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Abstract. The aim of the present paper is to suggest that statistical physics provides

the correct language to understand the practical behavior of the LLL algorithm, most

of which are left unexplained to this day. To this end, we propose sandpile models that
imitate LLL with compelling accuracy, and prove for these models some of the most

desired statements regarding LLL. We also formulate a few conjectures that formally

capture our heuristics and would serve as milestones for further development of the
theory.

1. Introduction

1.1. The mysteries of LLL. The LLL algorithm ([22]) is one of the most celebrated
algorithmic inventions of the twentieth century, with countless applications to pure and
computational number theory, computational science, and cryptography. It is also the
most fundamental of lattice reduction algorithms, in that nearly all known reduction
algorithms are generalizations of LLL in some sense, and they also utilize LLL as their
subroutine. (We refer the reader to [28] for a thorough survey on LLL and these related
topics.) Thus it is rather curious that much of the observed behavior of LLL in practice
is left totally unexplained, not even in a heuristic, speculative sense, even to this day.

The most well-known among the mysteries of LLL is the gap between its worst-case root
Hermite factor(RHF) and the observed average-case, as documented in Nguyen and Stehlé
([27]). It is a theorem from the original LLL paper ([22]) that the shortest vector of an

LLL-reduced basis, with its determinant normalized to 1, has length at most (4/3)
n−1
4 ≈

1.075n, whereas in practice one almost always observes ≈ 1.02n, regardless of the way in
which the input is sampled. This is a strange phenomenon in the light of the work of
Kim and Venkatesh ([20]), which, roughly speaking, proves that, for almost every lattice,
nearly all of its LLL bases have RHF close to the worst bound. This leads to the suspicion
that the LLL algorithm must be operating in a complex manner that belies the simplicity
of its code.

There are also many other phenomena regarding LLL that are unaccounted for. One
is the geometric series assumption(GSA), originally proposed by Schnorr ([33]), and its
partial failure at the boundaries, both of which are observed in other blockwise reduction
algorithms as well e.g. BKZ ([34]). There are also questions raised regarding the time
complexity of LLL. Nguyen and Stehlé ([27]) suggest that, in some situations, the average
time complexity is lower than the worst-case, and in others, the worst-case is attained.
The complexity of the optimal LLL algorithm — i.e. the parameter δ equals 1 — is not
proven to be polynomial-time, although observations suggest that it is (see Akhavi ([1])
and references therein).

1.2. This paper. Our main idea is that statistical physics may provide a correct lan-
guage and concepts to study the practical behavior of the LLL algorithm. As we demon-
strate throughout this paper, for each LLL phenomenon, there is a corresponding sandpile
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phenomenon, which can be captured and then studied with the already well-established
methods of physics. Indeed, from the physical perspective, there is no reason not to regard
the LLL algorithm as a proper member of the family of stochastic sandpile models. Since
the identification of the correct language often does much good in mathematics, this may
open up a path to a systematic understanding of the various unexplained phenomena of
LLL, via the mathematics and physics of the sandpile models.

Some similarities of LLL to sandpiles have been noticed previously and utilized to some
extent. To the best of our knowledge, this is first pointed out in Madritsch and Vallée
([29]), and also in Vallée ([37]), albeit briefly. Some aspects of this analogy have also been
applied to BKZ as well — see [16] and [4] for instance.

One of the new contributions made by the present paper is the introduction of stochastic
sandpile models that are both impressively close to LLL (precisely speaking, its Siegel
variant) and mathematically accessible. We propose two models of LLL, which we name
LLL-SP and SSP respectively. LLL-SP (Algorithm 2) is a sandpile model that exhibits
nearly identical quantitative behavior to that of LLL in many aspects, suggesting that
the two algorithms operate under the same principles. This claim can be formulated in
a precise language, in terms of the mixing property of the µ variables; see Conjecture 2
below. SSP (Algorithm 4) is a simple stochastic variant of the abelian sandpile model
(ASM; Algorithm 3) that serves as a useful toy model for LLL that is mathematically
far more tractable than LLL-SP, and still imitates the important aspects of the output
statistics of LLL.

We also demonstrate that it is possible to prove some of the most desired statements
for LLL on these models. On SSP, we can establish an upper bound on the average-case
RHF that is significantly smaller than the worst-case (Theorem 3; the proof is deferred to
[21]). This seems much harder to achieve on LLL-SP, but here we are still able to provide
a probabilistic lower bound on the time complexity (Theorem 5), whose order matches the
well-known upper bound, and to resolve the optimal LLL problem (Theorem 6). These
results support our idea that the sandpile interpretation may be the correct approach to
the real-world behavior of LLL.

In addition, it is worth noting that this physical perspective on LLL provides convincing
heuristics on a number of LLL behavior, which are scattered throughout this paper. For
instance, it explains why the output statistics of LLL appears independent of the input
distribution, and has the shape as described by the GSA and its failure at the boundaries.
Given that there has been not even a vague heuristic accounting for most practical be-
havior of LLL, this provides yet another good reason to pursue this line of development.
Moreover, we try to capture the essence of these heuristics with formal language, with
Conjecture 2 below and the “parallelepiped argument” in the proof of Theorem 3 (also
see Conjecture 4). These provide some concrete paths for further research.

1.3. Cryptographic considerations. LLL is of fundamental importance to lattice-based
cryptography, and for this reason alone it deserves to be understood well. Our understand-
ing of LLL may affect our understanding of all other reduction algorithms, particularly
BKZ, the current standard method for challenging lattice-based systems.

Specifically, there are certain questions regarding LLL — and any reduction algorithm
in general — that may pose a threat to lattice-based cryptography as a whole. For
instance, it could be that a yet undiscovered small trick may improve the RHF of LLL
without meaningfully increasing the time complexity, say, to 1.002. Absurd as this may
sound at first, recall that we already “improved” LLL from (RHF) ≈ 1.075 to ≈ 1.02
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merely by implementing it, and that currently we lack the device to form even a vague
argument against such catastrophic possibility.

It seems that the practitioners of lattice-based cryptography are well aware of such
uncertainties as to the scope and limit of reduction algorithms, and are reacting accord-
ingly. According to Tables 5–10 of [2], most lattice-based submissions to the recent NIST
call for proposals ([24]) claim about half or less as may bits of security as estimated with
the state-of-art techniques. On the other hand, one observes no such reservation in sub-
missions from multivariate cryptography, for example. By developing a framework for
a systematic study of reduction algorithms, we hope to be able to relieve some of these
concerns in the area of lattice-based cryptography.

1.4. Assumptions and notations. Throughout this paper, instead of the original LLL
reduction from [22], we work with its Siegel variant, a slight simplification of LLL. The
Siegel reduction shares with LLL all its idiosyncrasies, and a bit easier to handle techni-
cally; hence a reasonable starting point for our research.
n always means the dimension of the relevant Euclidean space. Our lattices in Rn

always have full rank.
A basis B, besides its usual definition, is an ordered set, and we refer to its i-th element

as bi. Denote by b∗i the component of bi orthogonal to all vectors preceding it, i.e.
b1, . . . ,bi−1. Also, for i > j, define µi,j = 〈bi,b∗j 〉/〈b∗j ,b∗j 〉. Thus the following equality
holds in general:

bi = b∗i +

i−1∑
j=1

µi,jb
∗
j .

We will write for shorthand αi := ‖b∗i ‖/‖b∗i+1‖, and Qi = (α−2i + µ2
i+1,i)

−1/2. When
discussing lattices, ri := logαi, and when discussing sandpiles, ri refers to the “amount
of sand” at vertex i.

2. Modeling LLL by a sandpile

2.1. The LLL algorithm. We briefly review the LLL algorithm; for details, we recom-
mend [22], in which it is first introduced, and also [17] and [28]. A pseudocode for the
LLL algorithm is provided in Algorithm 1. Be reminded that, whenever we mention LLL,
we are really referring to its Siegel variant.

Algorithm 1 The LLL algorithm (Siegel variant)

0. Input: a basis B = {b1, . . . ,bn} of Rn, a parameter δ < 0.75
1. while true, do:
2. Size-reduce B.
3. (Lovász test) choose the lowest k ∈ {1, . . . , n− 1} such that δ‖b∗k‖2 > ‖b∗k+1‖2
4. if there is no such k, break
5. swap bk and bk+1 in B
6. Output B = {b1, . . . ,bn}, a δ-reduced LLL basis.

Proposition 1. After carrying out Step 5 in Algorithm 1, the following changes occur:

(i) αnewk−1 = Qkαk−1
(ii) αnewk = Q−2k αk

(iii) αnewk+1 = Qkαk+1
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Figure 1. An illustration of a (legal) toppling Ti.

(iv) µnewk,k−1 = µk+1,k−1
(v) µnewk+1,k = Q2

kµk+1,k

(vi) µnewk+2,k+1 = µk+2,k − µk+2,k+1µk+1,k

(vii) µnewk,l = µk+1,l, µ
new
k+1,l = µk,l for 1 ≤ l ≤ k − 1

(viii) µnewl,k = µl,k+1 − µl,k+1µk+1,kµ
new
k+1,k + µl,kµ

new
k+1,k for l ≥ k + 2

(ix) µnewl,k+1 = µl,k − µl,k+1µk+1,k for l ≥ k + 2

and there are no other changes. The superscript “new” refers to the corresponding variable
after the swap.

Proof. Straightforward calculations (see e,g, [22]). �

2.2. Sandpile basics. We also briefly review the basics of the sandpile models. For
references, see Dhar ([10], [11]) or Perkinson ([30]).

A sandpile model is defined on a finite graph G, with one distinguished vertex called
the sink. In the present paper, we only concern ourselves with the cycle graph, say An,
consisting of vertices {v1, . . . , vn} and one unoriented edge for each adjacent pair vi and
vi+1. We also consider v1 and vn as adjacent. We designate vn as the sink.

A configuration is a function r : {v1, . . . , vn} → R. Just as reduction algorithms work
with bases, sandpile models work with configurations. We write for short ri = r(vi). One
may think of ri as the amount or height of the pile of sand placed on vi.

Just as LLL computes a reduced basis by repeatedly swapping neighboring basis vec-
tors, sandpiles compute a stable configuration by repeated toppling. Let T, I ∈ R>0. A
configuration is stable if ri ≤ T for all i 6= n. A toppling operator Ti (i 6= n) replaces
ri by ri − 2I, and ri−1 by ri−1 + I and ri+1 by ri+1 + I. An illustration is provided in
Figure 1. Applying Ti when ri > T is called a legal toppling. By repeatedly applying legal
topplings, all excess “sand” will eventually be thrown away to the sink, and the process
will terminate.

In our paper, T — threshold — will always be a fixed constant, but I — increment
— could be a function of the current configuration, or a random variable, or both. In
the former case, we say that the model is nonabelian — otherwise abelian. In the second
case, we say that the model is stochastic. The (non-stochastic) abelian sandpile theory is
quite well-developed, with rich connections to other fields of mathematics — see e.g. [23].
Other sandpile models are far less understood, especially the nonabelian ones.
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2.3. The LLL sandpile model. Motivated by Proposition 1, especially the formulas (i)
– (iii), we propose the following Algorithm 2, which we call the LLL sandpile model, or
LLL-SP for short.

Algorithm 2 The LLL sandpile model (LLL-SP)

0. Input: α1, . . . , αn ∈ R, µ2,1, . . . , µn,n−1 ∈ [−0.5, 0.5], a parameter δ < 0.75
1. Rewrite ri := logαi, µi := µi+1,i T := −0.5 log δ
2. while true, do:
3. choose the lowest k ∈ {1, . . . , n− 1} such that rk > T
4. if there is no such k, break
5. subtract 2 logQk from rk
6. add logQk to rk−1 (if k − 1 ≥ 1) and rk+1 (if k + 1 ≤ n− 1)
7. (re-)sample µk−1, µk, µk+1 uniformly from [−0.5, 0.5]
8. Output: real numbers r1, . . . , rn−1 ≤ T

The only difference between LLL (Algorithm 1) and LLL-SP (Algorithm 2) lies in the
way in which the µ’s are replaced after each swap or topple. Our experimental results
below demonstrate that this change hardly causes any difference in their behavior. A
theoretical perspective is discussed at the end of this section.

The decision to sample µi’s uniformly is largely provisional, though some post hoc
justification is provided in Figure 4. One could refine the model by updating µi’s with
the formulas in Proposition 1, and then re-sampling µi+2,i’s uniformly.

2.4. Numerical comparisons. Figure 2 shows the average shape of the output bases
and configurations by LLL and LLL-SP. We also ran the same experiments where the
method of choosing k is tweaked, e.g. choose randomly among eligible k’s. We omitted
them here due to limited space, but the same lessons are obtained anyway.

For each dimension n = 80, 100, 120, we ran each algorithm 5,000 times with the same
set of input bases of determinant ≈ 210n, generated using the standard method suggested
in Section 3 of [27]. A point (i, y) in each plot indicates that the average of ri := logαi’s
over those 5,000 outputs equal y. We used fpLLL ([12]) for the LLL algorithm.

One easily observes that the algorithms yield nearly indistinguishable outputs. In
particular, since RHF can be computed directly from the ri’s by the formula

(1) RHF = exp

(
1

n2

n−1∑
i=1

(n− i)ri

)
,

we expect both algorithms to yield about the same RHF. Indeed, Figure 3 shows that the
RHF distribution of LLL and LLL-SP are in excellent agreement.

The resemblance of the two algorithms runs deeper than on the level of output statistics.
See Figure 4, which depicts the plot of points (i, Q−2k(i)) and µk(i)+1,k(i) = µk(i) as we ran

LLL and LLL-SP on dimension 80, where k(i) is k chosen at i-th iteration.1 The two
plots are again indistinguishable, yet another evidence that LLL and LLL-SP possess
nearly identical dynamics.

1We have the same results in higher dimensions, but they are too cumbersome to present here.



6 JINTAI DING, SEUNGKI KIM, TSUYOSHI TAKAGI, YUNTAO WANG

Figure 2. Average output of LLL (orange square) and LLL-SP (blue
circle) in dimensions 80, 100, and 120.

Figure 3. RHF distributions of LLL and LLL-SP in dimension 120. We
obtain the same results in other dimensions.

Figure 4. Plot of Q−2k(i)(top) and µk(i)+1,k(i) = µk(i)(bottom) during a

typical run of LLL(left) and LLL-SP(right) in dimension 80.
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2.5. Discussion. The only difference between LLL and LLL-SP has to do with the way
they update the µk(= µk+1,k)’s. For LLL-SP, the µk-variables are i.i.d. and independent
of the rk-variables. For LLL, µk is determined by a formula involving its previous value
and rk. However, it seems plausible that the µk’s in LLL, as a stochastic process, is
mixing, which roughly means that they are close to being i.i.d, in the sense that a small
perturbation in µk causes the next value µnewk to become near unpredictable. Numerically,
this is robustly supported by the graphs at the bottom of Figure 4. Theoretically, our
intuition comes from the fact that the formula µnewk = µk/(µ

2
k + α−2k ) (mod 1) is an

approximation of the Gauss map x 7→ {1/x}, which is well-known to have excellent mixing
properties (see e.g. Rokhlin ([31]) and the references in Bradley ([7]) for more recent
works).

The above discussion can be summarized and formulated in the form of a mathematical
conjecture, which can then be considered a rigorous version of the statement “LLL is
essentially a sandpile model.” Below is our provisional formulation of such a conjecture.

Conjecture 2. Choose a distribution D on the set of bases in Rn, to be used to sample
inputs for LLL. Define k(i), as earlier, to be the index of the pile toppled at i-th iteration.
Then k(i) is a random variable depending on the input distribution, and so is µk(i). Then,
if D is “generic,” then

(i) (|µk(i)|)i=1,2,... is strongly mixing as a stochastic process. (Roughly speaking, this
means |µk(N)| is nearly independent of |µk(M)| for which N −M is large; see the
text [6] for a precise definition.)

(ii) each |µk(i)| is contained in a compact subset S of the set of all probability density
functions on [0, 0.5] with respect to the L∞-norm. S is independent of the dimension,
the input distribution, or any other variable.

Ideally, Conjecture 2 is to be designed so that what is provable for LLL-SP would also
be provable for LLL by an analogous argument (e.g. the theorems in Section 4), while
retaining the flexibility as to what the correct distribution of µk might be. It is to be
updated accordingly as our understanding of LLL and LLL-SP progresses. Then at some
point Conjecture 2 may come within reach of mathematics; or maybe it already is.

As for the expression “generic” in the statement of Conjecture 2, it is hard to pin
down its precise meaning at this point, as is sometimes the case in mathematics. But
there are two criteria that a generic D must fulfill, which we suspect are also sufficient
conditions. First, most of the samples from D must not ruin the mixing property of µnewk ;
a counterexample is a basis of a lattice with a huge discrepancy between two successive
minima λk � λk+1, which would cause µk(i) to be abnormally small whenever k(i) = k.
The second criterion concerns the shape of suppD, which we illustrate in the next section.

3. Abelian sandpile analogue of LLL

The drawback of LLL-SP as a model of LLL is that, being nonabelian, it is difficult to
study. The existing literature on nonabelian sandpile models is rather thin, and to the
best of our knowledge, there is no theoretical treatment on this subject. We hope that
our work here provides some motivation to pursue nonabelian models in depth.

In this section, we introduce a certain abelian stochastic sandpile model that we named
SSP, which is in a sense an abelianized version of LLL-SP. A priori, SSP appears completely
unrelated to LLL. Surprisingly, though, its average output shape turns out to be extremely
close to that of LLL. Moreover, SSP admits a mathematical theory that is analogous to
that of ASM developed by Dhar ([9], see also [11]), which is developed in a separate paper
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by the second-named author ([21]). This allows one to prove some pleasant statements
such as Theorem 3. Therefore, SSP is a useful toy model that could yield insights into
some of the most prominent features of the output statistics of LLL. It may yield some
hints as to how to start analyzing the non-abelian LLL-SP as well.

3.1. Background on ASM. To facilitate reader’s understanding, we briefly describe
the abelian sandpile model (ASM), the most basic of sandpile models, and parts of its
theory that is relevant to us. Its pseudocode is provided in Algorithm 3. See Dhar ([9]),
where the theory is originally developed, or Perkinson ([30]) for an articulate and readable
exposition.

Algorithm 3 Abelian sandpile model (ASM)

0. Input: r1, . . . , rn−1 ∈ Z, parameters T, I ∈ Z, 0 < I ≤ T/2
1. while true, do:
2. choose a k ∈ {1, . . . , n− 1} such that rk > T
3. if there is no such k, break
4. subtract 2I from rk
5. augment I to rk−1 and rk+1

6. Output: integers r1, . . . , rn−1 ≤ T

The important ASM concepts for us are that of the recurrent configurations and the
steady state. Let M be the set of all stable (non-negative) configurations of ASM. Given
two configurations r, s ∈M , we have the operation

r ⊕ s = (stabilization of r + s),

which is the outcome of ASM with input being the configuration r+s defined by (r+s)i =
ri+ si for each i. Unlike LLL, the output of ASM is independent of the choice of toppling
order — hence the term “abelian” — and thus ⊕ is well-defined. This operation makes
M into a commutative monoid.

Define g ∈ M to be the configuration with g1 = 1 and g2 = . . . = gn−1 = 0. We call
r ∈M recurrent if

g ⊕ . . .⊕ g︸ ︷︷ ︸
m times

= r for infinitely many m.

One can actually take any g for which at least one gi is coprime to the g.c.d. of T and
I (this condition is nothing but only to avoid concentration on a select few congruence
classes). Equivalently, with LLL in mind, we can also define that r is recurrent if there
exist infinitely many input configurations such that their stabilization results in r. It is a
theorem that the set R of the recurrent configurations of ASM forms a group under ⊕.

One may ask, given an r ∈ R, what is the proportion of m ∈ Z>0 that satisfies
g⊕ . . .⊕g (m times) = r? It turns out that the answer is 1/|R| for any r ∈ R, that is, each
element of R has the same chance of appearing. This distribution, say ρ, on R is called
the steady state of the system. And the phrase average output shape that we have been
using in the empirical sense obtains a formal definition as

∑
r∈R ρ(r)r. The steady state is

unique in the following sense: choose an r ∈ R according to ρ, and take any configuration
s; then the stabilization of r + s, which is a random variable, has distribution ρ.

Equivalently, this means that, in terms of our second definition of recurrent, if we
sample the input configuration for ASM from a “generic” distribution e.g. uniformly from
a large rectangular set of Zn−1>0

∼= (the space of nonnegative configurations), we would
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obtain each r ∈ R with about probability ρ(r). To elaborate, in the case of ASM, the set
of inputs whose output becomes a given r ∈ R is contained in a coset r+ Λ of a sublattice
Λ ⊆ Zn−1. So the word “generic” here means “containing about the same number of each
coset representatives of Λ.” This is essentially the second condition for genericity that we
mentioned in the discussion after Conjecture 2.

3.2. Introduction to SSP. A pseudocode for SSP is provided in Algorithm 4. This is
exactly the same as ASM, except for Step 4, which determines the amount of sand to be
toppled at random. The decision to sample from the uniform distribution is an arbitrary
one; we could have chosen something else, and much of the discussion below still apply.

Algorithm 4 Stochastic sandpile (SSP)

0. Input: r1, . . . , rn−1 ∈ Z, parameters T, I ∈ Z, 0 < I ≤ T/2
1. while true, do:
2. choose a k ∈ {1, . . . , n− 1} such that rk > T
3. if there is no such k, break
4. sample γ uniformly from {1, . . . , I}
5. subtract 2γ from rk
6. augment γ to rk−1 and rk+1

7. Output: integers r1, . . . , rn−1 ≤ T

The average output shape of this stochastic sandpile model (SSP) is shown in Figure
5. Figure 5 not only shares all the major characteristics of Figure 2, but they are also
quantitatively alike. The values ri’s are nearly identical in the middle, which gradually
decreases as i approaches the boundary, starting at around i = 15 and n−15. Furthermore,
in both figures, the differences between the threshold and the middle values, and the
differences between the middle and the boundary value, are equal; in the case of SSP, it is
≈ I/4, and for LLL, it equals about 0.08. Outside the paradigm we are developing here,
this should come as quite surprising. Algorithms 1 and 4 are simply so different that there
is no reason to expect that anything similar would come out of them.

This finding suggests that sandpiles may shed light on the geometric series assump-
tion(GSA) and its partial failure at the boundary, yet another important unexplained
phenomenon of LLL-like reduction algorithms. Indeed, “GSA” is a quite general phenom-
enon that is fairly well-understood in statistical physics, via the finite-size scaling theory
(see e.g. [15]). We will explore this connection in a forthcoming paper.

3.3. Mathematical properties of SSP. A mathematical theory of SSP closely analo-
gous to that of ASM has been recently developed ([21]), largely motivated by the experi-
mental result above. Every aspect of the above-mentioned ASM theory has its appropriate
counterpart in the SSP theory, except that instead of configurations one works with a dis-
tribution on the set of configurations, due to its stochastic nature. Most importantly,
SSP, like ASM, possesses the unique steady state. Figure 5 is a reflection of that steady
state of SSP, from which one can compute its average “RHF” via (1).

As some readers might have noticed in the earlier discussion, the notion of the steady
state alone clarifies numerous aspects of the practical behavior of LLL. The number “1.02”
obtains a neat mathematical meaning as a certain invariant of the steady state. Moreover,
that the steady state is unique — i.e. it is the only attractor in the associated dynamics
— explains why the number 1.02 seems independent of how the input bases are sampled
for LLL, an observation in [26] that is also declared as a conjecture there. Therefore, most
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Figure 5. Average output of SSP, n = 100, I = 200 and T = 400.

of the frequently asked questions regarding the average output of LLL — why 1.02, why
GSA, why independent of input sampling — comes down to studying the quantitative
properties of the steady state.

There are two difficulties. First, we do not yet know how to prove that LLL indeed
possesses a steady state, even upon fixing the order of toppling. Second, studying the
steady state is nontrivial, even for ASM or SSM, where it reduces to tricky problems in
combinatorics. Still, we can prove some of the statements for SSP that one wishes of LLL.
For example, it is possible to rigorously bound the average RHF of SSP from above:

Theorem 3. The worst-case log (RHF) of SSP is T/2 + on(1). The average log (RHF)
of SSP is bounded from above by T/2− I/2e2 + on(1).

We note that empirically one observes log (RHF) ≈ T/2− I/8 on average.

Sketch (and discussion) of proof. This is essentially Proposition 8 of [21]. We present the
idea of the proof for completeness; it takes only a moderate amount of labor to turn it
into a formal argument.

Take an unstable configuration r. If r is sufficiently far away from the origin in the
configuration space, we must topple on each and every vertex at least once — in fact,
arbitrarily many times — on the way of stabilizing r. So consider T1T2 . . . Tn−1r, where
Ti is the toppling operator on vertex i. Since the outcome of SSP is a random variable,
T1T2 . . . Tn−1r should be thought of as a probability distribution on the configuration
space. As such, it is a distribution that is supported on a parallelepiped-shaped cluster,
as illustrated in the top of Figure 6 in case n = 3 and I = 4; the upper-right vertex in
the parallelogram is r − (1, 1, . . . , 1), which is r toppled on every vertex by the minimum
possible amount.

Applying Ti to this parallelepiped-shaped distribution amounts to “pushing” the par-
allelepiped in the direction of i, resulting in another parallelepiped-shaped distribution.
The middle graph in Figure 6 illustrates this process, by indicating with x marks the
outcome of applying T1 to the original distribution (assuming that the horizontal axis
represents r1). Repeating, we eventually reach the situation as in the bottom of Figure 6,
where none of the Ti would preserve the shape of the parallelepiped, since (T, T, . . . , T ) is
already a stable configuration and thus Ti leaves it there. From this point on, it is rather
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Figure 6. The parallelepiped argument.

tricky to describe the action of the Ti’s, which is the source of the difficulty of studying
the steady state of SSP.

However, we claim that, for any r sufficiently far enough from the origin, the distribu-
tion on the parallelepiped obtained by the time the upper-right corner reaches (T, . . . , T )
is arbitrarily close to a certain limiting distribution ℘. To see this, consider the action of
Ti on the distribution on the parallelepiped, while forgetting the information about where
that parallelepiped is located in the configuration space. Then one notices that each Ti
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acts as a linear operator on the space of such distributions. Simultaneously diagonalizing
all Ti’s — possible because they pairwise commute — one finds that 1 is the single largest
eigenvalue of multiplicity one, whose corresponding eigenvector is ℘. Upon repeated ap-
plications of Ti’s, the components corresponding to the lesser eigenvalues converge to zero,
proving the claim.

Observe that, when the upper-right corner equals (T, . . . , T ) (again see bottom of Figure
6), fully stabilizing ℘ yields the steady state. ℘ itself is easily computed by hand, but
the steady state is not. Still, we can prove, using the information about ℘, that the
maximum density of the steady state occurs at (T, . . . , T ), and that its value equals
≈ (I/2)−(n−1). Note that this is enough to deduce a nontrivial upper bound on the
average RHF: estimate the number N(α) of stable configurations whose log (RHF) are
greater than α, and take α such that N(α) · (I/2)−(n−1) vanishes as n→∞. It turns out
we can choose α = T/2− I/2e2.

�

There are a couple of difficulties in directly applying the above argument to LLL (even
assuming Conjecture 2) or LLL-SP. For instance, because the increment depends on the
ri’s for those systems, the effect of Ti is not as neat as illustrated in Figure 6. It would push
the side of the parallelepiped with “uneven force,” skewing the shape of the parallelepiped.
Specifically, for LLL or LLL-SP, the higher ri is, the greater is the toppling induced by Ti,
so the upper side is pushed further than the lower side. Technically speaking, since the
Ti’s depend on the ri-coordinate it is impossible to separate the parallelepiped from the
coordinate space as we have done above, and since the Ti’s do not commute we cannot use
linear algebra to find the attractor of the dynamics. These are the obstacles to proving
the existence of the steady state of LLL.

To prove that the “average” RHF is bounded strictly away from the worst-case, it is
sufficient to show a much weaker statement that the maximum density of the output dis-
tribution is not too large. This seems feasible yet quite vexing; we state it as a conjecture
below for future reference. As in the SSP case, we expect that the maximum density is
attained on the upper-right corner, and the Ti’s perturb it at most marginally, once they
are iterated sufficiently many times.

Conjecture 4. For a generic distribution D on the set of bases of Rn, the probability den-
sity function of the corresponding output distribution D◦ of LLL (or LLL-SP) is bounded
from above by a constant C that depends only on n.

4. Regarding time complexity

Although expanding the SSP theory, and Theorem 3 in particular, to LLL-SP seems
challenging for the time being, we are able to prove some attractive statements for LLL-SP
with respect to its complexity, which we present below. We also consider their extensions
to LLL assuming the truth of Conjecture 2.

4.1. A lower bound. The theorem below gives a probabilistic lower bound on the com-
plexity of LLL-SP, which agrees up to constant factor with the well-known upper bound.
There are two ingredients in the proof: (i) measuring the progress of the LLL algorithm
by the quantity energy, a well-known idea from the original LLL paper ([22]) (ii) bounding
the performance of LLL-SP by a related SSP.
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Theorem 5. Consider LLL-SP, and an input configuration r whose log-energy E = E(r),
defined by

E(r) =

n−1∑
j=1

n−1∑
i=j

(n− i)ri,

is sufficiently large — in fact, E > 10H works, with H defined as in (2). Then the
probability that LLL-SP is not terminated in E/4 steps is at least 1 − CE−1/2 for an
absolute constant C > 0.

Observe that the familiar upper bound O(n2 log maxi ‖bi‖) on the number of required
steps is equivalent to O(E), with the implicit constant depending on δ.

Proof. If the algorithm is terminated, then E must have become less than
n∑
i=1

(n− i+ 1)(n− i)T/2,

(where T := − log δ1/2 > 0) which equals,

(2) H :=
T

6
(n3 − n).

Taking converse, we see that if E is greater than (2), then LLL-SP has not yet terminated.
At k-th toppling, E decreases by at most log µ−2k(i), where k(i) is the index of the vertex

in which i-th toppling occured. If toppled N times, the decrease in E is bounded by at

most FN :=
∑N
i=1 logµ−2k(i). In sum,

(3) Prob(E − FN > H)

gives the lower bound on the probability that LLL-SP is not terminated after N swaps.
Hence, it suffices to show that (3) is bounded from below by 1−CE−1/2 when N = E/2.

The central limit theorem is applicable on FN , since µi(k) are i.i.d. More precisely,
we apply the Berry-Esseen theorem, which asserts the following. Suppose we have i.i.d.
random variables X1, X2, . . ., so that m = E(X1), σ = (E(X2

1 ) − E(X1)2)1/2, and ρ =

E(X3
1 ) are all finite. Furthermore, let YN =

∑N
i=1Xi, and let GN (x) be the cumulative

distribution function of YN , and ΦN (x) be the cumulative distribution function of the
normal distribution N(Nm,Nσ2). Then for all x and N ,

|GN (x)− ΦN (x)| = O(N−1/2),

where the implied constant depends on m,σ, ρ only.
We let Xi = log µ−2k(i) so that FN = GN , and apply the Berry-Esseen. It is easy to

compute and check that m,σ, ρ are all finite e.g. m = 2(1 + log 2) ≈ 3.386 and σ = 2.
Then, for a random variable NN ∼ N(Nm,Nσ2), (3) is bounded by

Prob(E −NN > H)

plus an error of O(N−1/2).
Now choose N = E/4, so that NN ∼ N((1+log 2)E/2, E). Using Chebyshev’s inequal-

ity we can prove
Prob(NN ≥ 0.9E) ≤ O(E−1),

where the implied constant is absolute. Thus if E is large enough so that E −H > 0.9E,
we have that (3) is at least 1−CE−1/2 for some C > 0, as desired. With marginally more
effort, it is possible to determine an explicit value for C.

�
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Remark. 1. We can use the same idea to obtain a lower bound on the average RHF of
LLL-SP, but it turns out to be slightly less than 1, which happens to be useless in the
context we are in.

2. There exists a central limit theorem for a strong mixing process ([6]), and also a
central limit theorem for a sequence of independent but non-identical sequence of random
variables (e.g. the Lyapunov CLT). Conjecture 2 states that the |µk(i)| of LLL is strong
mixing (weaker than independent) and non-identical (though contained in a compact set).
We do not know whether there exists a central limit theorem that applies in this context,
though we suspect that there should be.

4.2. The optimal LLL problem. The optimal LLL problem (see e.g. [1]) asks whether
LLL with the optimal parameter δ = 3/4 terminates in polynomial time. The following
theorem, while crude, shows that this is true for LLL-SP with arbitrarily high probability.

Theorem 6. For any η > 0 small, LLL-SP with δ = 3/4 terminates after Oη(E) steps
with probability 1− η.

Proof. Write µ for the random variable uniformly distributed in [0, 1/2]. In case δ < 3/4,
the complexity bound of LLL is established with the observation that, with each swap,
the energy E decreases by at least c := log(δ + 1/4)−1 > 0, and thus the algorithm must
terminate within E/c steps. Similarly, in case δ = 3/4, we try to show that the minimum
change of energy log(δ + µ2)−1 is strictly bounded away from zero almost all the time.

(If I was the increment for a given toppling operation, it is easy to show that the energy
decreases by 2I after such a step.)

Choose a small ε > 0, and let p = Prob(µ ≤ 1/2(1 − ε)) = 1 − ε. Let d = log(3/4 +
p2/4)−1, which is the minimum possible change in energy provided µ ≤ 1/2(1− ε). Now
take 10E/d samples µ1, µ2, . . . of µ (there is nothing special about the constant 10 here).
If at least E/d of those samples are less than 1/2(1−ε), LLL-SP would terminate. Proving
that this probability is arbitrarily close to 1 is now a simple exercise with the binomial
distribution.

�

Observe that the above proof carries over to the case of LLL assuming Conjecture 2;
the compactness condition on the µk(i) distributions allows control on the probability that
they are all simultaneously bounded away from 1/2(1− ε).
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