)n−s to (Fq)n−r. To find a preimage by the public function of
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# conditions s = 0 s = 1 s = 2 s = 3 s = 4 s = 9 s = 18
1 1296 1225 1156 1089 1024 769 324
2 708 669 632 598 564 414 207
3 168 145 124 109 104 99 90
4 36 1 1 1 1 1 1
6 36 1 1 1 1 1 1
...

...
...

...
...

...
...

...

a given message m, the legitimate user first pads m with a random vector m′ of
(Fq)r and compute the preimage of (m, m′) by T ◦ F ◦ S. If this element has its
last s coordinates to 0, then its n − s first coordinates are a valid signature for
m. Otherwise, he discards this element and tries with an other random padding
m′. When r > s, the process ends with probability 1 and costs on average qs

inversions of F . In practice, r is chosen a significant fraction of n to make the
public key resistant to algebraic attacks; s can be chosen as small as 1 to destroy
symmetries arising from the internal field structure. As for C*– schemes, the
significant value of r makes projected C*– schemes only suitable for signature,
since reviewing all possible paddings m′ is not efficient. Finally, we mention that
projection already appeared in the literature as a possible modifier [18] but was
never considered as a useful measure let alone a defensive measure.

Possible Angles of Analysis. As usual for multivariate schemes, the security
relies on several ad-hoc computational problems. The first problem is solving
the public system of quadratic equations. Since s is chosen small, this is about
as hard as solving the initial C*– system. The second problem is recovering
the functional decomposition of the public key or at least some information on
the secret maps S−, T−. There is no efficient strategy to solve this problem in
general [7], and the attack by Dubois et al. which falls into this category for C*–

schemes is here prevented by the projection. Remains the strategy consisting in
recovering the public key into a valid C*– public key. Showing this to be possible
is actually the new challenge opened by the new family of schemes.

Parameters. n, θ, r are chosen following the rationales for C*– schemes. We
choose s = 1 as it induces the minimal factor q on the secret operations. The
value of q can be chosen small but, at constant blocksize, this requires a larger
value of n and therefore a larger public key. As a possible trade-off, we propose
pFLASH with q = 24, n = 74, θ = 11, r = 22 and s = 1. Our tests have pFLASH
signing at � 1 million K8/C2 cycles, in line with expectations of ∼ 16× time of
SFLASH [2]; private key size is 2× at 5.4kB. These are still attractive features
for small device implementation.

6 Conclusion

In this paper, we provide additional insight on the recent cryptanalysis of
SFLASH by exhibiting a simple modification which provably avoids the attack.
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Our study shows that the attack against SFLASH has deeper roots than the
mere fact that it is based on a C* monomial : the attack is made possible be-
cause the large field structure is embedded in the public key and is stopped
when it is no more the case. Then, we realize that, indeed, one might not hope
to hide effectively a particular function defined on a large field using linear bi-
jections; this might at most be achievable in some security range using compres-
sive linear maps. But then, is it still possible to build a practical cryptosystem
in this setting ? At the present state, we can still define a modified family of
C* -based schemes which is of practical interest. Analysis of this most simple
case would probably yield additional understanding of the ways to distinguish a
specifically-built multivariate function and would provide further insight on the
very possibility to obfuscate such a function using linear maps.
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