
Cryptanalysis of a Public Key
Cryptosystem Based on Diophantine

Equations via Weighted LLL Reduction
(Short Paper)

Jintai Ding1, Momonari Kudo2(B), Shinya Okumura3(B), Tsuyoshi Takagi4,
and Chengdong Tao5

1 University of Cincinnati, Cincinnati, USA
2 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan

m-kudo@math.kyushu-u.ac.jp
3 Institute of Systems, Information Technologies and Nanotechnologies,

Fukuoka, Japan
s-okumura@isit.or.jp

4 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
5 South China University of Technology, Guangzhou, China

Abstract. Okumura proposed a candidate of post-quantum cryptosys-
tem based on Diophantine equations of degree increasing type (DEC).
Sizes of public keys in DEC are small, e.g., 1,200 bits for 128 bit security,
and it is a strongly desired property in post-quantum erea.

In this paper, we propose a polynomial time attack against DEC. We
show that the one-wayness of DEC is reduced to finding special (rela-
tively) short vectors in some lattices. The usual LLL algorithm does not
work well for finding the most important target vector in our attack. The
most technical point of our method is to heuristically find a special norm
called a weighted norm to find the most important target vector. We call
this method “weighted LLL algorithm” in this paper. Our experimental
results suggest that our attack can break the one-wayness of DEC for
128 bit security with sufficiently high probability.

Keywords: Post-quantum cryptosystem · Weighted LLL reduction ·
Diophantine equation

1 Introduction

Post-quantum cryptography is now receiving a great amount of attention. Many
candidates of post-quantum cryptosystems (PQC) have been proposed up to the

The full version [12] is available from IACR Cryptology ePrint Archive, 2015/1229.
S. Okumura—Research conducted while at Institute of Mathematics for Industry,
Kyushu University.

c© Springer International Publishing Switzerland 2016
K. Ogawa and K. Yoshioka (Eds.): IWSEC 2016, LNCS 9836, pp. 305–315, 2016.
DOI: 10.1007/978-3-319-44524-3 18

306 J. Ding et al.

present, e.g., lattice-based cryptosystems, code-based cryptosystems and multi-
variate public key cryptosystems (see [7,11]). However, these PQC require public
keys of large sizes, and thus it is important task that we find computationally-
hard problems for constructing PQC with public keys of small sizes.

The Diophantine problem is well-known to be a hard problem (see [13]) and
has been expected to be used to construct PQC. (The Diophantine problem here
means that given multivariate polynomials with integer coefficients, find com-
mon rational zeros of them.) In fact, a public key cryptosystem [20] and key
exchange protocols [6,17,29] based on the difficulty of the Diophantine prob-
lem have been already proposed. However, the one-wayness of the cryptosystem
[20] is broken [10], and the protocols [6,17,29] are said to be impractical [17,
Proposition 2].

The Diophantine problem is generalized to problems over arbitrary rings.
The Algebraic Surface Cryptosystem (ASC) [4] is based on the difficulty of the
Diophantine problem over global function fields which is proved to be unsolvable
in general [24,27]. In [4], it is analyzed that we may use public keys of sizes of
about only 500 bits. However, the one-wayness of ASC is broken by the ideal
decomposition attack [15].

Okumura [23] proposed a public key cryptosystem based on the difficulty of
solving Diophantine equations of degree increasing type over Z (see Sect. 3 in
this paper for the definition of a polynomial of degree increasing type). We refer
to the cryptosystem as DEC for short. In [23, Remark 3.2], Okumura shows that
Diophantine equations of degree increasing type are generally unsolvable. DEC
is proposed as a number field analogue of ASC and a candidate of PQC. In DEC,
a polynomial X ∈ Z[x1, . . . , xn] of degree increasing type is used as a public key,
and a vector (a1, . . . , an) ∈ Z

n satisfying X(a1
d , . . . , an

d) = 0 for some d ∈ Z is
used as a secret key (see Sect. 3.2). The main ideas to avoid the analogues of all
attacks [15,18,26,28] against ASC (and the previous versions [1–3] of ASC) are
to twist a plaintext by using some modular arithmetic and to use some random
polynomials with large coefficients in the encryption process. In [23, Sect. 4], it is
analyzed that by the above ideas, the number of possible parameters increases,
and thus finding the correct plaintext will become infeasible. In addition, the
reason why polynomials of degree increasing type are adopted in DEC is to
decode a plaintext uniquely even if the plaintext is twisted.

Another advantage of DEC is that sizes of public keys are small, e.g., about
1,200 bits with 128 bit security (see [12, Remark 3.5.1 (3)]), as desired in
post-quantum cryptography. Note that well-known efficient candidates of PQC
[21,22,25] require public keys whose sizes are about 10 times larger than 1,200
bits to achieve 128 bit security. Thus it is important to analyze the security of
DEC.

Our Contribution

In this paper, we propose an attack against DEC. We show that the one-wayness
of DEC is transformed to a problem of finding special relatively short vectors in
lattices obtained from a public key and a ciphertext. Using three polynomials as

Cryptanalysis of a Public Key Cryptosystem 307

a ciphertext allows us to construct linear systems. One can recover a plaintext
by finding appropriate solutions of the linear systems, and thus this point is one
of the weakness of DEC. Our attack can be divided roughly into three steps,
and our experimental results in Sect. 5 show that the key point of our attack is
whether a first step of our attack succeeds or not.

The lattice obtained in the first step of our attack has low rank, (e.g.,
3-rank in many cases), and thus finding a target vector in the lattice seems
to be performed by basis reduction such as the LLL algorithm [19]. However, in
[12, Sect. 4.3], we show an example that the usual LLL algorithm fails in finding
the target vector in the first step. Our heuristic analysis on the failure of the
example is as follows: the target vector is not necessarily shortest in the lattice
of low rank but only some entries are relatively small, i.e., the target vector is a
relatively short vector with entries of unbalanced sizes.

In order to deal with such situations, we apply the weighted LLL algorithm,
which is the LLL algorithm with respect to a special norm called weighted norm
for some weight, to our attack. We find heuristically a new weighted norm so
that the target vector becomes (nearly) shortest in some lattice of low rank with
respect to this new norm (see Sect. 2 for weighted norms). Note that using other
well-known norms in the LLL algorithm does not seem to be effective in finding
the target vector (see [12, Sect. 4.3]). Our method can be also viewed as changing
the scale of a lattice to carefully control the entries of a LLL reduced basis of
the lattice. Such a method has been used in Coppersmith’s method [9] (see also
[16, Chap. 19]) and in [14]. In particular, we consider 2-power integers to define
weighted norms and to use the knowledge of the bit length of entries of our
target vector, such as [14] (it is possible to know the bit length of entries of our
target vector, and this point is the second weakness of DEC).

Our experimental results in Sect. 5 show that one can find correct vectors in
the first step with probability being about from 70 to 90 % for the recommended
parameters in Sect. 3 via the weighted LLL algorithm. Moreover, experimental
results also show that one can break the one-wayness of DEC with probability
being about from 20 to 40 %. From this and complexity analysis on our attack
(see [12, Sect. 5]), we infer that our attack can break DEC with sufficiently high
probability in polynomial time for all practical parameters.

Notation. For a finite subset Λ of Z
n and a polynomial f(x1, . . . , xn) = f (x) =∑

i∈Λ fix
i ∈ Z[x] (xi := xi1

1 · · · xin
n for i := (i1, . . . , in)), we set Λf := {i ∈ Λ |

fi �= 0}. We denote by wf the total degree of f . For i ∈ Λf , we write ci(f) as the
coefficient of the monomial xi in f . We set H(f) := maxi∈Λf

|ci(f)|. We define

f :=
(
ci1

(f), . . . , ci�Λf
(f)

)
if we set Λf as {i1, . . . , i�Λf

}.

2 Description of Weighted LLL Reduction

In this section, we define weighted norms and weighted lattices, and give the
weighted LLL algorithm.

308 J. Ding et al.

2.1 Definition of Weighted Lattice

The formal definitions of weighted norms and weighted lattices are as follows:

Definition 1. For w = (w1, . . . , wm) ∈ (R>0)
m, we define the norm ‖ · ‖w on

R
m by ‖a‖w := ((a1w1)

2 + · · · + (amwm)2)1/2 (a = (a1, . . . , am) ∈ R
m). Then

we call it the weighted norm for w. We define a weighted lattice for w in R
m as

a lattice endowed with the weighted norm for w. For any lattice L ⊂ R
m and

w ∈ (R>0)m, we denote L by Lw if we consider L as a weighted lattice for w.

Let L ⊂ R
m be a lattice and w = (wi)1≤i≤m ∈ (R>0)

m a vector. We set W
as the diagonal matrix whose (i, i)-entry coincides with wi for each 1 ≤ i ≤ m.
We define the isomorphism fW : R

m → R
m by x �→ xW . Then for any x ∈ Lw,

x is a shortest vector in Lw if and only if xW is a shortest vector in fW (L) with
respect to the Euclidean norm. This means that we can find a shortest vector in
Lw if we find a shortest vector in fW (L) with respect to the Euclidean norm.

2.2 Weighted LLL Reduction

We here define a weighted LLL reduced basis and give an algorithm to find it.

Definition 2. Let L, W and fW be as in Sect. 2.1. We call an ordered basis
B = {b1, . . . ,bn} of the lattice L a weighted LLL reduced basis of L if
fW (B) = {b1W, . . . ,bnW} is an LLL reduced basis of fW (L) with respect
to the Euclidean norm.

Algorithm 1. Input: a vector w ∈ (R>0)m and a basis B = {b1, . . . ,bn} of a
lattice L ⊂ R

m.
Output: a weighted LLL reduced basis B′ = {b′

1, . . . ,b
′
n} of L.

(1) Compute the basis {b1W, . . . ,bnW} of fW (L) (W and fW are as above).
(2) Compute an LLL reduced basis Bw = {bw

1 , . . . ,bw
n } of fW (L) with respect

to the Euclidean norm by using {b1W, . . . ,bnW}.
(3) Compute b

′
i := bw

i W−1 (1 ≤ i ≤ n), and return B′ = {b′
1, . . . ,b

′
n}.

In our cryptanalysis (Sect. 4), the most important vector is not necessarily a
shortest vector in a lattice of low rank but only some entries are relatively small.
In order to find such a vector, we use the weighted LLL algorithm which can
carefully control the entries of a weighted LLL reduced basis.

3 Overview of DEC

In this section, we give a brief review of DEC (see [23, Sect. 3] for details). DEC
has been expected to be one of candidates of post-quantum cryptosystems which
has public keys of small sizes, e.g., about 1,200 bits (see [12, Remark 3.5.1(3)])
with 128 bit security. Note that 1,200 bits is about 10 times smaller than sizes
of public keys of efficient candidates of PQC [21,22,25].

Cryptanalysis of a Public Key Cryptosystem 309

3.1 Polynomials of Degree Increasing Type

Polynomials of degree increasing type which play a central role in DEC.

Definition 3. A polynomial X (x) ∈ Z[x] � {0} is of degree increasing type if a
map ΛX → Z≥0 ; (i1, . . . , in) �→ ∑n

k=1 ik is injective.

Let X (x) be a polynomial in Z[x]�{0}. If X is of degree increasing type, then
ΛX is a totally ordered set by the following order 	: for two elements (i1, . . . , in)
and (j1, . . . , jn) in ΛX , we have (i1, . . . , in) 	 (j1, . . . , jn) if i1 + · · · + in >
j1 + · · · + jn. Throughout this paper, for a polynomial X of degree increasing
type, we endow ΛX with the total order described above.

Now, we describe only the Key Generation and the Encryption processes of
DEC according to [23] since only these two processes are needed to describe our
attack (for the decryption, see [23, Sect. 3.4]). Note that although in [23] the
security parameter is not suggested, here let us set the security parameter λ.

3.2 Key Generation

Secret Key : A vector a := (a1, . . . , an) ∈ Z
n.

Public Key : (1) An integer d with gcd (ai, d) = 1 for all i.
(2) An integer e with gcd (e, ϕ (d)) = 1, where ϕ is the Euler function.
(3) An irreducible polynomial X ∈ Z[x] of degree increasing type with

X (a1/d, . . . , an/d) = 0 and �ΛX ≤ wX .

For a choice of X and sizes of ai, e, d and N (1 ≤ i ≤ n), see [12, Sect. 3.5].

3.3 Encryption

Plaintext : A polynomial m ∈ Z[x1, . . . , xn] with Λm = ΛX , 1 < ci1,...,in
(m) < d

and gcd (ci1,...,in
(m) , d) = 1 for all (i1, . . . , in) ∈ Λm.

Encryption Process:

(1) Choose a random integer N ∈ Z>0 uniformly such that Nd > 2λH (X). For
an upper bound of N , see [12, Sect. 3.5].

(2) Construct the twisted plaintext m̃ (x) ∈ Z[x] by putting Λm̃ := Λm and
ci (m̃) :=ci (m)e (mod Nd) (0 < ci (m̃) < Nd, i ∈ Λm̃).

(3) Choose a random f (x) ∈ Z[x] uniformly such that Λf = ΛX and H (m̃) <
ck (f) < Nd and gcd

(
ck (f) , d

)
= 1, where k is the maximal element in Λf .

(4) Choose random polynomials sj (x) , rj (x) ∈ Z[x] uniformly with ΛX = Λsj
=

Λrj
for 1 ≤ j ≤ 3 so that

∣
∣ci(sj)

∣
∣ and

∣
∣ci(rj)

∣
∣ have the same bit length as∣

∣ci(X)
∣
∣ and

∣
∣ci(f)

∣
∣ for each i ∈ ΛX , respectively.

(5) Put cipher polynomials F1 (x), F2 (x) and F3 (x) as follows:

Fj (x) := m̃ (x) + sj (x) f (x) + rj (x) X (x) (1 ≤ j ≤ 3) .

Finally, send (F1 (x) , F2 (x) , F3 (x) , N).

310 J. Ding et al.

4 Attack Against DEC via Weighted LLL Reduction

In this section, we present an attack against DEC. Main ideas of our attack are
the following: (1) Reduce the one-wayness of DEC to finding some appropriate
vectors by linearization technique. (2) Find the most important vector for our
attack by Algorithm 1 described in Sect. 2.2.

4.1 Algorithm of Our Attack

In this subsection, we write down an algorithm of our attack against DEC (see
[12, Sect. 4, Sect. 5] for a more detailed description and complexity analysis of
our algorithm below).

Recall from Sects. 3.2 and 3.3 that a public key and a ciphertext are
(d, e,X) ∈ Z

2 × (Z[x]) and (F1, F2, F3, N) ∈ (Z[x])3 × Z, respectively. Let
m ∈ Z[x] be a plaintext. Note that Fj = m̃ + sjf + rjX for 1 ≤ j ≤ 3, where m̃,
f , sj and rj are the twisted plaintext and random polynomials chosen uniformly
according to Sect. 3.3, respectively. We fix ΛX = {i1, . . . , iq} with i1 	 · · · 	 iq,
where the total order 	 on ΛX is given in Sect. 3.1. Let k be the maximal ele-
ment in ΛX . Note that it is sufficient for recovering the plaintext m to recover
m̃, and that ΛX = Λm = Λm̃ = Λf = Λsj

= Λrj
for 1 ≤ j ≤ 3. This condition

allows us to assume ΛF1 = ΛF2 = ΛF3 . The algorithm of our attack is as follows:

Algorithm 2. Input: a public key (d, e,X) and a ciphertext (F1, F2, F3, N).
Output: a twisted plaintext m̃.

Step 1: Determination of s′
j := sj − sj+1 for j = 1 and 2

Step 1-1: Put F ′
j := Fj−Fj+1, r′

j := rj−rj+1 and g := s′
2r

′
1−s′

1r
′
2 for j = 1

and 2. Solve the linear system obtained by comparing the coefficients of
the equality s′

2F
′
1 −s′

1F
′
2 = gX. Let L′

1 be the nullspace and {u′
1,u

′
2,u

′
3}1

a lattice basis of L′
1.

Step 1-2: Let ui be the vector consisting of the 1-(2�ΛX)-th entries of
u′

i for 1 ≤ i ≤ 3. Let H(X) := max1≤j≤q|cij
(X)|, where cij

(X) is the
non-zero coefficient of X for each ij ∈ ΛX (see Sect. 3.1). Put w′

j =

2

⌊
log2

(
H(X)

cij
(X)

)⌋
for 1 ≤ j ≤ q. We then set w := (w′

1, . . . , w
′
q, w

′
1, . . . , w

′
q).

Execute Algorithm 1 for the weight w to the lattice L1 := 〈u1,u2,u3〉Z,
and then obtain s′

1 and s′
2.

Step 2: Fixing of a candidate of f
Step 2-1: Solve the linear system vB = b obtained by comparing the
coefficients of the equalities F ′

j = s′
jf + r′

jXfor j = 1and 2, where B is a
(3�ΛX × �ΛX2)-matrix. Let v0 be a solution of vB = b, L2 the nullspace
of L2 and {v1} a lattice basis of L2. Note that if gcd(X, s′

1) = 1, then the
rank of L2 is always equal to 1, see [12, Remark 4.1.4].

1 We may assume rank (L′
1) = rank (L3) = 3 (see [12, Remark 6.0.1]).

Cryptanalysis of a Public Key Cryptosystem 311

Step 2-2: Let v′
0 := v0 − �〈v0,v1〉/〈v1,v1〉
v1 be the other solution

of vB = b. Let v′′
0 be the vector consisting of the 1-(�ΛX)-th entries

of v′
0. Construct f ′ ∈ Z[x] so that f ′ = v′′

0 , where recall that f ′ :=
(ci1

(f), . . . , ciq
(f)). Experimentally v′

0 provides the polynomial closer to
the correct f than v0 in many cases.

Step 3: Recovery of m̃
Step 3-1: Solve the linear system wC = c obtained by comparing the
coefficients of the equality F1 = m̃ + s1f

′ + r1X, where C is a (3�ΛX ×
�ΛX2)-matrix. Let w0 be a solution of wC = c, L3 the nullspace of C and
{w1,w2,w3}6 a lattice basis of L3, where we take w3 so that its 1-�ΛX -th
entries are equal to 0, see [12, Remark 4.1.4].
Step 3-2: Execute Babai’s nearest plane algorithm [5] to find a closest
vector z in the lattice L′

3 := 〈w1,w2〉Z to w0 +w3 (see [12, Remark 4.1.7]
for the reason of using Babai’s nearest plane algorithm). Obtain s1 as the
vector consisting of the (�ΛX + 1)-2�ΛX -th entries of w0 + w3 − z.
Step 3-3: Solve the linear system xH = h obtained by comparing the
coefficients of the equality F1 − m̃ − s1f

′ = rX, where the coefficients of
m̃ and r are variables and H is a (2�ΛX×�ΛX2)-matrix. Let x be a solution
of xH = h. Let r′ be the vector consisting of the entries corresponding to
r of x. Then we obtain a polynomial r′ whose coefficients coincide with
those of r except the constant part, i.e., r = r′ + t for some t ∈ Z. We can
compute t by using modular arithmetic and the fact that the coefficient
ck of X is divisible by d. Finally output m̃.

Remark 1. It may be effective to use Babai’s nearest plane algorithm with
respect to a weighted norm and to search a desired vector s1 by adding some vec-
tors in L′

3. However, we will see in Sect. 5, our attack can break the one-wayness
of DEC with sufficiently high probability. Thus we omit these processes.

5 Experimental Results on Our Attack

We show some pieces of experimental results2 on our attack described in Sect. 4
against DEC for n = 4, i.e., the number of variables of a public key X is is
equal to 4 (see [12, Table 1] for complete experimental results). We conducted
experiments for parameters recommended in [12, Remark 3.5.1] which can let
the DEC have 128 bit security.

Experimental Procedure
Given parameters wX and �ΛX , we repeat the following procedure 100 times:

1. Make a secret key and a public key (see Sect. 3.2).
2. Using the public key constructed above, make a ciphertext (see Sect. 3.3).
3. Execute Algorithm 2 for the above public key and the ciphertext.

2 We use a standard note PC with 2.60 GHz CPU (Intel Corei5), 16 GB memory and
Mac OS X 64 bit. We implemented the attack in Magma V2.21-3 [8].

312 J. Ding et al.

In the second step above, we construct a public key X such that 299 ≤
|ci (X) | < 2100 for all i ∈ ΛX � {k, 0}, where k is the maximal element in ΛX

with respect to the order described in Sect. 3.1. In order to show the effect of the
weighted LLL algorithm on our cryptanalysis, we also execute another version
of Algorithm 2. (The other version of Algorithm 2 here means that the usual
LLL algorithm is adopted in Step 1-2 of Algorithm 2 instead of the weighted
LLL algorithm.) We count the number of successes and time if m̃ or −m̃ are
recovered.

Table 1 shows our experimental results. In Step 1 of Table 1, we show the
number of successes only if we succeed in recovering the target vector (s′

1, s
′
2) or

− (s′
1, s

′
2) (see Step 1 of Algorithm 2 in Sect. 4.1). In Step 3 of Table 1, we show

the number of successes only if a twisted plaintext m̃ or −m̃ is recovered.
From Step 1 in Table 1, we see that the weighted LLL algorithm found the

target vector in Step 1 with probability being about from 70 to 90%, while
the usual LLL algorithm could not find the target vector at all. From Step 3 in
Table 1, we see that our attack with the weighted LLL algorithm could recover m̃
or −m̃ with probability being about from 20 to 40%, while another attack with
the usual LLL algorithm could not recover m̃ or −m̃ at all. Thus we consider that
using the weighted LLL algorithm plays a central role of our attack, and that
the success probability of Step 3, that is the success probability of our attack,
with the weighted LLL algorithm is sufficiently high for practical cryptanalysis.

Table 1. Experimental results on Algorithm 2 in Sect. 4.1 against DEC with four
variables of 128 bit security. We did experiments according to Experimental Proce-
dure described in the beginning of Sect. 5. “Ave. Time” means the average of time for
performing our attack. (We show the timing data in successful cases.)

Recommended parameters for DEC ([12,

Remark 3.5.1])

Experimental results

Total degree Number of The maximum Number of successes of Attack Algorithm / 100

of a public monomials sizes of the Method for lattice reduction in Step 1

key X of X coefficients of Usual LLL Weighted LLL

X except its Step 1 Step 3 Ave. Time Step 1 Step 3 Ave. Time

constant and

maximal terms

10 3 100 0 0 - 75 29 0.02s

10 4 100 0 0 - 78 26 0.03s

10 5 100 0 0 - 80 36 0.04s

10 6 100 0 0 - 83 31 0.07s

10 7 100 0 0 - 82 34 0.08s

10 8 100 0 0 - 95 40 0.11s

10 9 100 0 0 - 87 36 0.20s

10 10 100 0 0 - 91 38 0.27s

From the viewpoint of the efficiency of the key generation, encryption and
decryption of DEC, the parameters in Table 1 are practical (see also Tables 4, 5

Cryptanalysis of a Public Key Cryptosystem 313

and 6 in Sect. 6 of [23]). These experimental results suggest that our attack with
the weighted LLL algorithm can break the one-wayness of DEC efficiently for
practical parameters with sufficiently high probability.

6 Conclusion

In this paper, we proposed an attack against the one-wayness of the public key
cryptosystem based on Diophantine equations of degree increasing type (DEC).
It is showed in this paper that the one-wayness of DEC can be transformed to
the problem of finding certain relatively shorter vectors in lattices of low ranks
obtained by linearization techniques. Our most important target vector is not
necessarily shortest in a lattice of low rank but only some entries are relatively
small. The usual LLL algorithm with respect to well-known norms does not seem
to work well for finding such vectors in our attack.

The most technical point of our attack is to change the norm in the LLL
algorithm from the Euclidean norm to a weighted norm which is not widely used
in cryptography yet. Our heuristic analysis suggests that the most important
target vector becomes a (nearly) shortest vector with respect to a weighted
norm for some weight chosen appropriately. Moreover, the most important target
vector is a vector in a lattice of 3-rank in many cases. Therefore, the weighted
LLL algorithm, which is the LLL algorithm with respect to the weighted norm, is
applied to our attack. From experimental results on our attack, we proved that by
choosing an appropriate weight, our attack with the weighted LLL algorithm can
break the one-wayness of DEC with sufficiently high probability for all practical
parameters under some assumptions.

Acknowledgements. The authors thank anonymous referees for careful reading our
manuscript and for giving helpful comments. The authors also thank Steven Galbraith,
Masaya Yasuda and Shun’ichi Yokoyama for helpful comments. This work was sup-
ported by CREST, JST.

References

1. Akiyama, K., Goto, Y.: An algebraic surface public-key cryptosystem. IEICE Tech.
Rep. 104(421), 13–20 (2004)

2. Akiyama, K., Goto, Y.: A public-key cryptosystem using algebraic surfaces. In:
Proceedings of PQCrypto, pp. 119–138 (2006). http://postquantum.cr.yp.to/

3. Akiyama, K., Goto, Y.: An improvement of the algebraic surface public-key cryp-
tosystem. In: Proceedings of 2008 Symposium on Cryptography and Information
Security, SCIS 2008, CD-ROM, 1F1-2 (2008)

4. Akiyama, K., Goto, Y., Miyake, H.: An algebraic surface cryptosystem. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 425–442. Springer, Heidelberg
(2009)

5. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). (Preliminary version in STACS 1985)

http://postquantum.cr.yp.to/

314 J. Ding et al.

6. Bérczes, A., Hajdu, L., Hirata-Kohno, N., Kovács, T., Pethö, A.: A key exchange
protocol based on Diophantine equations and S-integers. JSIAM Lett. 6, 85–88
(2014)

7. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbol. Comput. 24(3–4), 235–265 (1997)

9. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997). Springer

10. Cusick, T.W.: Cryptoanalysis of a public key system based on Diophantine equa-
tions. Inf. Process. Lett. 56(2), 73–75 (1995)

11. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
Advances in Information Security, vol. 25. Springer, US (2006)

12. Ding, J., Kudo, M., Okumura, S., Takagi, T., Tao, C.: Cryptanalysis of a public
key cryptosystem based on Diophantine equations via weighted LLL reduction,
IACR Cryptology ePrint Archive, 2015/1229 (2015)

13. Davis, M., Matijasevič, Y., Robinson, J.: Hilbert’s tenth problem, Diophantine
equations: positive aspects of a negative solution. In: Mathematical Developments
Arising from Hilbert Problems, pp. 323–378. American Mathematical Society,
Providence (1976)

14. Faugère, J.-C., Goyet, C., Renault, G.: Attacking (EC)DSA given only an implicit
hint. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 252–274.
Springer, Heidelberg (2013)

15. Faugère, J.-C., Spaenlehauer, P.-J.: Algebraic cryptanalysis of the PKC’2009 alge-
braic surface cryptosystem. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 35–52. Springer, Heidelberg (2010)

16. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

17. Hirata-Kohno, N., Pethö, A.: On a key exchange protocol based on Diophantine
equations. Infocommun. J. 5(3), 17–21 (2013). Scientific Association for Infocom-
munications (HTE)

18. Iwami, M.: A reduction attack on algebraic surface public-key cryptosystems. In:
Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 323–332. Springer,
Heidelberg (2008)

19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982). Springer

20. Lin, C.H., Chang, C.C., Lee, R.C.T.: A new public-key cipher system based upon
the diophantine equations. IEEE Trans. Comput. 44(1), 13–19 (1995). IEEE Com-
puter Society Washington, DC, USA

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

22. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: Proceedings of
the IEEE International Symposium on Information Theory (2013)

23. Okumura, S.: A public key cryptosystem based on diophantine equations of degree
increasing type. Pac. J. Math. Ind. 7(4), 33–45 (2015). Springer, Heidelberg

24. Pheidas, T.: Hilbert’s Tenth Problem for fields of rational functions over finite
fields. Inventiones Math. 103(1), 1–8 (1991). Springer

Cryptanalysis of a Public Key Cryptosystem 315

25. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer,
Heidelberg (2013)

26. Uchiyama, S., Tokunaga, H.: On the security of the algebraic surface public-key
cryptosystems (in Japanese). In: Proceedings of 2007 Symposium on Cryptography
and Information Security, SCIS 2007, CD-ROM, 2C1-2 (2007)

27. Videla, C.R.: Hilbert’s Tenth Problem for rational function fields in characteristic
2. Proc. Am. Math. Soc. 120(1), 249–253 (1994). American Mathematical Society

28. Voloch, F.: Breaking the Akiyama-Goto cryptosystem. In: Contemporary Math-
ematics, Arithmetic, Geometry, Cryptography and Coding Theory, vol. 487, pp.
113–118. American Mathematical Society, Providence (2007)

29. Yosh, H.: The key exchange cryptosystem used with higher order Diophantine
equations. Int. J. Netw. Secur. Appl. J. 3(2), 43–50 (2011)

	Cryptanalysis of a Public Key Cryptosystem Based on Diophantine Equations via Weighted LLL Reduction (Short Paper)
	1 Introduction
	2 Description of Weighted LLL Reduction
	2.1 Definition of Weighted Lattice
	2.2 Weighted LLL Reduction

	3 Overview of DEC
	3.1 Polynomials of Degree Increasing Type
	3.2 Key Generation
	3.3 Encryption

	4 Attack Against DEC via Weighted LLL Reduction
	4.1 Algorithm of Our Attack

	5 Experimental Results on Our Attack
	6 Conclusion
	References

