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Abstract. In this paper, we present a practical and provably secure
two-pass authenticated key exchange protocol over ideal lattices, which
is conceptually simple and has similarities to the Diffie-Hellman based
protocols such as HMQV (CRYPTO 2005) and OAKE (CCS 2013). Our
method does not involve other cryptographic primitives—in particular,
it does not use signatures—which simplifies the protocol and enables us
to base the security directly on the hardness of the ring learning with
errors problem. The security is proven in the Bellare-Rogaway model
with weak perfect forward secrecy in the random oracle model. We also
give a one-pass variant of our two-pass protocol, which might be appeal-
ing in specific applications. Several concrete choices of parameters are
provided, and a proof-of-concept implementation shows that our proto-
cols are indeed practical.

1 Introduction

Key Exchange (KE) is a fundamental cryptographic primitive, allowing two par-
ties to securely generate a common secret key over an insecure network. Because
symmetric cryptographic tools (e.g., AES) are reliant on both parties having
a shared key in order to securely transmit data, KE is one of the most used
cryptographic tools in building secure communication protocols (e.g., SSL/TLS,
IPSec, SSH). Following the introduction of the Diffie-Hellman (DH) protocol [1],
cryptographers have devised a wide selection of KE protocols with various use-
cases. One such class is Authenticated Key Exchange (AKE), which enables each
party to verify the other’s identity so that an adversary cannot impersonate an
honest party in the conversation.

For an AKE protocol, each party has a pair of static keys: a static secret
key and a corresponding static public key. The static public key is certified to
belong to its owner using a public-key or ID-based infrastructure. During an
execution of the protocol, each party generates a pair of ephemeral keys—an
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ephemeral secret key and an ephemeral public key—and sends the ephemeral
public key to the other party. Then, these keys are used along with the transcripts
of the session to create a shared session state, which is then passed to a key
derivation function to obtain a common session key. Intuitively, such a protocol
is secure if no efficient adversary is able to extract any information about the
session key from the publicly exchanged messages. More formally, Bellare and
Rogaway [2] introduced an indistinguishability-based security model for AKE,
the BR model, which captures key authentication such as implicit mutual key
authentication and confidentiality of agreed session keys. The most prominent
alternatives stem from Canetti and Krawczyk [3] and LaMacchia et al. [4], that
also account for scenarios in which the adversary is able to obtain information
about a static secret key or a session state other than the state of the target
session. In practice, AKE protocols are usually required to have a property,
Perfect Forward Secrecy (PFS), that an adversary cannot compromise session
keys after a completed session, even if it obtains the parties’ static secret keys
(e.g., via the Heartbleed attack1). As shown in [5], no two-pass implicit AKE
protocol based on public-key authentication can achieve PFS (but this may not
be true for two-pass AKEs with explicit authentication [6]). Thus, the notion of
weak PFS (wPFS) is usually considered for two-pass implicit AKE protocols,
which states that the session key of an honestly run session remains private if
the static keys are compromised after the session is finished [5].

One approach for achieving authentication in KE protocols is to explicitly
authenticate the exchanged messages between the involved parties by using some
cryptographic primitives (e.g., signatures, or MACs), which usually incurs addi-
tional computation and communication overheads with respect to the basic KE
protocol, and complicates the understanding of the KE protocol. This includes
several well-known protocols such as IKE [7,8], SIGMA [9], SSL [10], TLS
[11–15], as well as the standard in German electronic identity cards, namely
EAC [16], and the standardized protocols OPACITY [17] and PLAID [18].
Another line of designing AKEs follows the idea of MTI [19] and MQV [20],2

which aims at providing implicit authentication by directly utilizing the alge-
braic structure of DH problems (e.g., HMQV [5] and OAKE [26]). All the above
AKEs are based on classic hard problems, such as factoring, the RSA prob-
lem, or the computational/decisional DH problem. Since these hard problems
are vulnerable to quantum computers [27] and as we are moving into the era
of quantum computing, it is very appealing to find other counterparts based
on problems believed to be resistant to quantum attacks. For instance, post-
quantum AKE is considered of high priority by NIST [28]. Due to the potential
benefits of lattice-based constructions such as asymptotic efficiency, conceptual
simplicity, and worst-case hardness assumptions, it makes perfect sense to build
lattice-based AKEs.

1 http://heartbleed.com/
2 Note that MQV has been widely standardized by ANS [21,22], ISO/IEC [23] and

IEEE [24], and recommended by NIST and NSA Suite B [25].

http://heartbleed.com/
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1.1 Our Contribution

In this paper, we propose an efficient AKE protocol based on the Ring Learning
With Errors (Ring-LWE), which in turn is as hard as some lattice problems
(e.g., SIVP) in the worst case on ideal lattices [29,30]. Our method avoids intro-
ducing extra cryptographic primitives, thus simplifying the design and reducing
overhead. In particular, the parties are not required to either encrypt any mes-
sages with the other’s public key, nor sign any of their own messages during key
exchange. Furthermore, by having the key exchange as a self-contained system,
we reduce the security assumptions needed, and are able to directly rely on the
hardness of Ring-LWE in the random oracle model.

By utilizing many useful properties of Ring-LWE problems and discrete
Gaussian distributions, we establish an approach to combine both the static
and ephemeral public/secret keys, in a manner similar to HMQV [5]. Thus, our
protocol not only enjoys many nice properties of HMQV such as two-pass mes-
sages, implicit key authentication, high efficiency, and without using any explicit
entity authentication techniques (e.g., signatures), but also has many properties
of lattice-based cryptography, such as asymptotic efficiency, conceptual simplic-
ity, worst-case hardness assumption, as well as resistance to quantum computer
attacks. However, there are also several shortcomings inherited from lattice-
based cryptography, such as “handling of noises” and large public/secret keys.
Besides, unlike HMQV which works on “nicely-behaved” cyclic groups, the secu-
rity of our protocol cannot be proven in the CK model [3] due to the underlying
noise-based algebraic structures. Fortunately, we prove the security in the BR
model (adapted to the public-key setting [31]), which is the most common model
considered as it is usually strong enough for many practical applications and it
comes with composability [32]. In addition, our protocol achieves the weak PFS
property, which is known as the best PFS notion achievable by two-pass AKEs
with implicit authentication [5].

As MQV [20] and HMQV [5], we also present a one-pass variant of our
basic protocol (i.e., only a single message is needed to derive a shared session
key), which might be useful in client-server based applications. Finally, we select
concrete choices of parameters and construct a proof-of-concept implementation
to examine the efficiency of our protocols. Though the implementation has not
undergone any real optimization, the performance results already indicate that
our protocols are practical.

Besides, we note that none of the techniques we use prevents us from instan-
tiating our AKE protocol based on standard lattices. One just has to keep in
mind that key sizes and performance eventually become worse.

1.2 Techniques, and Relation to HMQV

Our AKE protocol is inspired by HMQV [5], which makes our protocol share
some similarities to HMQV. However, there are also many differences between
our protocol and HMQV due to the different underlying algebraic structures.
To better illustrate the similarities and differences between our AKE protocol
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and HMQV, we first briefly recall the HMQV protocol [5]. Let G be a cyclic
group with generator g ∈ G. Let (Pi = gsi , si) and (Pj = gsj , sj) be the static
public/secret key pairs of party i and party j, respectively. During the protocol,
both parties exchange ephemeral public keys, i.e., party i sends Xi = gri to
party j, and party j sends Yj = grj to party i. Then, both parties compute the
same key material ki = (P d

j Yj)sic+ri = g(sic+ri)(sjd+rj) = (P c
i Xi)sjd+rj = kj

where c = H1(j,X) and d = H1(i, Y ) are computed by using a function H1, and
use it as input of a key derivation function H2 to generate a common session
key, i.e., ski = H2(ki) = H2(kj) = skj .

As mentioned above, HMQV has many nice properties such as only two-
pass messages, implicit key authentication, high efficiency, and without using
any explicit entity authentication techniques (e.g., signatures). Our main goal
is to construct a lattice-based counterpart such that it not only enjoys all those
nice properties of HMQV, but also belongs to post-quantum cryptography, i.e.,
the underlying hardness assumption is believed to hold even against quantum
computer. However, such a task is highly non-trivial since the success of HMQV
greatly relies on the nice properties of cyclic groups such as commutativity (i.e.,
(ga)b = (gb)a) and perfect (and public) randomization (i.e. ga can be perfectly
randomized by computing gagr with a uniformly chosen r at random).

Fortunately, as noticed in [33–35], the Ring-LWE problem supports some
kind of “approximate” commutativity, and can be used to build a passive-secure
key exchange protocol. Specifically, let Rq be a ring, and χ be a Gaussian distri-
bution over Rq. Then, given two Ring-LWE tuples with both secret and errors
choosen from χ, e.g., (a, b1 = as1+e1) and (a, b2 = as2+e2) for randomly chosen
a ←r Rq, s1, s2, e1, e2 ←r χ, the approximate equation s1b2 ≈ s1as2 ≈ s2b1 holds
with overwhelming probability for proper parameters. By the same observation,
we construct an AKE protocol (as illustrated in Fig. 1), where both the static
and ephemeral public keys are actually Ring-LWE elements corresponding to a
globally public element a ∈ Rq. In order to overcome the inability of “approxi-
mate” commutativity, our protocol has to send a signal information wj computed
by using a function Cha [33]. Combining this with another useful function Mod2,
both parties are able to compute the same key material σi = σj (from the
approximately equal values ki and kj) with a guarantee that σj = Mod2(kj , wj)
has high min-entropy even conditioned on the partial information wj = Cha(kj)
of kj (thus it can be used to derive a uniform session key skj).

However, the strategy of sending out the information wj = Cha(kj) inher-
ently brings an undesired byproduct. Specifically, unlike HMQV, the security of
our AKE protocol cannot be proven in the CK model which allows the adver-
saries to obtain the session state (e.g., ki at party i or kj at party j) via session
state reveal queries. This is because in a traditional definition of session iden-
tifier that consists of all the exchanged messages, the two “different” sessions
with identifiers sid = (i, j, xi, yj , wj) and sid′ = (i, j, xi, yj , w

′
j) have the same

session state, i.e., ki at party i.3 This also means that we cannot directly use
3 This problem might not exist if one consider a different definition of session identifier,
e.g., the one that was uniquely determined at the beginning of the protocol execution.
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Party i Party j

Public Key: pi = asi + 2 i ∈ Rq

Secret Key: si ∈ Rq

where si, i ←r χ

xi = ari + 2fi ∈ Rq

where ri, fi ←r χβ

ki = (pjd + yj)(sic + ri) + 2dgi

where gi ←r χβ

σi = Mod2(ki, wj) ∈ {0, 1}n

ski = H2(i, j, xi, yj , wj , σi)

Public Key: pj = asj + 2 j ∈ Rq

Secret Key: sj ∈ Rq

where sj , j ←r χ

yj = arj + 2fj ∈ Rq

kj = (pic + xi)(sjd + rj) + 2cgj

where rj , fj , gj ←r χβ

wj = Cha(kj) ∈ {0, 1}n

σj = Mod2(kj , wj) ∈ {0, 1}n

skj = H2(i, j, xi, yj , wj , σj)

xi

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R

Fig. 1. Our AKE protocol from Ring-LWE

σi = σj as the session key, because the binding between the value of σi and
the session identifier (especially for the signal part wj) is too loose. In partic-
ular, the fact that σi = Mod2(ki, wj) corresponding to sid is simply a shift of
σ′

i = Mod2(ki, w
′
j) corresponding to sid′(by the definition of the Mod2 function),

may potentially help the adversary distinguish σi with the knowledge of σ′
i. We

prevent the adversary from utilizing this weakness by setting the session key as
the output of the hash function H2 (modeled as a random oracle) which tightly
binds the session identifier sid and the key material σi (i.e., ski = H2(sid, σi)).
Our technique works due to another useful property of Mod2, which guarantees
that σi = Mod2(ki, wj) preserves the high min-entropy property of ki for any wj

(and thus is enough to generate a secure session key by using a good randomness
extractor H2, e.g., a random oracle).4

In order to finally get a security proof of our AKE protocol in the BR model
with weakly perfect forward secrecy, we have to make use of the following prop-
erty of Gaussian distributions, namely some kind of “public randomization”.
Specifically, let χα and χβ be two Gaussian distributions with standard devi-
ation α and β, respectively. Then, the sum of the two distributions is still a
Gaussian distribution χγ with standard deviation γ =

√
α2 + β2. In particular,

if β � α (e.g., β/α = 2ω(log κ) for some security parameter κ), we have that
the distribution χγ is statistically close to χβ . This technique is also known as
“noise flooding” and has been applied, for instance, in proving robustness of
the LWE assumption [36]. The security proof of our protocol is based on the
observation that such a technique allows to statistically hide the distribution of
4 We remark that this is also the reason why the nice reconciliation mechanism in [34]

cannot be used in our protocol. Specifically, it is unclear whether the reconciliation
function rec(·, ·) in [34] could also preserve the high min-entropy property of the
first input (i.e., which might not be uniformly random) for any (maliciously chosen)
second input.
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χα in a bigger distribution χβ , and for now let us keep it in mind that a large
distribution will be used to hide a small one.

To better illustrate our technique, we take party j as an example, i.e., the one
who combines his static and ephemeral secret keys by computing r̂j = sjd + rj

where d = H1(j, i, yj , xi). We notice that the value r̂j actually behaves like a
“signature” on the messages that party j knows so far. In other words, it should
be difficult to compute r̂j if we do not know the corresponding “signing key”
sj . Indeed, this combination is necessary to provide the implicit entity authen-
tication. However, it also poses an obstacle to getting a security proof since the
simulator may also be unaware of sj . Fortunately, if the randomness rj is chosen
from a big enough Gaussian distribution, then the value r̂j almost obliterates
all information of sj . More specifically, the simulator can directly choose r̂j such
that r̂j = sjd + rj for some unknown rj by computing yj = (ar̂j + 2f̂j) − pjd,
and programming the random oracle d = H1(j, i, yj , xi) correspondingly. The
properties of Gaussian distributions and the random oracle H1 implies that yj

has almost identical distribution as in the real run of the protocol. Now, we check
the randomness of kj = (pic + xi)r̂j + 2cgj . Note that for the test session, we
can always guarantee that at least one of the pair (pi, xi) is honestly generated
(and thus is computationally indistinguishable from uniformly distributed ele-
ment under the Ring-LWE assumption), or else there is no “secrecy” to protect
if both pi and xi are chosen by the adversary. That is, pic+xi is always random
if c is invertible in Rq. Again, by programming c = H1(i, j, xi), the simulator
can actually replace pic + xi with x̂i = cui for a uniformly distributed ring ele-
ment ui. In this case, we have that kj = x̂ir̂j + 2cgj = c(uir̂j + 2gj) should be
computationally indistinguishable from a uniformly distributed element under
the Ring-LWE assumption. In other words, when proving the security one can
replace kj with a uniformly distributed element to derive a high min-entropy
key material σj by using the Mod2 function as required.

Unfortunately, directly using “noise flooding” has a significant drawback, i.e.,
the requirement of a super-polynomially large standard deviation β, which may
lead to a nightmare for practical performance due to a super-polynomially large
modulus q for correctness and a very large ring dimension n for the hardness of
the underlying Ring-LWE problems. Fortunately, we can reduce the big cost by
further employing the rejection sampling technique [37]. Rejection sampling is
a crucial technique in signature schemes to make the distribution of signatures
independent of the signing key, and has been applied in many other lattice-based
signature schemes [38–41].

In our case the combination of the static and ephemeral secret keys, r̂j =
sjd + rj , at party j is essentially a signature on all the public messages under
party j’s public key (we again take party j as an example, but note that similar
analysis also holds for party i). Thus, we can freely use the rejection sampling
technique to relax the requirement on a super-polynomially large β. In other
words, we can use a much smaller β, but require party j to use rj if r̂j = sjd+rj

follows the distribution χβ , and to resample a new rj otherwise. We note that
by deploying rejection sampling in our AKE it is the first time that rejection
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Table 1. Comparison of lattice-based AKEs (CCA† means CCA-security with high
min-entropy keys [43], and EUF-CMA means existential unforgeability under chosen
message attacks)

Protocols KEM/PKE Signature Message-pass Model RO? Num. of Rq

FSXY12 [43] CCA† - 2-pass CK × � 7

FSXY13 [44] OW-CCA - 2-pass CK
√

7

Peikert14 [34] CPA EUF-CMA 3-pass SK-security
√

> 2 �

BCNS14 [35] CPA EUF-CMA 4-pass ACCE
√

2 for KEM ��

Ours - - 2-pass BR with wPFS
√

2

� The actual number of ring elements depends on the choice of the concrete
lattice-based signatures.

�� Since the protocol uses traditional signatures to provide authentication, it
does not contain any other ring elements.

sampling is used beyond signature schemes in lattice-based cryptography. As
for signatures, rejection sampling is done locally, and thus will not affect the
interaction between the two parties, i.e., two-pass messages. Even though the
computational performance of each execution might become worse with certain
(small) probability (due to rejection and repeated sampling), the average com-
putational cost is much better than the setting of using a super-polynomially
large β.

1.3 Related Work, Comparison and Discussion

In the past few years, many cryptographers have put effort into constructing
different kinds of KE protocols from lattices. At Asiacrypt 2009, Katz and
Vaikuntanathan [42] proposed the first password-based authenticated key
exchange protocol that can be proven secure based on the LWE assumption.
Ding et al. [33] elegantly constructed a passive-secure KE protocol on (Ring-
)LWE by using a nice error-removing technique with a signal message. Like the
standard DH protocol, the protocol in [33] could not provide authentication—it
is not an AKE protocol—and is thus vulnerable to man-in-the-middle attacks.
This motivates us to design an efficient AKE protocol on (ideal) lattices, espe-
cially an MQV-style one with implicit authentication.

Since the work of Katz et al. [42], there are four papers focusing on design-
ing AKEs from lattices [34,35,43,44]. At a high level, all of them are following
generic transformations from key encapsulation mechanisms (KEM) to AKEs.
Concretely, Fujioka et al. [43] proposed a generic construction of AKE from
KEMs, which can be proven secure in the CK model. Informally, they showed
that if there is a CCA-secure KEM with high min-entropy keys and a family
of pseudorandom functions (PRF), then there is a secure AKE protocol in the
standard model. Thus, by using existing lattice-based CCA-secure KEMs such
as [45,46], it is possible to construct lattice-based AKE protocols in the stan-
dard model. However, as the authors commented, their construction was just
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of theoretic interest due to huge public keys and the lack of an efficient and
direct construction of PRFs from (Ring-)LWE. Later, the paper [44] tried to get
a practical AKE protocol by improving the efficiency of the generic framework
in [43], and showed that one-way CCA-secure KEMs were enough to get AKEs
in the random oracle model. The two protocols in [43,44] share some similari-
ties such as having two-pass messages, and involving three encryptions (i.e., two
encryptions under each party’s static public key and one encryption under an
ephemeral public key). However, the use of the random oracle heuristic makes the
protocol in [44] more efficient than that in [43]. Specifically, the protocol in [44]
requires exchanging seven ring elements when instantiated with the CPA-secure
encryption from Ring-LWE [29] by first transforming it into a CCA-secure one
with the Fujisaki-Okamoto transformation.

Recently, Peikert [34] presented an efficient KEM based on Ring-LWE, which
was then transformed into an AKE protocol by using the same structure as
SIGMA [9]. Similar to the SIGMA protocol, the resulting protocol had three-
pass messages and was proven SK-secure [47] in the random oracle model. For
the computation overheads, Peikert’s protocol involved one KEM, two signatures
and two MACs. By treating the KEM in [34] as a DH-like KE protocol, Bos
et al. [35] integrated it into the Transport Layer Security (TLS) protocol by
directly using signatures to provide explicit authentication. Actually, the authors
used traditional digital signatures such as RSA and ECDSA, and thus their pro-
tocol was not a pure post-quantum AKE. As for the security, the protocol in [35]
was proven secure in the authenticated and confidential channel establishment
(ACCE) security model [48] (which is based on the BR model, but has many
differences to capture entity authentication and channel security).

Due to the lack of concrete security analysis and parameter choices in the lit-
erature, we only give a theoretical comparison of lattice-based AKEs in Table 1.
In summary, our protocol only has two-pass messages (about two ring elements)
and does not use signatures/MACs at all, and its security relies on the hardness
of Ring-LWE in the random oracle model. To the best of our knowledge there is
not a single post-quantum authenticated key exchange protocol (until this work)
which directly relies on a quantum-hard computational problem and does not
make use of explicit cryptographic primitives except hash functions.

1.4 On the Quantum Hardness of Our AKE Protocol

We call our AKE protocol post-quantum as our protocol relies merely on the
Ring-LWE assumption, which is believed to hold even in presence of polynomial-
time quantum computers. However, we emphasize that it does not mean nec-
essarily that our scheme is quantum resistant. This may sound confusing and
controversial in the beginning; that is why we clarify this issue in the follow-
ing. While the underlying assumption may give the impression that our scheme
is quantum secure, our security analysis makes use of rewinding the adversary,
which is generally hard to apply to a quantum algorithm (exceptions can be
found in [49,50]). Moreover, our proof is done in the random oracle model.
In [51], Boneh et al. introduced the quantum random oracle model, and show
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that proofs in this augmented model are more realistic when considering quan-
tum adversaries. In fact, many well-known transformations proven secure in the
classical random oracle model cannot be (easily) proven secure against quantum
algorithms, such as the Fiat-Shamir transform [52,53]. Moreover, it is not clear
whether the security models for key exchange are appropriate when considering
quantum adversaries. An update of security models (in general) may necessary
when considering quantum adversaries (see [54,55]). Therefore, we do not claim
that our scheme is quantum resistant, but believe it is a big step forward.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all quantities are implicitly depen-
dent on κ. Let poly(κ) denote an unspecified function f(κ) = O(κc) for some
constant c. The function log denotes the natural logarithm. We use standard
notation O,ω to classify the growth of functions. If f(κ) = O(g(κ) · logc κ),
we denote f(κ) = Õ(g(κ)). We say a function f(κ) is negligible if for every
c > 0, there exists a N such that f(κ) < 1/κc for all κ > N . We use negl(κ) to
denote a negligible function of κ, and we say a probability is overwhelming if it
is 1 − negl(κ).

The set of real numbers (integers) is denoted by R (Z, resp.). We use ←r to
denote randomly choosing an element from some distribution (or the uniform
distribution over some finite set). Vectors are in column form and denoted by
bold lower-case letters (e.g., x). The 	2 and 	∞ norms we designate by ‖·‖ and
‖·‖∞. The ring of polynomials over Z (Zq = Z/qZ, resp.) we denote by Z[x]
(Zq[x], resp.).

Let X be a distribution over finite set S. The min-entropy of X is defined as

H∞(X) = − log(max
s∈S

Pr[X = s]).

Intuitively, the min-entropy says that if we (privately) choose x from X at ran-
dom, then no (unbounded) algorithm can guess the value of x correctly with
probability greater than 2−H∞(X).

2.2 Security Model for AKE

We now recall the Bellare-Rogaway security model [2,31], restricted to the case
of two-pass AKE protocol.

Sessions. We fix a positive integer N to be the maximum number of honest par-
ties that use the AKE protocol. Each party is uniquely identified by an integer i
in {1, 2, . . . , N}, and has a static key pair consisting of a static secret key ski

and static public key pki, which is signed by a Certificate Authority (CA). A
single run of the protocol is called a session. A session is activated at a party by



728 J. Zhang et al.

an incoming message of the form (Π, I, i, j) or the form (Π,R, j, i,Xi), where
Π is a protocol identifier; I and R are role identifiers; i and j are party iden-
tifiers. If party i receives a message of the form (Π, I, i, j), we say that i is the
session initiator. Party i then outputs the response Xi intended for party j. If
party j receives a message of the form (Π,R, j, i,Xi), we say that j is the session
responder; party j then outputs a response Yj to party i. After exchanging these
messages, both parties compute a session key.

If a session is activated at party i with i being the initiator, we associate
with it a session identifier sid = (Π, I, i, j,Xi) or sid = (Π, I, i, j,Xi, Yj).
Similarly, if a session is activated at party j with j being the responder, the
session identifier has the form sid = (Π,R, j, i,Xi, Yj). For a session identifier
sid = (Π, ∗, i, j, ∗[, ∗]), the third coordinate—that is, the first party identifier—is
called the owner of the session; the other party is called the peer of the ses-
sion. A session is said to be completed when its owner computes a session key.
The matching session of sid = (Π, I, i, j,Xi, Yj) is the session with identifier
s̃id = (Π,R, j, i,Xi, Yj) and vice versa.

Adversarial Capabilities. We model the adversary A as a probabilistic poly-
nomial time (PPT) Turing machine with full control over all communication
channels between parties, including control over session activations. In partic-
ular, A can intercept all messages, read them all, and remove or modify any
desired messages as well as inject its own messages. We also suppose A is capa-
ble of obtaining hidden information about the parties, including static secret
keys and session keys to model potential leakage of them in genuine protocol
executions. These abilities are formalized by providing A with the following ora-
cles (we split the Send query as in [3] into Send0, Send1 and Send2 queries for
the case of two-pass protocols):

– Send0(Π, I, i, j): A activates party i as an initiator. The oracle returns a
message Xi intended for party j.

– Send1(Π,R, j, i,Xi): A activates party j as a responder using message Xi.
The oracle returns a message Yj intended for party i.

– Send2(Π,R, i, j,Xi, Yj): A sends party i the message Yj to complete a session
previously activated with a Send0(Π, I, i, j) query that returned Xi.

– SessionKeyReveal(sid): The oracle returns the session key associated with the
session sid if it has been generated.

– Corrupt(i): The oracle returns the static secret key belonging to party i. A
party whose key is given to A in this way is called dishonest ; a party not
compromised in this way is called honest.

– Test(sid∗): The oracle chooses a bit b ←r {0, 1}. If b = 0, it returns a key
chosen uniformly at random; if b = 1, it returns the session key associated
with sid∗. Note that we impose some restrictions on this query. We only
allow A to query this oracle once, and only on a fresh (see Definition 1)
session sid∗.

Definition 1 (Freshness). Let sid∗ = (Π, I, i∗, j∗,Xi, Yj) or (Π,R, j∗, i∗,
Xi, Yj) be a completed session with initiator party i∗ and responder party j∗. If the
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matching session exists, denote it s̃id
∗
. We say that sid∗ is fresh if the following

conditions hold:

– A has not made a SessionKeyReveal query on sid∗.
– A has not made a SessionKeyReveal query on s̃id

∗
(if it exists).

– Neither party i∗ nor j∗ is dishonest if s̃id
∗
does not exist. I.e., A has not

made a Corrupt query on either of them.

Recall that in the original BR model [2], no corruption query is allowed. In
the above freshness definition, we allow the adversary to corrupt both parties
of sid∗ if the matching session exists, i.e., the adversary can obtain the parties’
secret key in advance and then passively eavesdrops the session sid∗ (and thus
s̃id

∗
). We remark that this seems to be stronger than what is needed for capturing

wPFS [5], where the adversary is only allowed to corrupt a party after an honest
session sid∗ (and thus s̃id

∗
) has been completed.

Security Game. The security of a two-pass AKE protocol is defined in terms of
the following game. The adversary A makes any sequence of queries to the oracles
above, so long as only one Test query is made on a fresh session, as mentioned
above. The game ends when A outputs a guess b′ for b. We say A wins the game
if its guess is correct, so that b′ = b. The advantage of A, AdvΠ,A, is defined as
|Pr[b′ = b] − 1/2|.
Definition 2 (Security). We say that an AKE protocol Π is secure if the
following conditions hold:

– If two honest parties complete matching sessions then they compute the same
session key with overwhelming probability.

– For any PPT adversary A, the advantage AdvΠ,A is negligible.

2.3 The Gaussian Distributions and Rejection Sampling

For any positive real α ∈ R, and vectors c ∈ R
m, the continuous Gaussian

distribution over R
m with standard deviation α centered at v is defined by

the probability function ρα,c(x) = ( 1√
2πα2 )m exp

(
−‖x−v‖2

2α2

)
. For integer vectors

c ∈ R
n, let ρα,c(Zm) =

∑
x∈Zm ρα,c(x). Then, we define the discrete Gaussian

distribution over Z
m as DZm,α,c(x) = ρα,c(x)

ρα,c(Zm) , where x ∈ Z
m. The subscripts s

and c are taken to be 1 and 0 (respectively) when omitted. The following lemma
says that for large enough α, almost all the samples from DZm,α are small.

Lemma 1 ([56]). Letting real α = ω(
√

log m), constant η > 1/
√

2π, then we
have that Prx←rDZm,α

[‖x‖ > η · α
√

m] ≤ 1
2Dn, where D = η

√
2πe · e−π·η2

. In
particular, we have Prx←rDZm,α

[‖x‖ > α
√

m] ≤ 2−m+1.

Now, we recall rejection sampling in Theorem 1 from [37], which will be used
in the security proof of our AKE protocol.



730 J. Zhang et al.

Theorem 1 (Rejection Sampling [37]). Let V be a subset of Z
m in which all

the elements have norms less than T , α = ω(T
√

log m) be a real, and ψ : V → R

be a probability distribution. Then there exists a constant M = O(1) such that
the distribution of the following algorithm Samp1 :

1: c ←r ψ
2: z ←r DZm,α,c

3: output (z, c) with probability min
(

DZm,α(z)
MDZm,α,c(z)

, 1
)
.

is within statistical distance 2−ω(log m)

M from the distribution of the following algo-
rithm Samp2 :

1: c ←r ψ
2: z ←r DZm,α

3: output (z, c) with probability 1/M .

Moreover, the probability that Samp1 outputs something is at least 1−2−ω(log m)

M .
More concretely, if α = τT for any positive τ , then M = e12/τ+1/(2τ2) and the
output of algorithm Samp1 is within statistical distance 2−100

M of the output of
Samp2, and the probability that A outputs something is at least 1−2−100

M .

2.4 Ring Learning with Errors

Let the integer n be a power of 2, and consider the ring R = Z[x]/(xn + 1).
For any positive integer q, we define the ring Rq = Zq[x]/(xn + 1) analogously.
For any polynomial y(x) in R (or Rq), we identify y with its coefficient vector
in Z

n (or Z
n
q ). Then, we define the norm of a polynomial to be the (Euclidean)

norm of its coefficient vector.

Lemma 2. For any s, t ∈ R, we have ‖s · t‖ ≤ √
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤

n · ‖s‖∞ · ‖t‖∞.

The discrete Gaussian distribution over the ring R can be naturally defined
as the distribution of ring elements whose coefficient vectors are distributed
according to the discrete Gaussian distribution over Z

n, e.g., DZn,α for some
positive real α. Letting χα be the discrete Gaussian distribution over Z

n with
standard deviation α centered at 0, i.e., χα := DZn,α, we now adopt the following
notational convention: since bold-face letters denote vectors, x ←r χα means we
sample the vector x from the distribution χα; for normal weight variables (e.g.,
y ←r χα) we sample an element of R whose coefficient vector is distributed
according to χα.

Now we come to the statement of the Ring-LWE assumption; we will use a
special case detailed in [29]. Let Rq be defined as above, and s ←r Rq. We define
As,χα

to be the distribution of the pair (a, as + x) ∈ Rq × Rq, where a ←r Rq is
uniformly chosen and x ←r χα is independent of a.
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Definition 3 (Ring-LWE Assumption). Let Rq and χα be defined as above,
and s ←r Rq. The Ring-LWE assumption RLWEq,α states that it is hard for any
PPT algorithm to distinguish As,χα

from the uniform distribution on Rq × Rq

with only polynomially many samples.

The following lemma says that the hardness of the Ring-LWE assumption
can be reduced to some hard lattice problems such as the Shortest Independent
Vectors Problem (SIVP) over ideal lattices.

Proposition 1 (A special case of [29]). Let n be a power of 2, α be a
real number in (0, 1), and q be a prime such that q mod 2n = 1 and αq >
ω(

√
log n). Define Rq = Zq[x]/〈xn +1〉 as above. Then, there exists a polynomial

time quantum reduction from Õ(
√

n/α)-SIVP in the worst case to average-case
RLWEq,β with 	 samples, where β = αq · (n	/ log(n	))1/4.

It has been proven that the Ring-LWE assumption still holds even if the
secret s is chosen according to the error distribution χβ rather than uniformly [29,
57]. This variant is known as the normal form, and is preferable for controlling
the size of the error term [58,59]. The underlying Ring-LWE assumption also
holds when scaling the error by a constant t relatively prime to q [58], i.e., using
the pair (ai, ais + txi) rather than (ai, ais + xi). Several lattice-based crypto-
graphic schemes have been constructed based on this variant [58,59]. In our case,
we will fix t = 2. Besides, recall that the RLWEq,β assumption guarantees that
for some prior fixed (but randomly chosen) s, the tuple (a, as + 2x) is computa-
tionally indistinguishable from the uniform distribution over Rq ×Rq if a ←r Rq

and x ← χβ . In this paper, we will use a matrix form of the ring-LWE assump-
tion. Formally, let Bχβ ,�1,�2 be the distribution of (a,B = (bi,j)) ∈ R�1

q ×R�1×�2
q ,

where a = (a0, . . . , a�1−1) ←r R�1
q , s = (s0, . . . , s�2−1) ←r R�2

q , ei,j ←r χβ , and
bi,j = aisj + 2ei,j for i ∈ {0, . . . , 	1 − 1} and j ∈ {0, . . . , 	2 − 1}. For poly-
nomially bounded 	1 and 	2, one can show that the distribution of Bχβ ,�1,�2 is
pseudorandom based on the RLWEq,β assumption [45].

3 Authenticated Key Exchange from Ring-LWE

We now introduce some notations. For an odd prime q > 2, take Zq = {− q−1
2 , . . . ,

q−1
2 } and define the subset E := {− q

4�, . . . ,  q
4�} as the middle half of Zq.

We also define Cha to be the characteristic function of the complement of E,
so Cha(v) = 0 if v ∈ E and 1 otherwise. Obviously, for any v in Zq, v +
Cha(v) · q−1

2 mod q belongs to E. We define an auxiliary modular function,
Mod2 : Zq × {0, 1} → {0, 1} as Mod2(v, b) = (v + b · q−1

2 ) mod q mod 2.
In the following lemma, we show that given the bit b = Cha(v), and a value

w = v + 2e with sufficiently small e, one can recover Mod2(v,Cha(v)). In partic-
ular, we have Mod2(v, b) = Mod2(w, b).

Lemma 3. Let q be an odd prime, v ∈ Zq and e ∈ Zq such that |e| < q/8. Then,
for w = v + 2e, we have Mod2(v,Cha(v)) = Mod2(w,Cha(v)).
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Proof. Note that w + Cha(v) q−1
2 mod q = v + Cha(v) q−1

2 + 2e mod q. Now, v +
Cha(v) q−1

2 mod q is in E as we stated above; that is, − q
4� ≤ v+Cha(v) q−1

2 mod
q ≤  q

4�. Thus, since −q/8 < e < q/8, we have − q
2� ≤ v + Cha(v) q−1

2 mod q +
2e ≤  q

2�. Therefore, we have v + Cha(v) q−1
2 mod q + 2e = v + Cha(v) q−1

2 +
2e mod q = w + Cha(v) q−1

2 mod q. Thus, Mod2(w,Cha(v)) = Mod2(v,Cha(v)).

Now, we extend the two functions Cha and Mod2 to ring Rq by applying them
coefficient-wise to ring elements. Namely, for ring element v = (v0, . . . , vn−1) ∈
Rq and binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, define C̃ha(v) = (Cha(v0), . . . ,
Cha(vn−1)) and M̃od2(v,b) = (Mod2(v0, b0), . . . , Mod2(vn−1, bn−1)). For simplic-
ity, we slightly abuse the notations and still use Cha (resp. Mod2) to denote C̃ha

(resp. M̃od2). Clearly, the result in Lemma 3 still holds when extending to ring
elements.

In our AKE protocol, the two involved parties will use Cha and Mod2 to derive
a common key material. Concretely, the responder will publicly send the result of
Cha on his own secret ring element to the initiator in order to compute a shared
key material from two “close” ring elements (by applying the Mod2 function).
Ideally, for a uniformly chosen element v from Rq at random, we hope that the
output of Mod2(v,Cha(v)) is uniformly distributed {0, 1}n. However, this can
never happen when q is an odd prime. Fortunately, we can show that the output
of Mod2(v,Cha(v)) conditioned on Cha(v) has high min-entropy, and thus can
be used to extract an (almost) uniformly distributed session key. Actually, we
can prove a stronger result.

Lemma 4. Let q be any odd prime and Rq be the ring defined above. Then, for
any b ∈ {0, 1}n and any v′ ∈ Rq, the output distribution of Mod2(v+v′,b) given
Cha(v) has min-entropy at least −n log(12 + 1

|E|−1 ), where v is uniformly chosen
from Rq at random. In particular, when q > 203, we have −n log(12 + 1

|E|−1 ) >
0.97n.

Proof. Since each coefficient of v is independently and uniformly chosen from Zq

at random, we can simplify the proof by focusing on the first coefficient of v.
Formally, letting v = (v0, . . . , vn−1), v′ = (v′

0, . . . , v
′
n−1) and b = (b0, . . . , bn−1),

we condition on Cha(v0):

– If Cha(v0) = 0, then v0 + v′
0 + b0 · q−1

2 is uniformly distributed over v′
0 +

b0 · q−1
2 + E mod q. This shifted set has (q + 1)/2 elements, which are either

consecutive integers—if the shift is small enough—or two sets of consecutive
integers—if the shift is large enough to cause wrap-around. Thus, we must
distinguish a few cases:

• If |E| is even and no wrap-around occurs, then the result of Mod2(v0 +
v′
0, b0) is clearly uniform on {0, 1}. Hence, the result of Mod2(v0 + v′

0, b0)
has no bias.

• If |E| is odd and no wrap-around occurs, then the result of Mod2(v0 +
v′
0, b0) has a bias 1

2|E| over {0, 1}. In other words, the Mod2(v0 + v′
0, b0)

will output either 0 or 1 with probability exactly 1
2 + 1

2|E| .
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• If |E| is odd and wrap-around does occur, then the set v′
0 + b0 · q−1

2 +
E mod q splits into two parts, one with an even number of elements, and
one with an odd number of elements. This leads to the same situation
as with no wrap-around.

• If |E| is even and wrap-around occurs, then our sample space is split into
either two even-sized sets, or two odd sized sets. If both are even, then
once again the result of Mod2(v0 + v′

0, b0) is uniform. If both are odd, it
is easy to calculate that the result of Mod2(v0 + v′

0, b0) has a bias with
probability 1

|E| over {0, 1}.

– If Cha(v0) = 1, v0+v′
0+b0 · q−1

2 is uniformly distributed over v′
0+b0 · q−1

2 +Ẽ,
where Ẽ = Zq \ E. Now |Ẽ| = |E| − 1, so by splitting into the same cases as
Cha(v0) = 0, the result of Mod2(v0 + v′

0, b) has a bias with probability 1
|E|−1

over {0, 1}.
In all, we have that the result of Mod2(v0 + v′

0, b0) conditioned on Cha(v0)
has min-entropy at least − log(12 + 1

|E|−1 ). Since the bits in the result of
Mod2(v+v′,b) are independent, we have that given Cha(v), the min-entropy
H∞(Mod2(v + v′,b)) ≥ −n log(12 + 1

|E|−1 ). This completes the first claim.
The second claim directly follows from the fact that − log(12 + 1

|E|−1 ) >

− log(0.51) > 0.97 when q > 203. �

Remark 1 (On Uniformly Distributed Keys). It is known that randomness extrac-
tors can be used to obtain an almost uniformly distributed key from a biased bit-
string with high min-entropy [60–64]. In practice, as recommended by NIST [65],
one can actually use the standard cryptographic hash functions such as SHA-2
to derive a uniformly distributed key if the source string has at least 2κ min-
entropy, where κ is the length of the cryptographic hash function.

3.1 The Protocol

We now describe our protocol in detail. Let n be a power of 2, and q be an odd
prime such that q mod 2n = 1. Take R = Z[x]/(xn +1) and Rq = Zq[x]/(xn +1)
as above. For any positive γ ∈ R, let H1 : {0, 1}∗ → χγ = DZn,γ be a hash func-
tion that always outputs invertible elements in Rq.5 Let H2 : {0, 1}∗ → {0, 1}κ

be the key derivation function, where κ is the bit-length of the final shared key.
We model both functions as random oracles [67]. Let χα, χβ be two discrete
Gaussian distributions with parameters α, β ∈ R

+. Let a ∈ Rq be the global
public parameter uniformly chosen from Rq at random, and M be a constant
determined by Theorem 1. Let pi = asi + 2ei ∈ Rq be party i’s static public
key, where (si, ei) is the corresponding static secret key; both si and ei are taken

5 In practice, one can first use a hash function (e.g., SHA-2) to obtain a uniformly
random string, and then use it to sample from DZn,γ . The algorithm outputs a
sample only if it is invertible in Rq, otherwise, it tries another sample and repeats.
By Lemma 10 in [66], we can have a good probability to sample an invertible element
in each trial for an appropriate choice of γ.
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from the distribution χα. Similarly, party j has static public key pj = asj + 2ej

and static secret key (sj , ej).

Initiation. Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic + ri and f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Send xi to party j.
Response. After receiving xi from party i, party j proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd + rj and f̂j = ejd + fj ;

3′. Go to step 4′ with probability min
(

D
Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂j concatenated with the coefficient vector of
f̂j , and z1 ∈ Z

2n is the coefficient vector of sjd concatenated with the
coefficient vector of ejd; otherwise go back to step 1′;

4′. Sample gj ←r χβ , compute kj = (pic+xi)r̂j+2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and send (yj , wj) to party i;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi,

yj , wj , σj).
Finish. Party i receives the pair (yj , wj) from party j, and proceeds as follows:

5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i +2dgi with d = H1(j, i,
yj , xi);

6. Compute σi = Mod2(ki, wj) and derive the session key ski =
H2(i, j, xi, yj , wj , σi).

Remark 2. Deploying our protocol practically in a large scale requires the sup-
port of a PKI with a trusted Certificate Authority (CA). In this setting, all the
system parameters (such as a) will be generated by the CA like other PKI-based
protocols.

In the above protocol, both parties will make use of rejection sampling, i.e.,
they will repeat the first three steps with certain probability. By Theorem 1,
the probability that each party will repeat the steps is about 1 − 1

M for some
constant M and appropriately chosen β. Thus, one can hope that both parties
will send something to each other after an averaged M times repetitions of the
first three steps. Next, we will show that once they send something to each other,
both parties will finally compute a shared session key.

3.2 Correctness

To show the correctness of our AKE protocol, i.e., that both parties compute
the same session key ski = skj , it suffices to show that σi = σj . Since σi and
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σj are both the output of Mod2 with Cha(kj) as the second argument, we need
only to show that ki and kj are sufficiently close by Lemma 3. Note that the two
parties will compute ki and kj as follows:

ki = (pjd + yj)r̂i + 2dgi

= a(sjd + rj)r̂i + 2(ejd + fj)r̂i

+2dgi

= ar̂ir̂j + 2g̃i

kj = (pic + xi)r̂j + 2cgj

= a(sic + ri)r̂j + 2(eic + fi)r̂j

+2cgj

= ar̂ir̂j + 2g̃j

where g̃i = f̂j r̂i + dgi, and g̃j = f̂ir̂j + cgj . Then ki = kj + 2(g̃i − g̃j), and we
have σi = σj if ‖g̃i − g̃j‖∞ < q/8 by Lemma 3.

4 Security

Theorem 2. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 sat-
isfying q = 1 mod 2n, real β = ω(αγn

√
n log n) and let H1,H2 be random

oracles. Then, if RLWEq,α is hard, the proposed AKE is secure with respect to
Definition 2.

The intuition behind our proof is quite simple. Since the public element a and
the public key of each party (e.g., pi = asi + 2ei) actually consist of a RLWEq,α

tuple with Gaussian parameter α (scaled by 2), the parties’ static public keys
are computationally indistinguishable from uniformly distributed elements in
Rq under the Ring-LWE assumption. Similarly, both the exchanged elements
xi and yj are also computationally indistinguishable from uniformly distributed
elements in Rq under the RLWEq,β assumption.

Without loss of generality, we take party j as an example to check the dis-
tribution of the session key. Note that if kj is uniformly distributed over Rq,
we have σj ∈ {0, 1}n has high min-entropy (i.e., 0.97n > 2κ) even conditioned
on wj by Lemma 4. Since H2 is a random oracle, we have that skj is uni-
formly distributed over {0, 1}κ as expected. Now, let us check the distribution of
kj = (pic+xi)(sjd+rj)+2cgj . As one can imagine, we want to establish the ran-
domness of kj based on pseudorandomness of “Ring-LWE samples” with public
element âj = c−1(pic + xi) = pi + c−1xi, the secret ŝj = sjd + rj , as well as the
error term 2gj (thus we have kj = c(âj ŝj + 2gj)). Actually, kj is pseudorandom
due to the following fact: 1) c is invertible in Rq; 2) âj is uniformly distributed
over Rq whenever pi or xi is uniform, and 3) ŝj has distribution statistically
close to χβ by the strategy of rejection sampling in Theorem 1. In other words,
âj ŝj +2gj is statistically close to a RLWEq,β sample, and thus is pseudorandom.

Formally, let N be the maximum number of parties, and m be maximum
number of sessions for each party. We distinguish the following five types of
adversaries:

Type I: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is output
by a session activated at party j by a Send1(Π,R, j∗, i∗, xi∗) query.
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Type II: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is not
output by a session activated at party j∗ by a Send1(Π,R, j∗, i∗, xi∗) query.

Type III: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is not
output by a session activated at party i∗ by a Send0(Π, I, i∗, j∗) query.

Type IV: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is out-
put by a session activated at party i∗ by a Send0(Π, I, i∗, j∗) query, but i∗

either never completes the session, or i∗ completes it with exact yj∗ .
Type V: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is out-

put by a session activated at party i∗ by a Send0(Π, I, i∗, j∗) query, but i∗

completes the session with another y′
j �= yj∗ .

The five types of adversaries give a complete partition of all the adversaries.
The weak perfect forward secrecy (wPFS) is captured by allowing Type I and
Type IV adversaries to obtain the static secret keys of both party i∗ and j∗ by
using Corrupt queries. Since sid∗ definitely has no matching session for Type II,
Type III, and Type V adversaries, no corruption to either party i∗ or party j∗

is allowed by Definition 1. The security proofs for the five types of adversaries
are similar, except the forking lemma [68] is involved for Type II, Type III,
and Type V adversaries by using the assumption that H1 is a random oracle.
Informally, the adversary must first “commit” xi (yj , resp.) before seeing c (d,
resp.), thus it cannot determine the value pic + xi or pjd + yi in advance (but
the simulator can set the values by programming H1 when it tries to embed
Ring-LWE instances with respect to either pic + xi or pjd + yi as discussed
before).

For space reason, we only give the security proof for Type I adversaries in
Lemma 5, and defer the proofs for other types of adversaries to the full version.

Lemma 5. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satis-
fying q = 1 mod 2n, real β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the

proposed AKE is secure against any PPT Type I adversary A in the random
oracle model.

In particular, if there is a PPT Type I adversary A breaking our protocol with
non-negligible advantage ε, then there is a PPT algorithm B solving RLWEq,α

with advantage at least ε
m2N2 − negl(κ).

Proof. We prove this lemma via a sequence of games G1,l for 0 ≤ l ≤ 7, where
the first game G1,0 is almost the same as the real one except that the simulator
randomly guesses the test session at the beginning of the game and aborts the
simulation if the guess is wrong, while the last game G1,7 is a fake one with
randomly and independently chosen session key for the test session (thus the
adversary can only win the game with negligible advantage). The security is
established by showing that any two consecutive games are computationally
indistinguishable. Bold fonts are used to highlight the changes of each game
with respect to its previous game.

Game G1,0. S chooses i∗, j∗ ←r {1, . . . , N}, si∗ , sj∗ ←r {1, . . . , m}, and hopes
that the adversary will use sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session,
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where xi∗ is output by the si∗ -th session of party i∗, and yj∗ is output by the s∗
j -th

session of party j∗ activated by a Send1(Π,R, j∗, i∗, xi∗) query. Then, S chooses
a ←r Rq, generates static public keys for all parties (by choosing si, ei ←r χα),
and simulates the security game for A. Specifically, S maintains two tables L1, L2

for the random oracles H1,H2, respectively, and answers the queries from A as
follows:

– H1(in): If there does not exist a tuple (in, out) in L1, choose an invertible
element out ∈ χγ at random, and add (in, out) into L1. Then, return out to
A.

– H2(in) queries: If there does not exist a tuple (in, out) in L2, choose a vector
out ←r {0, 1}κ, and add (in, out) into L2. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S
proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic + ri and f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Return xi to A;
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd + rj and f̂j = ejd + fj ;

3′. Go to step 4′ with probability min
(

D
Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂j concatenated with the coefficient vector of
f̂j , and z1 ∈ Z

2n is the coefficient vector of sjd concatenated with the
coefficient vector of ejd; otherwise go back to step 1′;

4′. Sample gj ←r χβ , compute kj = (pic+xi)r̂j+2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj =

H2(i, j, xi, yj , wj , σj).
– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:

5. Sample gi ←r χβ and compute ki = (pjd+yj)r̂i+2dgi where d = H1(j, i,
yj , xi);

6. Compute σi = Mod2(ki, wj) and derive the session key ski =
H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session
key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), S aborts if (i, j) �= (i∗, j∗), or xi

and yj are not output by the si∗ -th session of party i∗ and the s∗
j -th session

of party j∗, respectively. Else, S chooses b ←r {0, 1}, returns sk′
i ←r {0, 1}κ

if b = 0. Otherwise, return the session key ski of sid.
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Claim 1. The probability that S will not abort in G1,0 is at least 1
m2N2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r

{1, . . . , N} and si∗ , s∗
j ←r {1, . . . , m} independently from the view of A. �

Game G1,1. S behaves almost the same as in G1,0 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,0. Otherwise, it proceeds as follows:
1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Sample an invertible element d ←r χγ , and compute r̂j = sjd + rj ,

f̂j = ejd + fj ;
3′. Go to step 4′ with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂j concatenated with the coefficient vector of
f̂j , and z1 ∈ Z

2n is the coefficient vector of sjd concatenated with the
coefficient vector of ejd; otherwise go back to step 1′;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add
((j, i, yj , xi), d) into L1. Then, sample gj ←r χβ and compute kj =
(pic + xi)r̂j + 2cgj where c = H1(i, j, xi);

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj =

H2(i, j, xi, yj , wj , σj).

Let F1,l be the event that A outputs a guess b′ that equals to b in Game G1,l.

Claim 2. If RLWEq,β is hard, then Pr[F1,l] = Pr[F1,0] − negl(κ).

Proof. Since H1 is a random oracle, Game G1,0 and Game G1,1 are identical if
the adversary A does not make a H1 query ((j, i, yj , xi), ∗) before S generates
yj . Thus, the claim follows if the probability that A makes such a query in both
Games is negligible. Actually, if A can make the query before seeing yj with non-
negligible probability, we can construct an algorithm B that breaks the RLWEq,β

assumption.
Formally, after given a ring-LWE challenge tuple (u,b) ∈ Rq × R�

q in matrix
form for some polynomially bounded 	, B sets a = u and behaves like in Game
G1,0 until B has to generate yj for the s∗

j -th session of j∗ intended for party i∗.
Instead of generating a fresh yj , B simply sets yj as the first unused elements in
b = (b0, . . . , b�−1), and checks if there is a tuple ((j, i, yj , xi), ∗) in L1. If yes, it
returns 1 and aborts, else it returns 0 and aborts.

It is easy to check that A has the same view as in G1,0 and G1,1 until the point
that B has to compute yj . Moreover, if b = (b0 = ur0 + 2f0, . . . , b�−1 = ur�−1 +
2f�−1) for some randomly choose r�′ , f�′ ←r χβ where 	′ ∈ {0, 1, . . . , 	 − 1}, we
have the probability that A will make the H1 query with (j, i, yj , xi) is non-
negligible by assumption. While if b is uniformly distributed over R

�
q, we have

the probability that A will make the H1 query with (j, i, yj , xi) is negligible.
This shows that B can be used to solve Ring-LWE assumption by interacting
with A. �
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Game G1,2. S behaves almost the same as in G1,1 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,1. Otherwise, it proceeds as follows:
1′. Sample an invertible element d ←r χγ , and choose z ←r DZ2n,β ;

2′. Parse z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd;

3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, sample gj ←r χβ and compute kj = (pic + xi)r̂j + 2cgj where
c = H1(i, j, xi);

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Claim 3. If β = ω(αγn
√

n log n), then Pr[F1,2] = Pr[F1,1] − negl(κ).

Proof. By Lemma 1 and Lemma 2, we have that both ‖sjd‖ ≤ αγn
√

n and
‖ejd‖ ≤ αγn

√
n (in Game G1,1) hold with overwhelming probability. This means

that β = ω(αγn
√

n log n) satisfies the requirement in Theorem 1, and thus the
distribution of (d, z) in Game G1,2 is statistically close to that in G1,1. The claim
follows from the fact that the equation yj = ar̂j +2f̂j − pjd holds in both Game
G1,1 and G1,2.

Game G1,3. S behaves almost the same as in G1,2, except for the following case:

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S
answers as in Game G1,2. Otherwise, it proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Sample an invertible element c ←r χγ , and compute r̂i = sic + ri,

f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c)
into L1. Return xi to A.

Claim 4. If RLWEq,β is hard, then Pr[F1,3] = Pr[F1,2] − negl(κ).

Proof. The proof is similar to the proof of Claim 2, we omit the details. �

Game G1,4. S behaves almost the same as in G1,3 except for the following case:

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S answers
as in Game G1,3. Otherwise, it proceeds as follows:
1. Sample an invertible element c ←r χγ , and choose z ←r DZ2n,β;
2. Parse z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic;
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3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.

Claim 5. If β = ω(αγn
√

n log n), then Pr[F1,4] = Pr[F1,3] − negl(κ).

Proof. The proof is similar to the proof of Claim 3, we omit the details. �

Game G1,5. S behaves almost the same as in G1,4 except for the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session
of i∗, S behaves as in Game G1,4. Otherwise, if (yj , wj) is output by the
s∗

j -th session of party j∗, S sets ski = skj , where skj is the session key
of sid = (Π,R, j, i, xi, (yj , wj)). Else, S samples gi ←r χβ and computes
ki = (pjd + yj)r̂i + 2dgi where d = H1(j, i, yj , xi). Finally, it computes
σi = Mod2(ki, wj) and derives the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 6. Pr[F1,5] = Pr[F1,4] − negl(κ).

Proof. This claim follows since G1,5 is just a conceptual change of G1,4 by the
correctness of the protocol. �

Game G1,6. S behaves almost the same as in G1,5 except in the following case:

– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S
answers as in Game G1,5. Otherwise, it proceeds as follows:
1. Sample an invertible element c ←r χγ , and choose x̂i ←r Rq;
2. Define xi = x̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into

L1. Return xi to A.
– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session

of i∗, or (yj , wj) is output by the s∗
j -th session of party j∗, S behaves the

same as in G1,5. Otherwise, it proceeds as follows:
5. Randomly choose ki ←r Rq;
6. Compute σi =Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj ,

wj , σi).

Note that in Game G1,6, we have made two changes: 1) The term ar̂i + 2f̂i

in Game G1,5 is replaced by a uniformly chosen element x̂ ∈ Rq at random; 2)
The value ki = (pjd + yj)r̂i + 2dgi in Game G1,5 is replaced by a uniformly
chosen string ki ←r Rq, when (yj , w

′
j) is output by the s∗

j -th session of party
j∗ but wj �= w′

j . In the following, we will employ the “deferred analysis” proof
technique in [69], which informally allows us to proceed the security games by
patiently postponing some tough probability analysis to a later game. Specially,
for 	 = 5, 6, 7, denote Q1,l as the event in Game G1,� that 1) (yj , w

′
j) is output

by the s∗
j -th session of party j∗ but wj �= w′

j ; and 2) A makes a query to H2 that
is exactly used to generate the session key ski for the si∗ -th session of party i∗,
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i.e., ski = H2(i, j, xi, yj , wj , σi) for σi = Mod2(ki, wj). Ideally, if Q1,5 does not
happen, then the adversary cannot distinguish whether a correctly computed ki

or a randomly chosen one is used (since H2 is a random oracle, and the adversary
gains no information about ki even if it obtains the session key ski). However,
we cannot prove the claim immediately due to technical reason. Instead, we will
show that Pr[Q1,5] ≈ Pr[Q1,6] ≈ Pr[Q1,7] and Pr[Q1,7] is negligible in κ.

Claim 7. If RLWEq,β is hard, Pr[Q1,6] = Pr[Q1,5] − negl(κ), and
Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5] − negl(κ).

Proof. Note that H2 is a random oracle, the event Q1,5 is independent from
the distribution of the corresponding ski. Namely, no matter whether or not
A obtains ski, Pr[Q1,5] is the same, which also holds for Pr[Q1,6]. In addition,
under the RLWEq,β assumption, we have x̂i = ar̂i + 2f̂i in G1,5 is computation-
ally indistinguishable from uniform distribution over Rq, and thus the public
information (i.e., static public keys and public transcripts) in G1,5 and G1,6

is computationally indistinguishable. In particular, the view of the adversary
A before Q1,� happens for 	 = 5, 6 is computationally indistinguishable, which
implies that Pr[Q1,6] = Pr[Q1,5] − negl(κ). Besides, if Q1,l for l = 5, 6 does
not happen, the distribution of ski is the same in both games. In other words,
Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5] − negl(κ). �

Game G1,7. S behaves almost the same as in G1,6 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d ←r χγ , and choose ŷj ←r Rq;

2′. Define yj = ŷj − pjd;

3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, the simulator S uniformly chooses kj ←r Rq at random;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Claim 8. Let n be a power of 2, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,β is hard, Game G1,6 and G1,7 are compu-

tationally indistinguishable. In particular, we have Pr[Q1,7] = Pr[Q1,6]−negl(κ),
and Pr[F1,7|¬Q1,7] = Pr[F1,6|¬Q1,6] − negl(κ).

Proof. Assume there is an adversary that distinguishes Game G1,6 and G1,7, we
now construct a distinguisher D that solves the Ring-LWE problem. Specifically,
let (u = (u0, . . . , u�−1),B) ∈ R�

q×R�×�
q be a challenge Ring-LWE tuple in matrix

form for some polynomially bounded 	, D first sets public parameter a = u0.
Then, it randomly chooses invertible elements v = (v1, . . . , v�−1) ← χ�−1

γ , and
compute û = (v1 · u1, . . . , v�−1u�−1). Finally, D behaves the same as S in Game
G1,6, except for the following cases:
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– Send0(Π, I, i, j): If (i, j) �= (i∗, j∗), or it is not the si∗ -th session of i∗, S
answers as in Game G1,6. Otherwise, it proceeds as follows:
1. Set c and x̂i be the first unused element in v and û, respectively;
2. Define xi = x̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.

– Send1(Π,R, j, i, xi): If (i, j) �= (i∗, j∗), or it is not the s∗
j -th session of j∗, S

answers the query as in Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d ←r χγ , and set ŷj be the first

unused element in b0 = (b0,0, . . . , b0,�−1);
2′. Define yj = ŷj − pjd;
3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d)

into L1. Then, let 	1 ≥ 1 be the index that x̂i appears in û, and 	2 ≥ 0
be the index that ŷj appears in b0, the simulator S sets kj = cb�1,�2 ;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Computeσj = Mod2(kj , wj) andderive the sessionkey skj = H2(i, j, xi, yj ,

wj , σj).

Since v is randomly and independently chosen from χ�−1
γ , the distribution

of c is identical to that in Game G1,6 and Game G1,7. Besides, since each vi is
invertible in Rq, we have û is uniformly distributed over R�−1

q , which shows that
the distribution of x̂i is identical to that in Game G1,6 and Game G1,7. Moreover,
if (u,B) ∈ R�

q × R�×�
q is a Ring-LWE challenge tuple in matrix form, we have

ŷj = u0s�2 + 2e0,�2 and kj = cb�1,�2 = cu�1s�2 + 2ce�1,�2 = x̂is�2 + 2ce�1,�2 =
(xi + pic)s�2 + 2ce�1,�2 for some randomly chosen s�2 , e0,�2 , e�1,�2 ←r χβ . This
shows that the view of A is the same as in Game G1,6. While if (u,B) ∈ R�

q×R�×�
q

is uniformly distributed over R�
q × R�×�

q , we have both ŷj and kj = cb�1,�2 are
uniformly distributed over Rq (since c is invertible). Thus, the view of A is the
same as in G1,7. In all, we have shown that D can be used to break Ring-LWE
assumption if A can distinguish Game G1,6 and G1,7. �

Claim 9. If 0.97n > 2κ, we have Pr[Q1,7] = negl(κ)

Proof. Let ki,� be the element “computed” by S for the s∗
i -th session at party i∗

in Games G1,�, and kj,� be the element “computed” by S for the s∗
j -th session

at party j∗. By the correctness of the protocol, we have that ki,5 = kj,5 + ĝ for
some ĝ with small coefficients in G1,5. Since we have proven that the view of the
adversary before Q1,� happens in Game G1,5, G1,6 and G1,7 is computationally
indistinguishable, the equation ki,7 = kj,7 + ĝ′ should still hold for some ĝ′

with small coefficients in the adversary’s view until Q1,7 happens in G1,7. Let
(yj , wj) be output by the s∗

j -th session of party j = j∗, and (yj , w
′
j) be the

message that is used to complete the test session (i.e., the si∗ -th session of party
i = i∗). Note that kj,7 is randomly chosen from Rq, and the adversary can
only obtain the information of kj,7 from the public wj , the dependence of ĝ on
kj should be totally determined by the information of wj . Thus, we have that
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σ′
i = Mod2(ki, w

′
j) = Mod2(kj + ĝ′, w′

j) conditioned on wj has high min-entropy
by Lemma 4. In other words, the probability that the adversary makes a query
H2(i, j, xi, yj , w

′
j , σ

′
i) is at most 2−0.97n + negl(κ), which is negligible in κ. �

Claim 10. Pr[F1,7|¬Q1,7] = 1/2 + negl(κ)

Proof. Let (yj , wj) be output by the s∗
j -th session of party j = j∗, (yj , w

′
j) be

the message that is used to complete the test session (i.e., the si∗ -th session of
party i = i∗). We distinguish the following two cases:

– wj = w′
j : In this case, we have ski = skj = H2(i, j, xi, yj , wj , σi), where

σi = σj = Mod2(kj , wj). Note that in G1,7, kj is randomly chosen from the
uniform distribution over Rq, we have that σj ∈ {0, 1}n (conditioned on wj)
has min-entropy at least 0.97n by Lemma 4. Thus, the probability that A
has made a H2 query with σi is less than 2−0.97n + negl(κ).

– wj �= w′
j : By assumption that Q1,7 does not happen, we have that A will

never make a H2 query with σi.

The probability that A has made a H2 query with σi is negligible. This claim
follows from the fact that if the adversary does not make a query with σi exactly,
the distribution of ski is uniform over {0, 1}κ due to the random oracle property
of H2, i.e., Pr[F1,7|¬Q1,7] = 1/2 + negl(κ). �

Combining the claims 1∼10, we have that Lemma 5 follows.

5 One-Pass Protocol from Ring-LWE

As MQV [20] and HMQV [5], our AKE protocol has a one-pass variant, which
only consists of a single message from one party to the other. Let a ∈ Rq be
the global public parameter uniformly chosen from Rq at random, and M be a
constant. Let pi = asi+2ei ∈ Rq be party i’s static public key, where (si, ei) is the
corresponding static secret key; both si and ei are taken from the distribution χα.
Similarly, party j has static public key pj = asj+2ej and static secret key (sj , ej).
The other parameters and notations used here are the same as that in Section 3.

Initiation. Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic + ri and f̂i = eic + fi;
3. Go to step 4 with probability min

(
D

Z2n,β(z)

MD
Z2n,β,z1

(z) , 1
)
, where z ∈ Z

2n is
the coefficient vector of r̂i concatenated with the coefficient vector of
f̂i, and z1 ∈ Z

2n is the coefficient vector of sic concatenated with the
coefficient vector of eic; otherwise go back to step 1;

4. Sample gi ←r χβ and compute ki = pj r̂i + 2gi where c = H1(i, j, xi);
5. Compute wi = Cha(ki) ∈ {0, 1}n and send (yi, wi) to party j;
6. Compute σi = Mod2(ki, wi), and derive the session key ski = H2(i, j, xi,

wi, σi).
Finish. Party j receives the pair (xi, wi) from party i, and proceeds as follows:
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1′. Sample gj ←r χα, compute kj = (pic+xi)sj+2cgj where c = H1(i, j, xi);
2′. Compute σj = Mod2(kj , wi) and derive the session key skj = H2(i, j, xi,

wi, σj).

The correctness of the protocol simply follows from the fact that ki = pj r̂i +
2gi = (asj + 2ej)(sic + ri) + 2gi ≈ a(sic + ri)sj + 2(eic + fi)sj + 2cgj = kj . The
security of the protocol cannot be proven in the BR model with party corruption,
since the one-pass protocol inherently can not provide wPFS due to the lack of
messages from the receiver j. Besides, the protocol cannot prevent a replay
attack without additional measures like keeping a state or using synchronized
time. However, we can prove its security in a weak model similar to [5] which
avoids the (above) inherent insufficiencies for one-pass protocols. Since the proof
is parallel to the two-pass one, we omit the details.

Finally, we remark that the one-pass protocol can essentially be used as a
KEM, and can be transformed into a CCA-secure encryption scheme in the ran-
dom oracle model by combining it with a CPA-secure symmetric-key encryption
scheme together with a MAC algorithm in a standard way (where both keys are
derived from the session key in the one-pass protocol). The resulting encryption
has two interesting properties: 1) it allows the receiver to verify the sender’s
identity, but no one else can verify it (since only the receiver can compute the
session key, i.e., it provides some kind of sender authentication); 2) the sender
can deny having created such a ciphertext, because the receiver can also create
such a ciphertext by itself (i.e., it is a deniable encryption).

6 Concrete Parameters and Timings

In this section, we present concrete choices of parameters, and the timings in
a proof-of-concept implementation. Our selection of parameters for our AKE
protocols can be found in Table 2. Those parameters were chosen such that the
correctness property is satisfied with high probability and with the choice of
different levels of security.

For the correctness of our two-pass protocol, the error term must be bounded
by ‖g̃i − g̃j‖∞ < q/8. Note that g̃i = (ejd + fj)(sic + ri) + dgi, and g̃j = (eic +
fi)(sjd+rj)+cgj , where ei, ej ←r χα, c, d ←r χγ , and fi, fj , ri, rj , gi, gj ←r χβ .
Due to the symmetry, we only estimate the size of ‖g̃i‖∞. At this point, we use
the following fact about the product of two Gaussian distributed random values
(as stated in [35]). Let x ∈ R and y ∈ R be two polynomials whose coefficients are
distributed according to a discrete Gaussian distribution with standard deviation
σ and τ , respectively. The individual coefficients of the product xy are then
(approximately) normally distributed around zero with standard deviation στ

√
n

where n is the degree of the polynomial.
In our case, it means that we have ‖(ejd + fj)(sic + ri)‖∞ ≤ 6β2

√
n and

‖dgi‖∞ ≤ 6γβ
√

n with overwhelming probability (since erfc(6) is about 2−55).
Note that the distributions of ejd + fj and sic + ri are both according to χβ

since we use rejection sampling in the protocol. Now, to choose an appropriate β
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Table 2. Choices of parameters (The bound 6α with erfc(6) ≈ 2−55 is used to estimate
the size of secret keys)

Protocol
Choice of

n Security α τ log β log q (bits)
Size (KB)

Parameters pk sk (expt.) init. msg resp. msg

Two-pass

I1
1024

80 bits 3.397 12 16.1 45 5.625 1.5 5.625 5.75

I2 75 bits 3.397 24 17.1 47 5.875 1.5 5.875 6.0

II1
2048

230 bits 3.397 12 17.1 47 11.75 3.0 11.75 12.0

II2 210 bits 3.397 36 18.7 50 12.50 3.0 12.50 12.75

One-pass

III1
1024

160 bits 3.397 12 16.1 30 3.75 1.5 3.875 -

III2 140 bits 3.397 36 17.7 32 4.0 1.5 4.125 -

IV1
2048

360 bits 3.397 12 17.1 32 8.0 3.0 8.25 -

IV2 350 bits 3.397 36 18.7 33 8.25 3.0 8.5 -

we set η = 1/2 in Lemma 1 such that ‖ejd‖, ‖sic‖ ≤ 1/2αγn with probability at
most 2 · 0.943−n. Hence, for n ≥ 1024, we get a potential decryption error with
only a probability about 2−87. In order to make the rejection sampling work,
it is sufficient to set β ≥ τ · 1/2αγn = 1/2ταγn for some constant τ (which
is much better than the worst-case bound β = ω(αγ

√
n log n) in Theorem 1).

For instance, if τ = 12, we have an expect number of rejection sampling about
M = 2.72 and a statistical distance about 2−100

M by Theorem 1. For such a choice
of β, we can safely assume that ‖g̃i‖∞ ≤ 6β2

√
n + 6γβ

√
n ≤ 7β2

√
n. Thus, it is

enough to set 16 · 7β2
√

n < q for correctness of the protocol in Section 3.
Though the Ring-LWE problem enjoys a worst-case connection to some hard

problems (e.g., SIVP [29]) on ideal lattices, the connection as summarized in
Proposition 1 seems less powerful to estimate the actual security for concrete
choices of parameters. In order to assess the concrete security of our parameters,
we use the approach of [70], which investigates the two most efficient ways to
solve the underlying (Ring-)LWE problem, namely the embedding and decoding
attacks. As opposed to [70], the decoding attack is more efficient against our
instances because the Ring-LWE case with m ≥ 2n is close to the optimal
attack dimension for the corresponding attacks. The decoding attack first uses a
lattice reduction algorithm, such as BKZ [71] / BKZ 2.0 [72] and then applies a
decoding algorithm like the ones in [73–75]. Finally, the closest vector is returned
as the error polynomial, and the secret polynomial is recovered.

As recommended in [74,76], it is enough to set the Gaussian parameter α ≥
3.2 so that the discrete Gaussian DZn,α approximates the continuous Gaussian
Dα extremely well.6 In our experiment, we fix α = 3.397 for a better performance
of the Gaussian sampling algorithm in [39]. As for the choices of γ, we set
γ = α for simplicity (actually such a choice in our experiments works very well:
no rejection happened in 1000 hash evaluations). In Table 2, we set all other
parameters β, n, q for our two-pass protocol to satisfy the correctness condition.
We also give the parameter choices of our one-pass protocol (in this case, we

6 Only α is considered because β � α, and the (Ring-)LWE problem becomes harder
as α grows bigger (for a fixed modulus q).
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can save a factor of β in q due to the asymmetry). Note that n is required to be
a power of 2 in our protocol (i.e., it is very sparsely distributed7). We present
several candidate choices of parameters for n = 1024, 2048, and estimate the
sizes of public keys, secret keys, and communication overheads in Table 2.

Table 3. Timings of proof-of-concept implementations in ms

Protocol Parameters τ Initiation Response Finish

Two-pass

I1 12 22.05 ms 30.61 ms 4.35 ms

I2 24 14.26 ms 19.18 ms 4.41 ms

II1 12 49.77 ms 60.31 ms 9.44 ms

II2 36 25.40 ms 36.96 ms 9.59 ms

Protocol Parameters τ Initiation Finish

One-pass

III1 12 26.17 ms 3.64 ms

III2 36 14.57 ms 3.70 ms

IV1 12 53.78 ms 7.75 ms

IV2 36 32.28 ms 7.94 ms

We have implemented our AKE protocol by using the NTL library com-
piled with the option NTL GMP LIP = on (i.e., building NTL using the GNU
Multi-Precision package). The implementations are written in C++ without any
parallel computations or multi-thread programming techniques. The program is
run on a Dell Optiplex 780 computer with Ubuntu 12.04 TLS 64-bit system, a
2.83GHz Intel Core 2 Quad CPU and 3.8GB RAM. We use an n-dimensional Fast
Fourier Transform (FFT) for the multiplications of two ring elements [78,79], and
the CDT algorithm [80] as a tool for hashing to DZn,γ and sampling from DZn,α,
but the DDLL algorithm [39] for sampling from DZn,β (because the CDT algo-
rithm has to store large precomputed values for a big β). In Table 3, we present
the average timings of each operation (in millisecond, ms) for 1000 executions.
Since our protocols also allow some precomputations like sampling Gaussian
distributions offline, the timings can be greatly reduced if this is considered in
practice. Finally, we note that our implementation has not undergone any real
optimization, and it can be much improved in practice.

7 Conclusions and Open Problems

In this paper, a two-pass AKE and its one-pass variant are proposed. Both
protocols are carefully built upon on the algebraic structure of (Ring-)LWE
problems and several recent developments in lattice-based cryptography, and
are proven secure based on the hardness of Ring-LWE in the random oracle
model. However, the literature shows that the use of random oracle is delicate
for proving quantum resistance [51]. It is of great interest to investigate the
quantum security of our protocol, or to design an efficient protocol without the
random oracle heuristic (and the need of rewinding).

7 We remark such a choice of n is not necessary, but it gives a simple analysis and
implementation. In practice, one might use the techniques for Ring-LWE cryptogra-
phy in [77] to give a tighter choice of parameters for desired security levels.
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