
1

Leakage of Signal function with reused keys in
RLWE key exchange

Jintai Ding∗, Saed Alsayigh∗, Saraswathy RV∗, Scott Fluhrer† and Xiaodong Lin‡
∗

University of Cincinnati, Ohio, USA
†Cisco Systems, USA

‡Rutgers University, USA

Abstract—In this paper, we show that the signal function used
in Ring-Learning with Errors (RLWE) key exchange could leak
information to find the secret s of a reused public key p = as+2e.
This work is motivated by an attack proposed in [1] and gives
an insight into how public keys reused for long term in RLWE
key exchange protocols can be exploited. This work specifically
focuses on the attack on the KE protocol in [2] by initiating
multiple sessions with the honest party and analyze the output
of the signal function. Experiments have confirmed the success
of our attack in recovering the secret.

Index Terms—RLWE, key exchange, post quantum, key reuse,
active attacks.

I. INTRODUCTION

Key exchange is an integral part of cryptography. It

is required for establishing secure keys for encryption of

data between two parties. The breakthrough idea of Diffie-

Hellman in [3] provided an algorithm for secure key ex-

change and has been used since then in many applications

of cryptography. There are also other variants of DH that

have been proposed and used over the years including Elliptic

curve DH. The necessity to look for an alternative to DH is

mainly for security with the existence of quantum computers.

With Shor’s algorithm [4], the discrete log problem (the

hardness of which the security of currently used key exchange

protocols are based on) can be solved in polynomial time with

the help of a quantum computer compromising the security

of the protocols. Recently, NSA has announced plans to

transition to quantum resistant cryptographic primitives for

its Suite B cryptographic algorithms. One of the potential

candidates for post quantum key exchange includes the key

exchange from RLWE proposed in [2] and an authenticated

version in [5]. Other follow up work on RLWE based key

exchange protocols include [6], [7], [8] and [9], which follow

the same approach as in [2] with minor modifications. The

implementation of [8] uses the centered binomial gaussian for

the error terms of the RLWE samples and achieve significant

performance improvements and has recently been chosen as

a candidate for integration in google chrome canary browser

for their post quantum experiment[10].In an RLWE key

exchange between two parties, the key computation yields

approximately equal values. To derive a shared key using the

approximately equal key computation, the responder sends

a signal to the initiator indicating the region in which the

approximately equal value lies. Using this information, both

the parties agree on a shared key. The concern addressed in

this work is the ability of an active adversary to perform

an attack on the RLWE based key exchange protocols using

this signal function to recover the corresponding secret of a

reused public key. The signal function and key exchange are

reviewed in section IV.

A. Previous Work

An attack on RLWE key exchange for reused public keys

was described by Fluhrer in [1]. The idea of the attack is to

deviate from the protocol in creating the adversary’s public

key and extract information about the secret of the other party.

The attack relies on finding sA in an adversary’s public key of

pA = jasA+keA, (where k, j are integers) such that asAs[0] =
±1 and once such an sA is found, the attack aims to find the

secret s of the reused key p = as + 2e of the honest party

by fixing k = asAs[0] and looking for signal variations when

changing j. The signal function region is slightly modified

and even though the approach is in the right direction, this

does not work in the case of the key exchange [2] discussed

in this paper. There is also an attack [11] using the CRT

(Chinese Remainder Theorem) basis of Rq on the one pass

case of the HMQV key exchange protocol from RLWE. This

attack recovers every CRT coefficient of the secret s of a key

p = as + 2e in order to recover s. The complexity of the

attack is claimed to be n.q. q−1
2n .

B. Our Contributions

We exploit the leakage of the signal function to present

an attack on RLWE based key exchange that finds the exact

value of the secret s corresponding to a reused RLWE key

of p = as + 2e. This work follows the idea in [1] but uses

a different approach to using the signal function to complete

the attack. We provide a detailed description on how such

an attack is performed by analyzing the number of signal

changes of each of the coefficients of pAs + 2g where pA =
asA + keA with sA, eA chosen specifically by the adversary

to extract the value of s, and g is sampled from the error

distribution. The choice of sA, eA is explained in section IV.

We also describe how to refine the queries further to

eliminate the ambiguity of the ± sign of the coefficients

and recover the exact values. Experiments have verified our

estimation for the number of signal changes for different

values of the coefficient of s. The goal of the work is to

show that RLWE keys when reused in key exchange can be

IEEE ICC 2017 Communication and Information Systems Security Symposium

978-1-4673-8999-0/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: Tsinghua University. Downloaded on July 15,2022 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.

2

exploited and broken. The success of such attacks comes from

the hardness of distinguishing RLWE samples from uniform.

II. PRELIMINARIES

A. Learning with Errors and RLWE

The Learning with Errors (LWE) problem is a general-

ization of the parity-learning problem introduced by Oded

Regev in 2005 [12]. Regev also showed a quantum reduction

from solving LWE in the average case to solving worst

case Lattice problems such as the Shortest Vector Problem

(SVP) and the Shortest Independent Vectors Problem (SIVP).

In 2009, Peikert showed a classical reduction from variants

of the shortest vector problem to corresponding versions of

LWE[13]. The LWE problem is parametrized by a modulus

q, dimension n and an error distribution χ on Zq . Then, the

decision version of the LWE problem is to distinguish the

following two distributions: (a, a.s + e) and (a, b), where a,

s, b ∈ Znq are sampled uniformly at random and e ← χ from

the error distribution. The search version is to find s given

poly(n) number of samples (ai, ai .s+ e). Ring Learning with

Errors (RLWE) is the version of LWE using polynomial rings

and is preferred over LWE due to its efficiency and potential

for practical implementations. The hardness of RLWE is also

established by reductions to solving hard problems in ideal

lattices. We provide the definition of the Discrete Gaussian

distribution (error distribution) here:

Definition 1. [5] For any positive real α ∈ R, and vectors
c ∈ Rn, the continuous Gaussian distribution over Rn with
standard deviation centered at v is defined by the probability
function ρα,c(x) = (1√

2πα2
)nexp(−‖x−c ‖2

2α2). For integer vectors
c ∈ Rn, let ρα,c(x) = ∑

x∈Zn ρα,c(x). Then, we define the dis-
crete Gaussian distribution over Zn as DZn,α,c(x) = ρα,c (x)

ρα,c (Zn)
, where x ∈ Zn. The subscripts s and c are taken to be 1 and
0 (respectively) when omitted.

Let n be an integer and a power of 2. Define f (x) = xn+1
and consider the ring R � Z[x]/〈 f (x)〉. For any positive

integer q, we define the ring Rq = Zq[x]/〈 f (x)〉 analo-

gously, where the ring of polynomials over Z (respectively

Zq = Z/qZ) we denote by Z[x] (respectively Zq[x]). Let

χα denote the Discrete Gaussian distribution on Rq with

parameter α. For any polynomial p ∈ R (or Rq), let the norm

‖p‖ be defined as the norm of the corresponding coefficient

vector in Z (or Zq). Let p[i] denote the i-th coefficient of p,

equivalently i-th index in the coefficient vector of p. Below

are two lemmas that help ensure the correctness of the key

exchange protocol.

Lemma 1 ([5]). Let f (x) and R be defined as above. Then,
for any s, t ∈ R, we have ‖s · t‖ ≤ √n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤
n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([14, 15]). For any real number α = ω(√log n),
we have Pr�x←χα [‖ �x‖ > α

√
n] ≤ 2−n+1.

Let s ← Rq be a uniformly chosen element of the ring Rq ,

as defined above. We define As,χα to be the distribution of

the pair (a, as + e) ∈ Rq × Rq , where a ← Rq is uniformly

chosen and e ← χα is independent of a.

Definition 2 (Ring-LWE Assumption[16]). Let Rq, χα be
defined as above, and let s ← Rq be uniformly chosen. The
(special case) ring-LWE assumption RLWEq,α states that it
is hard for any PPT algorithm to distinguish As,χα from the
uniform distribution on Rq×Rq with only polynomial samples.

The search version of RLWE is for a PPT algorithm to

find s rather than distinguish the two distributions. For

certain parameter choices, the two forms are polynomially

equivalent [16]. The normal form [17, 18] of the RLWE

problem is by modifying the above definition by choosing s
from the error distribution χα rather than uniformly. It has

been proven that the ring-LWE assumption still holds even

with this variant [16, 19].

Proposition 3 ([16]). Let n be a power of 2, let α be a
real number in (0, 1), and q a prime such that q mod 2n = 1
and αq > ω(√log n). Define R = Z[x]/〈xn + 1〉 as above.
Then there exists a polynomial time quantum reduction from
Õ(√n/α)-SIVP (Short Independent Vectors Problem) in the
worst case to average-case RLWEq,β with � samples, where
β = αq · (n�/log(n�))1/4.

III. TRANSPORT LAYER SECURITY (TLS)

An important application of key exchange protocols is in

the Transport Layer Security (TLS) which is used to secure

http traffic in https websites and SSH (Secure Shell). The

Transport Layer security and SSL (Secure Sockets Layer,

predecessor of TLS) are cryptographic protocols in the ap-

plication layer of TCP/IP reference model and presentation

layer in the OSI model to provide security in a commu-

nication network. The objective of the TLS protocol is to

ensure privacy and data integrity between communicating

applications. The protocol consists of 2 layers - TLS record

protocol and the other layer being protocols that are designed

to establish a secure connection (Handshake Protocol and

the Alert Protocol). The handshake protocol is run before

any application data is transmitted and enables the client and

server to establish the algorithm and shared key for encrypted

communication.

The TLS 1.3 draft [20] includes support to a 0-RTT

mode in which the server maintains a long term public key

which is sent through a ServerConfiguration message

to the client. The client can use this static key to secure

communication of application data in future connections. This

is the motivation behind an attack on RLWE key exchange

for reused public keys, although this has been changed in

the later draft 13 of TLS 1.3 [21]. The draft 13 of TLS 1.3

proposes to use a PSK(preshared key) identity that is sent to

the client on the initial handshake to be used for encrypting

early data on future handshakes.

IV. THE ATTACK

Before describing the attack on an RLWE based key

exchange, we briefly recall the simple key exchange protocol

in [2]. Let the notations be as defined in section II.

IEEE ICC 2017 Communication and Information Systems Security Symposium

Authorized licensed use limited to: Tsinghua University. Downloaded on July 15,2022 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.

3

A. Signal function (Reconciliation)

We define the Signal function used in the key ex-

change protocol discussed in this work (refer [5]). Given

Zq = {− q−1
2 , . . . ,

q−1
2 } and the middle subset E �

{−� q4
, . . . , � q4 �}, we define Sig as the characteristic function

of the compliment of E: Sig(v) = 0 if v ∈ E and 1 otherwise.

Another important function used for deriving the final

shared key in the key exchange is defined as follows,

Mod2 : Zq × {0, 1} → {0, 1}:

Mod2(v,w) = (v + w · q − 1
2

) mod q mod 2.

Then the key exchange protocol is as described below:

Init: Party A chooses a uniformly random from

Rq and a secret sA ← χα and computes

pA = asA + 2eA, where eA ← χα. Party A then

sends pA to party B.

Response:On receiving pA, party B chooses a secret

element sB and eB ← χα. Party B then

computes pB = asB +2eB, kB = pAsB +2gA and

wB = Sig(kB), sends pB,wB. party B obtains a

shared key skB = Mod2(kB,wB).

Finish: On receiving pB,wB from party B, party A
computes kA = sApB + 2gA, where gA ← χα
and obtains the shared key skA = Mod2(kA,wB).

B. Simplified Attack

Suppose that A is an active adversary with the knowledge

of pB and with the ability to initiate any number of key

exchange sessions with party B to query for recovering the

secret sB. In performing the attack, an adversary plays the

role of party A in the protocol and initiates key exchange

sessions with party B. A creates pA by deviating from the

protocol; we denote the deviated public key of the adversary

as pA and the corresponding secret and error terms of the

adversary as sA and eA respectively.

First, we describe a simplified version of the attack when

the error terms gA, gB are not added to the key computation of

kA, kB of parties A and B respectively.The adversary chooses

secret sA to be 0 and eA to be the identity element 1 in

Rq ,and computes pA = asA + keA = keA , k takes values in

Zq . This results in the key computation of B to be kB = ksB.

Hence the signal wB sent by the party B for each coefficient

is the signal of each coefficient of sB and leaks its value.

Simulating party B’s response: We build an oracle S that

simulates party B’s action in the protocol on receiving a given

input public key. We assume that pB is fixed for party B and

S has access to the secret sB. On receiving pA from A, S
computes kB = pAsB according to the protocol. Then, S
computes the signal wB = Sig(kB) and outputs wB.

Then, the attack is executed as follows:

Step 1: The Adversary A invokes the oracle S with input

pA = keA for eA = 1 in Rq . Here, k takes values

from 0 to q − 1. As we change k value from 0 to

q − 1, A can make a correct guess of the value

of sB[i] based on the number of times the signal

wB[i] changes, for each coefficient i of sB. As k
takes values from 0 to q − 1, the value of kB[i]
changes in k multiples of sB[i] (refer figure 2) and

there are changes in the signal value when ksB[i]
is near the boundary values of the signal region

E defined in section IV-A. Hence, there will be

exactly 2sB[i] number of changes in signal for any

i-th coefficient of sB. For example, wB[0] remains

the same if sB[0] is 0 for different k, changes

twice if sB[0] is 1 and so on. But the adversary

can only guess the value upto the ± sign, since a

value of 1 or −1 gives the same number of signal

changes. This is because for a value of −sB[i],
the value of kB[i] still changes in k multiples of

sB[i] but in the reverse direction.

We query party B again to resolve the ambiguity of the sign

in the sB coefficients and determine the exact value of sB.

Suppose that the adversary A has performed the above steps

and has determined the value of each coefficient of sB upto

sign.

Step 2: A invokes the oracle S to query with input

(1 + x)pA . By doing this, A is able to see the

signal function value of pA((1 + x)sB) that is

output by S. Thus, again by checking the number

of signal changes, A can now find the values of

the coefficients of (1 + x)sB, which are sB[0] −
sB[n − 1], sB[1] + sB[2], . . . , sB[n − 2] + sB[n − 1]
upto ± sign.

So, with the additional information about these coefficients,

we can determine if each pair of coefficients sB[i], sB[j] have

equal or opposite sign, hence narrowing down to only two

possibilities of sB and −sB.

Step 3: Consider the pair of coefficients sB[0], sB[n − 1],
then by recovering the value of sB[0] − sB[n −
1] upto ± sign in Step 2, and already knowing

sB[0], sB[n − 1] values upto sign from Step 1, A
determines if sB[0] and sB[n − 1] have the same

or opposite sign.

Step 4: Repeat Step 3 for every pair of coefficients

sB[i], sB[j], i from 0 to n − 2, j from 1 to n − 1
with the value of sB[i] + sB[j] upto ± sign from

Step 2 to determine if they have equal or opposite

signs.

Once the adversary reaches this stage, he only has to guess

the sign of sB[0] and the rest of the coefficients follow since

we have determined if every pair of coefficients sB[i], sB[j]
have equal or opposite signs.

Step 5: Since a and pB are public, A computes pB − asB
and verifies the distribution of the result. If A
correctly guesses the sign of sB[0] and hence all

the coefficients, then the resulting distribution of

pB−asB is the distribution of eB, which is discrete

gaussian. Otherwise, A knows that the guess for

the sign of sB[0] is incorrect and can flip the sign

to obtain the correct sB value.

Thus, the adversary is able to determine the exact value

of sB without any ambiguity at the end of the execution by

IEEE ICC 2017 Communication and Information Systems Security Symposium

Authorized licensed use limited to: Tsinghua University. Downloaded on July 15,2022 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.

4

Party A Party B

Sample sA, eA ← χα
Secret Key: sA ∈ Rq

Public Key: a, pA = asA + 2eA ∈ Rq

Sample sB, eB ← χα
Secret Key: sB ∈ Rq

Public Key: a, pB = asB + 2eB ∈ Rq

Sample gB ← χα
Set kB = pAsB + 2gB
Find wB = Sig(kB) ∈ {0, 1}n

Sample gA ← χα
Set kA = pBsA + 2gA

Find skA = Mod2(kA,wB) ∈ {0, 1}n Find skB = Mod2(kB,wB) ∈ {0, 1}n

pA

pB,wB

Fig. 1: KE Protocol from [2]

querying party B when B re-uses the same key for every

query. The success of the attack also shows the significance

of the role of the signal function in the key exchange protocol.

C. Extension of the Attack

In this section, we describe how to extend the attack in

section IV-B described to the actual protocol described in

figure 1 that includes addition of an error term gA, gB to the

key computation kA, kB of parties A and B respectively. The

choice of sA and eA remain the same as in section IV-B but

in this case, there is a difference in counting the number of

signal changes to identify the value of sB coefficients. This

is because of the fluctuations caused by the addition of gB
by party B in the computation of kB.

Simulating party B’s response: We build an oracle S that

simulates party B’s action in the protocol on receiving a

given input p. We assume that pB is fixed for party B and

S has access to the secret sB. On receiving pA from A,

S samples gB ← χα and computes kB = pAsB + 2gB
according to the protocol. Then, S computes the signal

wB = Sig(kB) and outputs wB.

Effect of gB on the signal changes: In the previous

section, it is easy to see that as we loop k values in Zq , there

are changes in the signal exactly 2sB[i] times for any i-th
coefficient of sB. When the error term gB is added to kB,

there are some frequent changes, which we call fluctuations

in the signal value at the boundary values of set E . This

is because the error term gB pulls the value of the key kB
back and forth when kB[i] is near the boundary, for each i.
This stabilizes as k becomes larger and kB[i] moves away

from the boundary to resist impact by gB[i]. In this case,

we ignore the fluctuations, not counting them as a signal

change. This is illustrated in section A with the example.

The attack works the same way when we use the random-

ized signal function in [2], which is used to remove any bias

in the shared key generated from kB, for odd q. This has also

been verified in our experiments.

D. Attack Improved

In the above attack, the public key of the attacker is only

k times the identity 1 in Rq . It is possible for party B to

defend against such an attack by verifying if the public key

it receives is a constant polynomial in Rq . To overcome this,

the adversary can sample sA from χα, choose eA to be 1 as

before and compute pA = asA + keA as his public key in the

RLWE form. Now, party B cannot distinguish the public key

of the attacker from uniform. The key computation of party

B in this case is kB = asAsB + ksB + 2gB. The value asAsB
is constant as we loop over k values. So, we are still looking

at the signal changes of sB[i] as we loop around k values 0
to q − 1. The difference is that in the case of the simplified

attack, when we start looping k values from 0, kB changes

in multiples of sB[i] starting with 0 while in this case, we

start with the constant value of asAsB[i] for each coefficient

i. The algorithm for the attack is the same as described in

section IV-B.

E. Adversary query complexity

From the above description of the attack, it is clear that the

adversary A needs q queries (varying k from 0 to q − 1) for

determining all the coefficients of the secret sB upto ± sign.

Again, by using q queries for the adversary’s public key of

(1 + x)pA , he can resolve the ambiguity of the sign of the

coefficients. Hence, the number of queries required for the

attack to find the exact value of the secret is 2q. Since q is

poly(n), we claim that the key is compromised in poly(n)
queries.

V. EXPERIMENTS

We have verified experimentally the number of signal

changes for the coefficients of sB is as mentioned above.

The execution was performed in C++ with NTL library using

an Windows 10 64 bit system equipped with a 2.40 GHz

Intel(R) Core(TM) i7-4700MQ CPU and 8 GB RAM. The

multiplication was performed without using any optimized

algorithms like FFT.

Also, since only keA changes for each query, we can fix

asA for the attack execution in the extended case, thus saving

on one multiplication for every query. For preliminary testing

purposes, we used parameter values of n = 1024, q = 214+1,

α = 3.197. This choice of parameters is close to the values

used in [8] implementation. The time taken for this choice of

parameters for running q queries to recover all the coefficients

upto sign is 3.8 hours, without optimization.

IEEE ICC 2017 Communication and Information Systems Security Symposium

Authorized licensed use limited to: Tsinghua University. Downloaded on July 15,2022 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.

5

VI. ACKNOWLEDGEMENT

Jintai Ding, Xiaodong Lin and Saraswathy RV would like

to thank NSF for its partial support.

VII. CONCLUSION

In this work, we have presented an attack on the RLWE

key exchange and run experiments to verify the correctness of

the attack in recovering the secret of a reused public key with

2q queries to the honest party. This is to show that when the

public key is fixed for a long term, the signal of the resulting

key leaks information about the secret and can be exploited by

an active adversary, whose public key is not created according

to the protocol. We believe that this attack can be adapted

even to [8] which also uses an unauthenticated version of key

exchange and a different reconciliation mechanism. It would

also be useful to analyze if such an attack can be extended

for authenticated version of RLWE key exchange.

REFERENCES

[1] S. Fluhrer, “Cryptanalysis of ring-lwe based key

exchange with key share reuse,” Cryptology

ePrint Archive, Report 2016/085, 2016,

http://eprint.iacr.org/2016/085.

[2] X. L. Jintai Ding, Xiang Xie, “A simple provably secure

key exchange scheme based on the learning with errors

problem,” Cryptology ePrint Archive, Report 2012/688,

2012, http://eprint.iacr.org/.

[3] W. Diffie and M. Hellman, “New directions in

cryptography,” IEEE Trans. Inf. Theor., vol. 22,

no. 6, pp. 644–654, Sep. 2006. [Online]. Available:

http://dx.doi.org/10.1109/TIT.1976.1055638

[4] P. W. Shor, “Polynomial-time algorithms for prime

factorization and discrete logarithms on a quantum

computer,” SIAM J. Comput., vol. 26, no. 5,

pp. 1484–1509, Oct. 1997. [Online]. Available:

http://dx.doi.org/10.1137/S0097539795293172

[5] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagde-

len, “Authenticated key exchange from ideal lattices,” in

Advances in Cryptology-EUROCRYPT 2015. Springer,

2015, pp. 719–751.

[6] C. Peikert, “Lattice cryptography for the internet,”

Cryptology ePrint Archive, Report 2014/070, 2014,

http://eprint.iacr.org/2014/070.

[7] J. W. Bos, C. Costello, M. Naehrig, and D. Ste-

bila, “Post-quantum key exchange for the tls pro-

tocol from the ring learning with errors problem,”

Cryptology ePrint Archive, Report 2014/599, 2014,

http://eprint.iacr.org/2014/599.

[8] E. Alkim, L. Ducas, T. Pppelmann, and P. Schwabe,

“Post-quantum key exchange - a new hope,” Cryp-

tology ePrint Archive, Report 2015/1092, 2015,

http://eprint.iacr.org/2015/1092.

[9] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama,

“Strongly secure authenticated key exchange from fac-

toring, codes, and lattices,” Cryptology ePrint Archive,

Report 2012/211, 2012, http://eprint.iacr.org/2012/211.

[10] “Experimenting with post-

quantum cryptography,” July 2016,

https://security.googleblog.com/2016/07/experimenting-

with-post-quantum.html.

[11] B. Gong and Y. Zhao, “Small field attack, and revisit-

ing rlwe-based authenticated key exchange from euro-

crypt’15,” Cryptology ePrint Archive, Report 2016/913,

2016, http://eprint.iacr.org/2016/913.

[12] O. Regev, “On lattices, learning with errors, random

linear codes, and cryptography,” in Proceedings of the
thirty-seventh annual ACM symposium on Theory of
computing, ser. STOC ’05. New York, NY, USA: ACM,

2005, pp. 84–93.

[13] C. Peikert, “Public-key cryptosystems from the worst-

case shortest vector problem: extended abstract,” in

Proceedings of the 41st annual ACM symposium on
Theory of computing, ser. STOC ’09. New York, NY,

USA: ACM, 2009, pp. 333–342.

[14] D. Micciancio and O. Regev, “Worst-case to average-

case reductions based on gaussian measures,” SIAM J.
Comput., vol. 37, pp. 267–302, April 2007.

[15] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trap-

doors for hard lattices and new cryptographic con-

structions,” in Proceedings of the 40th annual ACM
symposium on Theory of computing, ser. STOC ’08.

New York, NY, USA: ACM, 2008, pp. 197–206.

[16] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal

lattices and learning with errors over rings,” in Ad-
vances in Cryptology – EUROCRYPT 2010, ser. LNCS,

H. Gilbert, Ed. Springer Berlin / Heidelberg, 2010,

vol. 6110, pp. 1–23.

[17] Z. Brakerski and V. Vaikuntanathan, “Fully homomor-

phic encryption from ring-lwe and security for key

dependent messages,” in Advances in Cryptology –
CRYPTO 2011, ser. Lecture Notes in Computer Science,

P. Rogaway, Ed. Springer Berlin Heidelberg, 2011, vol.

6841, pp. 505–524.

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(lev-

eled) fully homomorphic encryption without bootstrap-

ping,” in Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference. ACM, 2012, pp.

309–325.

[19] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast

cryptographic primitives and circular-secure encryption

based on hard learning problems,” in Advances in Cryp-
tology – CRYPTO 2009, ser. Lecture Notes in Computer

Science, S. Halevi, Ed. Springer Berlin Heidelberg,

2009, vol. 5677, pp. 595–618.

[20] “The transport layer security (tls) protocol version 1.3,”

December 2015, https://tools.ietf.org/html/draft-ietf-tls-

tls13-07.

[21] “The transport layer security (tls) protocol version 1.3,”

May 2016, https://tools.ietf.org/html/draft-ietf-tls-tls13-

13.

APPENDIX

Toy Example: We demonstrate the attack described above

with the help of a toy example in this section. The example

shows the steps to recover the 0-th coefficient of sB. The

other coefficients of sB can be recovered by following the

IEEE ICC 2017 Communication and Information Systems Security Symposium

Authorized licensed use limited to: Tsinghua University. Downloaded on July 15,2022 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.

6

same steps. First, we show the attack for the simplified case

when gB is not added to party B’s key.

Let n = 4, q = 17, α = 1.6 (Choosing such a value

of α for the sake of the example to obtain reasonable

sample values). Sampling a uniformly random from Rq and

sB, eB from χα, let a = (9, 4, 9, 3), sB = (−1, 0, 0, 2) and

eB = (1,−1,−1, 0). Then pB = asB + 2eB = (2,−7, 0,−2).
The signal region E � {−� q4
, . . . , � q4 �} for q = 17 is

E � {−4,−3,−2,−1, 0, 1, 2, 3, 4}
Choose sA, eA of the adversary to be 0, 1 respectively. So

pA = k.

Oracle S: On input of pA = k from the adversary, S
computes pAsB = ksB and wB = Sig(ksB), outputs wB.

Step 1: Below are the values of the 0-th coefficient of wB

output from the oracle S on invocation by the

adversary A for k ranging from 0 to q − 1 = 16.

k = 0 : wB[0] = 0 pAsB[0] = 0.sB[0] = 0
k = 1 : wB[0] = 0 pAsB[0] = sB[0] = −1
k = 2 : wB[0] = 0 pAsB[0] = 2sB[0] = −2
k = 3 : wB[0] = 0 pAsB[0] = 3sB[0] = −3
k = 4 : wB[0] = 0 pAsB[0] = 4sB[0] = −4
k = 5 : wB[0] = 1 pAsB[0] = 5sB[0] = −5
k = 6 : wB[0] = 1 pAsB[0] = 6B[0] = −6
k = 7 : wB[0] = 1 pAsB[0] = 7sB[0] = −7
k = 8 : wB[0] = 1 pAsB[0] = 8sB[0] = −8
k = 9 : wB[0] = 1 pAsB[0] = 9sB[0] = 8
k = 10 : wB[0] = 1 pAsB[0] = 10sB[0] = 7
k = 11 : wB[0] = 1 pAsB[0] = 11sB[0] = 6
k = 12 : wB[0] = 1 pAsB[0] = 12sB[0] = 5
k = 13 : wB[0] = 0 pAsB[0] = 13sB[0] = 4
k = 14 : wB[0] = 0 pAsB[0] = 14sB[0] = 3
k = 15 : wB[0] = 0 pAsB[0] = 15sB[0] = 2
k = 16 : wB[0] = 0 pAsB[0] = 16sB[0] = 1

Fig. 2: Signal changes of sB[0] in the example. This figure

shows the number of signal changes while looping over k
values.

Since there are 2 changes in the signal values

wB[0], the adversary A now knows that the value

of sB[0] = ±1. The adversary can determine all

the other coefficients of sB this way upto ± sign.

Thus, the adversary extracts the value of all the

coefficients upto ± sign as sB[0] = ±1, sB[1] = 0,

sB[2] = 0, sB[3] = ±2.

Step 2: Repeat above step for public key pA = (1+ x)pA
of the adversary. This yields the coefficients as

below:

sB[0] − sB[3] = ±1, sB[0] + sB[1] = ±1, sB[1] +
sB[2] = 0, sB[2] + sB[3] = ±2

Step 3: Using sB[0]−sB[3] = ±1, sB[0] = ±1 and sB[3] =
±2, the adversary can determine that sB[0] and

sB[3] are of opposite sign. So, if sB[0] = 1, then

sB[3] = −2 and vice versa.

Step 4: Step 3 can be repeated for every pair of coef-

ficients. But in this example, we have sB[1] =
sB[2] = 0. So, this step is not required.

Thus, the adversary A recovers sB = (1, 0, 0,−2) or

sB = (−1, 0, 0, 2) depending on the sign of sB[0]. Now, choose

sB[0] = 1, then sB[3] = −2 and compute pB − asB =
(2,−6, 1,−2) − (0, 5,−2, 2) = (2, 6, 3,−4). Since n is small in

this toy example, we only have a small number of samples

to verify the distribution of pB − asB but since parameters

proposed for the key exchange requires higher value of n,

we can easily determine if the distribution follows a discrete

gaussian from the samples. This example shows that from the

values of pB − asB, the adversary can easily determine that

sB[0] = −1 and hence obtains the value of sB = (−1, 0, 0, 2)
succeeding in the attack.

Fluctuations: For the same example, consider the

case when we add gB to kB. Suppose g
(0)
B values are

0, 1, 1, 0,−1, 1, 0, 0,−1,−1,−2, 1, 0, 0, 2, 0, 0, sampled from the

error distribution for k from 0 to q − 1 = 16.

k = 0 : wB[0] = 0 kB[0] = 0
k = 1 : wB[0] = 0 kB[0] = 1
k = 2 : wB[0] = 0 kB[0] = 0
k = 3 : wB[0] = 0 kB[0] = −3
k = 4 : wB[0] = 1 kB[0] = −6
k = 5 : wB[0] = 0 kB[0] = −3
k = 6 : wB[0] = 1 kB[0] = −6
k = 7 : wB[0] = 1 kB[0] = −7
k = 8 : wB[0] = 1 kB[0] = 7
k = 9 : wB[0] = 1 kB[0] = 6
k = 10 : wB[0] = 0 kB[0] = 3
k = 11 : wB[0] = 1 kB[0] = 8
k = 12 : wB[0] = 1 kB[0] = 5
k = 13 : wB[0] = 0 kB[0] = 4
k = 14 : wB[0] = 1 kB[0] = 7
k = 15 : wB[0] = 0 kB[0] = 2
k = 16 : wB[0] = 0 kB[0] = 1

We can see that when k = 4, kB[0] = −6 which is near the

boundary region of E and so we can see frequent changes

(fluctuations) in signal for consecutive k values till kB[0]
stabilizes starting with k = 6. We ignore these fluctuations as

count of signal change and only count 1 signal change from

k = 3 to k = 6. Similarly, we ignore the signal fluctuations

corresponding to k = 9 to k = 14. Thus, the stabilized number

of signal changes is 2 which helps to guess the value of

sB[0] to be ±1. It is difficult to identify the fluctuations for

small q since there are not enough values for the key kB to

stabilize but the parameters for the key exchange provide for

a reasonable q for the attack to work.

IEEE ICC 2017 Communication and Information Systems Security Symposium

Authorized licensed use limited to: Tsinghua University. Downloaded on July 15,2022 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

