Several Improvements on BKZ Algorithm

Ziyu Zhao, Jintai Ding

Tsinghua University, Beijing

Abstract. Lattice problem such as NTRU problem and LWE problem is widely used as the security base of post-quantum cryptosystems. And currently doing lattice reduction by BKZ algorithm is the most efficient way to solve it. In this paper, we give several further improvements on BKZ algorithm, which can be used for different SVP subroutines base on both enumeration and sieving. These improvements in combination provide a speed up of $2^{3\sim4}$ in total. It is significant in concrete attacks. Using these new techniques, we solved the 656 dimensional ideal lattice challenge in only 380 thread hours (also with a enumeration based SVP subroutine), much less than the previous records (which costs 4600 thread hours in total). With these improvements enabled, we can still simulate the new BKZ algorithm easily. One can also use this simulator to find the blocksize strategy (and the corresponding cost) to make Pot of the basis (defined in section 5.2) decrease as fast as possible, which means the length of the first basis vector decrease the fastest if we accept the GSA assumption. It is useful for analyzing concrete attacks on lattice-based cryptography.

1 Introduction

Lattice based cryptography is nowadays an important part of post-quantum cryptography because it's fast and widely used in fully homomorphic encryption [11,4]. The security of it mainly based on some lattice problems, such as learning with error problem (LWE) [12,20,29] and ntru problem [16]. These problems can be reduced to approximate shortest vector problem (ASVP) [24,23,6,19], i.e. to find a relatively short vector given a lattice basis. And currently lattice reduction is the most efficient way to solve such problems, thus it is important to know the concrete hardness of ASVP.

Currently there are two types of algorithm to find short vector in the lattice given a lattice basis. One is SVP algorithms like enumeration [28,17,7,34,35,8] and sieving [13,26,21,22,3], which can find almost the shortest vector in the lattice but the cost is at least exponential in the dimension of lattice. These SVP algorithms can only be applied to lattice with a small dimension. Another type of algorithm, for instance LLL algorithm [18,25] and BKZ algorithm can work on high dimensional lattice in a realistic time. LLL algorithm is extremely fast and often used as preprocessing, BKZ algorithm gives a bridge from shortest vector in small dimension to short vector with the same root Hermite factor in high dimension.

2 Ziyu Zhao, Jintai Ding

BKZ algorithm [34,31] were first proposed by Schnorr in the 80's. It does enumeration on local blocks to find short vector then insert the new vector in the basis. Larger local blocksize gives shorter vector and cost more time. In 2011, Chen-Nguyen used some pruning technique in the enumeration step, it makes BKZ algorithm with a higher local blocksize practicable [5]. In 2016, Yuntao Wang et al. proposed their improved progressive BKZ [2], they get an optimized blocksize strategy based on their simulation of the total enumeration cost. It starts with a small blocksize, and increase it in a well organized manner, makes the algorithm significantly faster.

In this paper, we will give several further improvements on BKZ algorithm, and applied these techniques in lattice reduction with a SVP subroutine based on enumeration (these techniques can also be applied to sieving based SVP subroutine well). We implemented the new BKZ algorithm and tested it on Ideal lattice challenges [27] (the ideal lattice structure is never used), the running result shows we get a speed up with a factor $2^{3\sim4}$, which may be further improved since we did not used a well organized progressive BKZ (our blocksize are simply 80, 88, 96, ...). Moreover our new BKZ algorithm is still easy to simulate (as BKZ 2.0) if we know the behavior of the SVP subroutine well.

Road map. In section 2, we present some basic facts about lattice and introduce the notations. Then in section 3, we will recall the developments of BKZ algorithm in the history. Our further improvements on BKZ will be given in section 4. The information about the lattice challenge and the simulation of BKZ algorithm is in section 5.

2 Preliminaries

Lattice is discrete subgroup in \mathbb{R}^m . A lattice *L* admits an integral basis $\mathbf{B} = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ such that each vector \mathbf{v} in *L* can be represented uniquely as linear combination with integral coefficients of \mathbf{B} . We say n is the dimension of the lattice. The determinant of the lattice is defined to be $\sqrt{\det(\mathbf{BB}^T)}$ which is equal to the absolute value of $\det(\mathbf{B})$ if m = n.

Gaussian Heuristic Because of the discreteness, the shortest vector in L exists (not unique in general). It is extremely hard to compute the shortest vector (proved to be NP-hard problem), but the length of it is estimated to be

$$\frac{\Gamma(\frac{n}{2}+1)^{\frac{1}{n}}}{\sqrt{\pi}} \cdot \det(L)^{\frac{1}{n}} \approx \sqrt{\frac{n}{2\pi e}} \cdot \det(L)^{\frac{1}{n}}$$

when the lattice is *random* and n is not too small. In practice it works well if $n \ge 40$.

Gram-Schmidt orthogonalization The Gram-Schmidt orthogonalization of **B** is given by $\mathbf{B}^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_n^*)$ where \mathbf{b}_i^* is defined by

$$\mathbf{b}_{i}^{*} = \mathbf{b}_{i} - \sum_{j=1}^{i-1} \mu_{ij} \mathbf{b}_{j}^{*}, \ \mu_{ij} = \frac{\langle \mathbf{b}_{i}, \mathbf{b}_{j}^{*} \rangle}{\|\mathbf{b}_{j}^{*}\|^{2}}$$

we further denote by B_i the square of $\|\mathbf{B}_i^*\|$, we will call $[B_1, B_2, \dots, B_n]$ the distance vector of the basis **B**. The distance vector of a basis contains lots of information about this notation will be heavily used in the analysis of BKZ algorithm. we should also introduce the concept of local projected lattice. Let π_i be the orthogonal projection to $\operatorname{span}(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})^{\perp}$. Then we define the local projected lattice $L_{[i,j]}$ to be the lattice spanned by $B_{[i,j]} = (\pi_i(\mathbf{b}_i), \dots, \pi_i(\mathbf{b}_j))$.

Root Hermite Factor For a vector \mathbf{v} in a *n* dimensional lattice *L*, we define the root Hermite factor to be

$$\delta = \mathrm{rHF}(\mathbf{v}) = \frac{\|\mathbf{v}\|}{\det(L)}^{\frac{1}{n}}$$

as in [9], the root Hermite factor measures the quality of the vector. The hardness to get a vector of certain length mainly depends on its root Hermite factor.

3 history of BKZ algorithm

3.1 the original algorithm

The first version of BKZ algorithm was proposed by Schnorr and Euchner as a generalization of the famous LLL algorithm [34]. Briefy, LLL algorithm gives the basis an order, then always reduces the latter vector by the former ones, and after the reduction done, it trys to make the former one shorter (in the local projected lattice) by swapping contiguous vector pairs. The algorithm terminates when no more swap or reduction can be done. The first vector of the output basis is of length about 1.02^n times the Gaussian heuristic in practice (see [9]), and the running time is polynomial in n, where n is the dimension of the lattice.

BKZ algorithm replaces the *swap* in LLL algorithm by a full enumeration in the local projected lattice to get shorter vector. This vector will be inserted into the basis at a preselected place, and we use an LLL algorithm to remove the linear dependency. The size of the local projected lattice is fixed and the place to do enumeration is pre-specified. Same as LLL algorithm, BKZ algorithm terminates when no nontrivial insertion can be done. The algorithm works as follows:

The running time of BKZ algorithm increases while the blocksize increase. It is not proved to be polynomial in n (the dimension) for fixed blocksize. But for small blocksize d (for example d < 20), the algorithm always terminates in reasonable time and the output quality is significantly improved. For d = 20 and n sufficiently large, the shortest vector it founds has length around 1.0128^n times the Gaussian heuristic (see [9]).

Algorithm 1: BKZ algorithm

Input: a basis $B = (\mathbf{b}_1, \cdots, \mathbf{b}_n)$, blocksize d Output: A BKZ-d reduced basis 1 LLL(B); while last epoch did a nontrivial insertion do for $i = 1, 2, \dots, n - 1$ do 2 $h = \max(i + d - 1, n);$ 3 $\mathbf{v} = \text{full} \operatorname{enum}(L_{[i,h]}); //\text{find shortest vector by enumeration}$ $\mathbf{4}$ $\mathbf{5}$ if $\|\mathbf{v}\| < \|\mathbf{b}_i\|$ then LLL($\mathbf{b}_1, \cdots, \mathbf{b}_{i-1}, \mathbf{v}, \mathbf{b}_i, \cdots, \mathbf{b}_{\max(h+1,n)}$); 6 else 7 | LLL($\mathbf{b}_1, \cdots, \mathbf{b}_{\max(h+1,n)}$); 8

3.2 BKZ2.0

In 2011, Chen-Nguyen gives several improvements on the original BKZ algorithm [5], which makes BKZ algorithm with a high blocksize ($d \sim 100$) practicable. The root Hermite factor of the output vector is improved to about 1.0095. They mainly did the following:

The first point is that, for a large blocksize d ($d \ge 40$), before no new insertion can be done, there is a long time that the quality of the basis improves poorly [14]. So they used the *early abort* technique to stop the algorithm as soon as the quality of the basis not improved further. This provides an exponential speed up in practice [9] without degenerating the output quality.

They also did some modification on the enumeration step. For a larger blocksize d, experiments shows the running time of BKZ is dominant by the enumeration subroutine. They used pruned enumeration instead of the full enumeration, a proper pruning can give an exponential speed up $(2^{d/4})$ while still output the shortest vector with a high probability. They further give a *extreme pruning* technique [10], which repeat a further pruned enumeration which output the shortest vector with a low probability for several times. This leads to a speed up of $2^{d/2}$.

Another thing they did is to preprocessing the basis before the enumeration, since the nodes to enumerate will be fewer if the basis has a better quality. Taking some time to do a light reduction will largely reduce the enumeration time, in BKZ 2.0 they choose a BKZ algorithm with a small blocksize as preprocessing.

3.3 progressive BKZ

Progressive BKZ mainly means to progressively enlarge the blocksize while doing reduction. The key idea is if an enumeration with low dimension can further reduce the lattice, there is no need to use a much larger dimension since the cost of SVP is at least exponential in the dimension. This technique was mentioned in several studies including [5,33,36,15]. These works mainly different from the way they increase the blocksize. In 2016, [2] did a precise Cost Estimation of the

progressive BKZ, and gives an optimized blocksize strategy. In their estimation, to do a BKZ-100 in an 800 dimensional lattice, their progressive BKZ is $2^2.7$ times faster than BKZ 2.0. And it's estimated to be 50 times faster than BKZ 2.0 for solving SVP challenges (see [30]) up to dimension 160.

4 Several improvements about BKZ algorithm

In this section we will give several techniques to further accelerate the BKZ algorithm. These techniques can be used to BKZ based on both sieving and enumeration type SVP subroutine. And one can use it almost for free (except for large final run for sieving, which requires more memory) to get a considerable acceleration in practice.

4.1 local basis processing instead of insertion

Currently We have two types of SVP algorithm, enumeration and sieving. Sieving is faster but requires large space which grows exponential in the sieving dimension. To do a large sieve or enumeration with the hope of finding the shortest vector is generally not the best choice.

The nodes to enumerate grow as the basis gets worse [10], so we always do some preprocessing as in BKZ2.0. The whole enumeration process not only gives a short vector, but also a rather good basis. For sieving, we often use the left progressive sieve to accelerate, whose speed also relies on the quality of the basis. And we need the first several entries in the distance vector to be short to get a large dimension for free, which saves both time and memory (for sieving techniques, see [1]). Thus it will not lead to much further cost to get a good basis.

Only insert one short vector like the original BKZ algorithm or BKZ2.0 will waste the almost *free* basis. It's generally better to compute the transform matrix of local processing (on the local projected lattice) and apply it on the vectors of the original basis (succeed by a size reduction). Then the next local basis to apply the SVP algorithms is already only little bit worse than an HKZ reduced basis. An obvious gain is we need no more preprocessing for it. And this is also the fundamental of the next technique.

4.2 jump by two or more

After we do a local basis processing with blocksize d, the first vector will be short, and it's easy to see that the next few vector is not too long also. If we make our sieving context jump to right by two indices or more, say we jump ssteps after each SVP subroutine, we accelerate by factor s while not degenerating the quality much.

Here a crucial point is to use a blocksize slightly larger than we require. For instance, If we want to do a BKZ with blocksize d, we can choose a d' = d + s, then every time we jump s steps. The result will not be worse than after a tour

of BKZ-d without jump technique (actually better), if the output basis has the similar quality as a *HKZ-reduced* basis. After the modification, the number of SVP subroutine is only $\frac{1}{s}$ as before, and for each subroutine, the cost is $2^{0.36s}$ (practically, when $d \sim 90$) as before if we use SVP algorithm based on 3-sieve. Take s = 4 we get a speed up of at least $2^{0.56}$, There is a detailed analysis of jump based on simulation of BKZ algorithm in the next section. The analysis there shows we can generally get a speed up of $2^{1.75}$.

We notice that in [1] they also tried a technique called PumpNJump. They set the jumping step to be 3, and the gain is about $2^{0.2}$ (estimated form Fig. 4 in their paper) when the blocksize is high. We guess it's mainly because they did not use a large enough blocksize.

4.3 reduce only when we need

In practical use, we usually don't need the whole BKZ reduced basis. What we want is just a short vector (in lattice challenge) or make the tail of the distance vector large enough such that the key can be got from a size reduction (in real attack of lattice based cryptography). We only introduce the case of lattice challenge here since the another is totally similar.

For example, if we want to do BKZ-100 on a 700 dimensional lattice. For the last 6 tour of SVP subroutine, we don't need to visit all index. In fact we just need to visit the index in [1, 600], [1, 500], [1, 400], [1, 300], [1, 200], [1, 100]respectively since doing BKZ on [1, m] only relates to the first m + 99 vectors. This way we can save half of the time for the last 6 epoch. Notice that if we use a progressively larger blocksize, even if we jump by two or more usually we stay on one dimension for only $3 \sim 4$ tours. It at least saves constant ratio of time since currently the best SVP algorithm takes exponential time. This technique can be used totally for free.

4.4 a large final run

In BKZ for large dimensional lattice, we can choose a much larger dimension d in last SVP subroutine (working on [1, d]) to get a much shorter vector, to save the time for several tours of SVP subroutine with a normal blocksize. Since one tour costs $n/s \cdot T_{svp}$, which is much larger than an SVP subroutine, this method works well in practice (If we are search for the secret key hidden in the lattice, just do a large enumeration or sieving at the tail of the basis). A detailed analysis based on simulation of BKZ is presented in next section.

5 Lattice challenges and the simulation of BKZ

5.1 ideal lattice challenges

The Ideal Lattice challenge [27] was started at 2012. It provides many different ideal lattices with dimension up to 1024. The original goal of this challenge is

to test the algorithms for finding short vector in ideal lattice. But we will treat it as high dimensional random lattices to test our BKZ techniques. For each given lattice, a vector shorter than $1.05 \cdot \text{gh}(L)$ can enter SVP Hall of Fame and a vector shorter than $n \cdot \det(L)^{\frac{1}{n}}$ can enter Approximate SVP Hall of Fame. We find a vector of norm 670275 in a 656 dimensional lattice, the root Hermite Factor is about 1.010.

This challenge was first finished in the summer of 2021, we used a laptop with Intel Core i7-7500U cpu (2.70 GHz) and a none optimized c++ program which was modified several times while running. The total cost is about 700 core-hours (the information uploaded to the website of ideal lattice challenge is wrong). Later we optimized the program and rerun it on a Xeon Silver 4208 CPU (2.10GHz). It takes only 380 core hours, much faster than the previous record which takes 4637 thread hours to solve a 652-dimensional approximate SVP challenge.

For the SVP subroutine, to get a reduced basis we used a variant of DeepBKZ [37]. DeepBKZ replaces the LLL in the original BKZ algorithm by DeepLLL (see [34]), which allows an operation called *deep insertion*. We modified the algorithm by further check for all short vectors from an enumeration if it can be inserted into some former place, and always choose the candidate that can be inserted the deepest. For 20 random lattices (dim = 96) with determinant 1000, we run our modified DeepBKZ for 800 seconds, and compute the average of the distance vectors, we take square root of each element and presented it below (the Gaussian Heuristic is 2442):

 $\begin{bmatrix} 2515 \ 2519 \ 2491 \ 2442 \ 2445 \ 2409 \ 2378 \ 2352 \ 2301 \ 2271 \ 2255 \ 2208 \ 2184 \ 2152 \ 2113 \ 2080 \ 2059 \ 2041 \\ 1981 \ 1948 \ 1939 \ 1882 \ 1871 \ 1842 \ 1826 \ 1790 \ 1761 \ 1735 \ 1689 \ 1670 \ 1624 \ 1585 \ 1583 \ 1538 \ 1521 \ 1467 \ 1445 \\ 1401 \ 1356 \ 1344 \ 1303 \ 1269 \ 1249 \ 1213 \ 1192 \ 1153 \ 1128 \ 1110 \ 1061 \ 1044 \ 1010 \ 991 \ 955 \ 929 \ 899 \ 880 \ 865 \\ 837 \ 819 \ 800 \ 760 \ 746 \ 728 \ 705 \ 684 \ 665 \ 652 \ 630 \ 618 \ 595 \ 580 \ 563 \ 541 \ 533 \ 518 \ 504 \ 491 \ 479 \ 466 \ 459 \ 448 \\ 433 \ 417 \ 412 \ 399 \ 386 \ 380 \ 362 \ 360 \ 352 \ 341 \ 332 \ 323 \ 321 \ 327 \end{bmatrix}$

These shows our SVP algorithm performs essentially on the same order of magnitude as [2]'s, so the acceleration of the whole task $(4637/380 \approx 2^{3.6})$ mainly comes from the techniques in the previous section. And we did not use a highly optimized blocksize strategy which may give further speed up.

5.2 simulation and analysis

It is easy to simulate the BKZ based on local processing if we know the behavior of the SVP algorithm. Actually the only we need is the (average) distance vector of basis after running the SVP subroutine.

To measure the quality of a basis, we introduce the following notation:

$$\operatorname{Pot}(L) = \prod_{i=1}^{n} B_i^{n+1-i}$$

now we can analyze the techniques in the previous section.

8 Ziyu Zhao, Jintai Ding

Algorithm 2: Simulation of BKZ algorithmInput: a distance vector $[B_1, B_2, \cdots, B_n]$, blocksize d and an average distance
vector $[D_1, \cdots, D_d]$ Output: the new distance vector after run one tour of BKZ d1 Divide D_i 's by some number to make $\prod_{i=1}^{d} D_i = 1$;2 for $s = 1, \cdots, n - d + 1$ do3det $= (\prod_{i=s}^{s+d-1} B_i)^{\frac{1}{d}}$;4for $i = 0, \cdots, d - 1$ do5 $B_{i+s} = \det \cdot D_{i+1}$;

jump by two or more We take a reduced 700 dimensional lattice (from ideal lattice challenge) and compute its distance vector, to compare the jumping s-trategies. The determinant is 1023.35^{700} and the root Hermite factor of the first vector is 1.010205, corresponds to blocksize ≈ 80 . we generate the *ideal* distance vector of the HKZ-reduced basis of dimension from 80 to 94 by Algorithm 3, which is based on Gaussian Heuristic (this distance vector will be slight better than the average of real samples, since for real samples sometimes the algorithm unluckily failed to find the shortest one, but it can not find a vector shorter than the shortest vector even if we are very lucky. This will not affect the results we get since we only interested in the speed up ratio):

Algorithm 3: generate <i>ideal</i> distance vector								
Input : dimension d and an average distance vector $[D_1, \dots, D_60]$ for								
60-dimensional HKZ-basis (get from real samples)								
Output : the <i>ideal</i> distance vector								
1 det = 1.0;								
2 for $i = 1, \dots, d - 60$ do								
3 $A_i = \det \frac{1}{d-i+1} \cdot \frac{\Gamma(\frac{d-i+1}{2}+1) \frac{1}{d-i+1}}{\sqrt{\pi}};$								
$4 \ \ \det = \det / A_i;$								
$5 \ \det = \det \frac{1}{60};$								
6 for $i = d - 59, \dots, d$ do								
$7 \bigsqcup[A_i = D_{i-d+60} \cdot \det;]$								
8 return $[A_1, \cdots, A_d]$								

We run the simulation for different dimensions and different jumping steps, the result is in the following tables. We set the cost of an 80 dimensional subroutine to be 1, and the cost of 80 + i dimensional subroutine to be $2^{0.36i}$ (based on the performance of 3-sieve in practical, dim ~ 90).

The first table shows the cost and the change of Pot after one tour of local processing if we only jump one index each time. The result shows it's optimal

9

blocksize	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
$ \begin{array}{c} \text{cost} \\ \Delta \text{Pot} \end{array} $	622 -408	$797 \\ 179$	1021 788	$1309 \\ 1417$	$1676 \\ 2069$	$2149 \\ 2741$	2753 3434	$3528 \\ 4149$	4520 4884	$5792 \\ 5641$	7421 6418	$9509 \\ 7217$	$12184 \\ 8036$	$15611 \\ 8875$	20003 9736
$\frac{\Delta \mathrm{Pot}}{\mathrm{cost}}$	-0.66	0.22	0.77	1.08	1.23	1.27	1.25	1.18	1.08	0.97	0.86	0.76	0.66	0.57	0.49

Table 1. Jumping step = 1

Table 2. best jumping step for different blocksize

blocksize	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
optimal step	1	1	2	3	4	5	6	7	8	9	9	10	12	12	13
$\frac{\Delta \text{Pot}}{\text{cost}}$	-0.66	0.22	0.94	1.81	2.62	3.28	3.79	4.11	4.24	4.26	4.15	3.97	3.72	3.45	3.15

to choose blocksize to be 85 (always assume we have enough RAM for sieving!) and Pot decreases 1.27 per cost. The second table shows the optimal jumping step with different blocksize. We can see if we take the blocksize to be a little bit larger, we can decrease the Pot 4.26 per cost. The jumping technique lead to a speed up of $4.26/1.27 \approx 2^{1.75}$, more than $2^{0.56}$ mentioned in the previous section, as expected.

a large final run For a given lattice, Pot is an increase function in the root Hermite factor of the first vector in the basis, if we accept the GSA assumption [32]. So always choosing the blocksize and jumping step such that Pot of the lattice decrease the fastest is optimal in a certain sense. For the same 700 dimensional lattice, we used a brute force search to find the following optimal reduction path:

num tours	blocksize	step	$\left \text{cost} \right $	total cost	$\ \mathbf{b}_1\ $
1	89	9	652	652	1230727
2	89	8	737	1399	1217066
3	89	8	737	2125	1203294
4	90	9	836	2962	1184848
5	90	8	836	3908	1172181
6	90	8	945	4854	1158387
7	91	9	945	5928	1140806
8	91	8	1073	7142	1128556
9	91	8	1214	8356	1115499
10	91	8	1214	9570	1103897

Table 3. the optimal BKZ path

10 Ziyu Zhao, Jintai Ding

If we want a vector with norm 1100000 by BKZ tours, the table shows the cost is more than 9570. But a straightforward computation based on Gaussian Heuristic shows that an SVP subroutine on the first 110 vector can also do this, which only costs 1782. So the large final run saves the time of the final 8 tours of BKZ in this example.

We can search the optimal time to do a final run by a brute force search since the cost of simulation is neglectable. For instance if we want a vector of length 350000, we have the following graph

Fig. 1. part of the optimal reduction path

After each tour, we draw the current cost (blue points) and the total cost if we use a final run to get a vector shorter than 350000 now (red points) on the graph. It shows that if we do a final run when the length is about 388000 the total cost will be $2^{25.495}$, less than $2^{26.52}$ if we simply run the BKZ tours. We can save more than half of the time with this technique (the time to get BKZ-80 reduce is negelectable here). Note that with a sieving based SVP algorithm, this technique will cost more RAM. In this example, the blocksize of the final run will be 144, and we need blocksize only 129 if we only do BKZ tours, so the RAM we need grows 2^3 times. We can also get $2^{0.55}$ faster if we stop at about 366000, which requires one times more RAM. Anyway, this is completely for free enumeration based algorithms.

References

- Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: IACR Cryptol. ePrint Arch. (2019) 4.1, 4.2
- Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive bkz algorithms and their precise cost estimation by sharp simulator. In: EUROCRYPT (2016) 1, 3.3, 5.1

11

- Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: IACR Cryptol. ePrint Arch. (2015) 1
- Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent messages. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. pp. 505–524. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 1
- Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: ASIACRYPT (2011) 1, 3.2, 3.3
- Coppersmith, D., Shamir, A.: Lattice attacks on ntru. In: Fumy, W. (ed.) Advances in Cryptology — EUROCRYPT '97. pp. 52–61. Springer Berlin Heidelberg, Berlin, Heidelberg (1997) 1
- 7. Fincke, U., Pohst, M.E.: Improved methods for calculating vectors of short length in a lattice. Mathematics of Computation (1985) 1
- Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Advances in Cryptology – Proceedings of EUROCRYPT '10. LNCS, vol. 6110. Springer (2010) 1
- Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: EUROCRYPT (2008) 2, 3.1, 8, 3.2
- Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: EUROCRYPT (2010) 3.2, 4.1
- Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM symposium on Theory of computing. pp. 169–178 (2009) 1
- Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007), https://ia.cr/2007/432 1
- Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) Coding and Cryptology. pp. 159–190. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 1
- 14. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: CRYPTO (2011) 3.2
- Haque, M.M., Rahman, M.O.: Analyzing progressive-bkz lattice reduction algorithm. International Journal of Computer Network and Information Security (2019) 3.3
- Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 267–288. Springer Berlin Heidelberg, Berlin, Heidelberg (1998) 1
- Kannan, R.: Improved algorithms for integer programming and related lattice problems. Proceedings of the fifteenth annual ACM symposium on Theory of computing (1983) 1
- Lenstra, A.K., Lenstra, H.W., Lovász, L.M.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982) 1
- Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption. In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011. pp. 319–339. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 1
- Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147–191. Springer Berlin Heidelberg, Berlin, Heidelberg (2009), https://doi.org/10.1007/ 978-3-540-88702-7_5 1

- 12 Ziyu Zhao, Jintai Ding
- 21. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem 1
- Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. Electron. Colloquium Comput. Complex. 17, 14 (2010) 1
- 23. Nguyen, P.Q.: Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from crypto '97. In: CRYPTO (1999) 1
- Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures. In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Lecture Notes in Computer Science, vol. 4004, pp. 271–288. Springer (2006), https://iacr.org/archive/eurocrypt2006/40040273/40040273.pdf 1
- 25. Nguyen, P.Q., Valle, B.: The lll algorithm survey and applications. In: Information Security and Cryptography (2010) 1
- Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology 2(2), 181-207 (2008), https:// doi.org/10.1515/JMC.2008.009 1
- 27. Plantard, T., Schneider, M.: Creating a challenge for ideal lattices. Cryptology ePrint Archive, Report 2013/039 (2013), https://ia.cr/2013/039 1, 5.1
- Pohst, M.E.: On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications. SIGSAM Bull. 15, 37–44 (1981) 1
- 29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: In STOC. pp. 84–93. ACM Press (2005) 1
- 30. Schneider, M., Gama, N.: Darmstadt svp challenges. https://www.latticechallenge.org/svp-challenge/index.php (2010) 3.3
- Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987) 1
- 32. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: STACS (2003) 8
- 33. Schnorr, C.P.: Accelerated and improved slide-and lll-reduction (2012) 3.3
- Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming 66, 181–199 (1994) 1, 3.1, 5.1
- Schnorr, C.P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved lattice reduction. In: Advances in Cryptology - EUROCRYPT '95, International Conference on the Theory and Application of Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995, Proceeding. Lecture Notes in Computer Science, vol. 921, pp. 1–12. Springer (1995) 1
- Schnorr, C.P., Shevchenko, T.: Solving subset sum problems of densioty close to 1 by "randomized" bkz-reduction. IACR Cryptol. ePrint Arch. 2012, 620 (2012) 3.3
- Yamaguchi, J., Yasuda, M.: Explicit formula for gram-schmidt vectors in lll with deep insertions and its applications. In: NuTMiC (2017) 5.1