
Several Improvements on BKZ Algorithm

Ziyu Zhao, Jintai Ding

Tsinghua University, Beijing

Abstract. Lattice problem such as NTRU problem and LWE problem
is widely used as the security base of post-quantum cryptosystems. And
currently doing lattice reduction by BKZ algorithm is the most efficient
way to solve it. In this paper, we give several further improvements on
BKZ algorithm, which can be used for different SVP subroutines base
on both enumeration and sieving. These improvements in combination
provide a speed up of 23∼4 in total. It is significant in concrete attacks.
Using these new techniques, we solved the 656 dimensional ideal lat-
tice challenge in only 380 thread hours (also with a enumeration based
SVP subroutine), much less than the previous records (which costs 4600
thread hours in total). With these improvements enabled, we can still
simulate the new BKZ algorithm easily. One can also use this simulator
to find the blocksize strategy (and the corresponding cost) to make Pot
of the basis (defined in section 5.2) decrease as fast as possible, which
means the length of the first basis vector decrease the fastest if we ac-
cept the GSA assumption. It is useful for analyzing concrete attacks on
lattice-based cryptography.

1 Introduction

Lattice based cryptography is nowadays an important part of post-quantum
cryptography because it’s fast and widely used in fully homomorphic encryption
[11,4]. The security of it mainly based on some lattice problems, such as learning
with error problem (LWE) [12,20,29] and ntru problem [16]. These problems can
be reduced to approximate shortest vector problem (ASVP) [24,23,6,19], i.e. to
find a relatively short vector given a lattice basis. And currently lattice reduction
is the most efficient way to solve such problems, thus it is important to know
the concrete hardness of ASVP.

Currently there are two types of algorithm to find short vector in the lattice
given a lattice basis. One is SVP algorithms like enumeration [28,17,7,34,35,8]
and sieving [13,26,21,22,3], which can find almost the shortest vector in the
lattice but the cost is at least exponential in the dimension of lattice. These
SVP algorithms can only be applied to lattice with a small dimension. Another
type of algorithm, for instance LLL algorithm [18,25] and BKZ algorithm can
work on high dimensional lattice in a realistic time. LLL algorithm is extremely
fast and often used as preprocessing, BKZ algorithm gives a bridge from shortest
vector in small dimension to short vector with the same root Hermite factor in
high dimension.

2 Ziyu Zhao, Jintai Ding

BKZ algorithm [34,31] were first proposed by Schnorr in the 80’s. It does
enumeration on local blocks to find short vector then insert the new vector in
the basis. Larger local blocksize gives shorter vector and cost more time. In 2011,
Chen-Nguyen used some pruning technique in the enumeration step, it makes
BKZ algorithm with a higher local blocksize practicable [5]. In 2016, Yuntao
Wang et al. proposed their improved progressive BKZ [2], they get an optimized
blocksize strategy based on their simulation of the total enumeration cost. It
starts with a small blocksize, and increase it in a well organized manner, makes
the algorithm significantly faster.

In this paper, we will give several further improvements on BKZ algorithm,
and applied these techniques in lattice reduction with a SVP subroutine based
on enumeration (these techniques can also be applied to sieving based SVP
subroutine well). We implemented the new BKZ algorithm and tested it on
Ideal lattice challenges [27] (the ideal lattice structure is never used), the running
result shows we get a speed up with a factor 23∼4, which may be further improved
since we did not used a well organized progressive BKZ (our blocksize are simply
80, 88, 96, · · ·). Moreover our new BKZ algorithm is still easy to simulate (as BKZ
2.0) if we know the behavior of the SVP subroutine well.

Road map. In section 2, we present some basic facts about lattice and intro-
duce the notations. Then in section 3, we will recall the developments of BKZ
algorithm in the history. Our further improvements on BKZ will be given in sec-
tion 4. The information about the lattice challenge and the simulation of BKZ
algorithm is in section 5.

2 Preliminaries

Lattice is discrete subgroup in Rm. A lattice L admits an integral basis B =
{b1,b2, · · · ,bn} such that each vector v in L can be represented uniquely as
linear combination with integral coefficients of B. We say n is the dimension of
the lattice. The determinant of the lattice is defined to be

√
det(BBT) which is

equal to the absolute value of det(B) if m = n.

Gaussian Heuristic Because of the discreteness, the shortest vector in L exists
(not unique in general). It is extremely hard to compute the shortest vector
(proved to be NP-hard problem), but the length of it is estimated to be

Γ (n2 + 1)
1
n

√
π

· det(L) 1
n ≈

√
n

2πe
· det(L) 1

n

when the lattice is random and n is not too small. In practice it works well if
n > 40.

Several Improvements on BKZ Algorithm 3

Gram-Schmidt orthogonalization The Gram-Schmidt orthogonalization of
B is given by B∗ = (b∗

1, · · · ,b∗
n) where b∗

i is defined by

b∗
i = bi −

i−1∑
j=1

µijb
∗
j , µij =

⟨bi,b
∗
j ⟩

∥b∗
j∥2

we further denote by Bi the square of ∥B∗
i ∥, we will call [B1, B2, · · · , Bn] the

distance vector of the basis B. The distance vector of a basis contains lots of
information about this notation will be heavily used in the analysis of BKZ
algorithm. we should also introduce the concept of local projected lattice. Let πi

be the orthogonal projection to span(b1, · · · ,bi−1)
⊥. Then we define the local

projected lattice L[i,j] to be the lattice spanned by B[i,j] = (πi(bi), · · · , πi(bj)).

Root Hermite Factor For a vector v in a n dimensional lattice L, we define
the root Hermite factor to be

δ = rHF(v) =
∥v∥

det(L)

1
n

as in [9], the root Hermite factor measures the quality of the vector. The hardness
to get a vector of certain length mainly depends on its root Hermite factor.

3 history of BKZ algorithm

3.1 the original algorithm

The first version of BKZ algorithm was proposed by Schnorr and Euchner as a
generalization of the famous LLL algorithm [34]. Briefy, LLL algorithm gives the
basis an order, then always reduces the latter vector by the former ones, and after
the reduction done, it trys to make the former one shorter (in the local projected
lattice) by swapping contiguous vector pairs. The algorithm terminates when no
more swap or reduction can be done. The first vector of the output basis is of
length about 1.02n times the Gaussian heuristic in practice (see [9]), and the
running time is polynomial in n, where n is the dimension of the lattice.

BKZ algorithm replaces the swap in LLL algorithm by a full enumeration in
the local projected lattice to get shorter vector. This vector will be inserted into
the basis at a preselected place, and we use an LLL algorithm to remove the linear
dependency. The size of the local projected lattice is fixed and the place to do
enumeration is pre-specified. Same as LLL algorithm, BKZ algorithm terminates
when no nontrivial insertion can be done. The algorithm works as follows:

The running time of BKZ algorithm increases while the blocksize increase.
It is not proved to be polynomial in n (the dimension) for fixed blocksize. But
for small blocksize d (for example d < 20), the algorithm always terminates in
reasonable time and the output quality is significantly improved . For d = 20
and n sufficiently large, the shortest vector it founds has length around 1.0128n

times the Gaussian heuristic (see [9]).

4 Ziyu Zhao, Jintai Ding

Algorithm 1: BKZ algorithm
Input: a basis B = (b1, · · · ,bn), blocksize d
Output: A BKZ-d reduced basis

1 LLL(B); while last epoch did a nontrivial insertion do
2 for i = 1, 2, · · · , n− 1 do
3 h = max(i+ d− 1, n);
4 v = full_enum(L[i,h]); //find shortest vector by enumeration
5 if ∥v∥ < ∥bi∥ then
6 LLL(b1, · · · ,bi−1,v,bi, · · · ,bmax(h+1,n));
7 else
8 LLL(b1, · · · ,bmax(h+1,n));

3.2 BKZ2.0

In 2011, Chen-Nguyen gives several improvements on the original BKZ algorithm
[5], which makes BKZ algorithm with a high blocksize (d ∼ 100) practicable.
The root Hermite factor of the output vector is improved to about 1.0095. They
mainly did the following:

The first point is that, for a large blocksize d (d > 40), before no new insertion
can be done, there is a long time that the quality of the basis improves poorly
[14]. So they used the early abort technique to stop the algorithm as soon as the
quality of the basis not improved further. This provides an exponential speed up
in practice [9] without degenerating the output quality.

They also did some modification on the enumeration step. For a larger block-
size d, experiments shows the running time of BKZ is dominant by the enumera-
tion subroutine. They used pruned enumeration instead of the full enumeration,
a proper pruning can give an exponential speed up (2d/4) while still output the
shortest vector with a high probability. They further give a extreme pruning
technique [10], which repeat a further pruned enumeration which output the
shortest vector with a low probability for several times. This leads to a speed up
of 2d/2.

Another thing they did is to preprocessing the basis before the enumeration,
since the nodes to enumerate will be fewer if the basis has a better quality. Taking
some time to do a light reduction will largely reduce the enumeration time, in
BKZ 2.0 they choose a BKZ algorithm with a small blocksize as preprocessing.

3.3 progressive BKZ

Progressive BKZ mainly means to progressively enlarge the blocksize while doing
reduction. The key idea is if an enumeration with low dimension can further
reduce the lattice, there is no need to use a much larger dimension since the cost
of SVP is at least exponential in the dimension. This technique was mentioned
in several studies including [5,33,36,15]. These works mainly different from the
way they increase the blocksize. In 2016, [2] did a precise Cost Estimation of the

Several Improvements on BKZ Algorithm 5

progressive BKZ, and gives an optimized blocksize strategy. In their estimation,
to do a BKZ-100 in an 800 dimensional lattice, their progressive BKZ is 22.7
times faster than BKZ 2.0. And it’s estimated to be 50 times faster than BKZ
2.0 for solving SVP challenges (see [30]) up to dimension 160.

4 Several improvements about BKZ algorithm

In this section we will give several techniques to further accelerate the BKZ
algorithm. These techniques can be used to BKZ based on both sieving and
enumeration type SVP subroutine. And one can use it almost for free (except
for large final run for sieving, which requires more memory) to get a considerable
acceleration in practice.

4.1 local basis processing instead of insertion

Currently We have two types of SVP algorithm, enumeration and sieving. Sieving
is faster but requires large space which grows exponential in the sieving dimen-
sion. To do a large sieve or enumeration with the hope of finding the shortest
vector is generally not the best choice.

The nodes to enumerate grow as the basis gets worse [10], so we always
do some preprocessing as in BKZ2.0. The whole enumeration process not only
gives a short vector, but also a rather good basis. For sieving, we often use the
left progressive sieve to accelerate, whose speed also relies on the quality of the
basis. And we need the first several entries in the distance vector to be short to
get a large dimension for free, which saves both time and memory (for sieving
techniques, see [1]). Thus it will not lead to much further cost to get a good
basis.

Only insert one short vector like the original BKZ algorithm or BKZ2.0 will
waste the almost free basis. It’s generally better to compute the transform matrix
of local processing (on the local projected lattice) and apply it on the vectors
of the original basis (succeed by a size reduction). Then the next local basis to
apply the SVP algorithms is already only little bit worse than an HKZ reduced
basis. An obvious gain is we need no more preprocessing for it. And this is also
the fundamental of the next technique.

4.2 jump by two or more

After we do a local basis processing with blocksize d, the first vector will be
short, and it’s easy to see that the next few vector is not too long also. If we
make our sieving context jump to right by two indices or more, say we jump s
steps after each SVP subroutine, we accelerate by factor s while not degenerating
the quality much.

Here a crucial point is to use a blocksize slightly larger than we require. For
instance, If we want to do a BKZ with blocksize d, we can choose a d′ = d+ s,
then every time we jump s steps. The result will not be worse than after a tour

6 Ziyu Zhao, Jintai Ding

of BKZ-d without jump technique (actually better), if the output basis has the
similar quality as a HKZ-reduced basis. After the modification, the number of
SVP subroutine is only 1

s as before, and for each subroutine, the cost is 20.36s

(practically, when d ∼ 90) as before if we use SVP algorithm based on 3-sieve.
Take s = 4 we get a speed up of at least 20.56, There is a detailed analysis of
jump based on simulation of BKZ algorithm in the next section. The analysis
there shows we can generally get a speed up of 21.75.

We notice that in [1] they also tried a technique called PumpNJump. They
set the jumping step to be 3, and the gain is about 20.2 (estimated form Fig.
4 in their paper) when the blocksize is high. We guess it’s mainly because they
did not use a large enough blocksize.

4.3 reduce only when we need

In practical use, we usually don’t need the whole BKZ reduced basis. What we
want is just a short vector (in lattice challenge) or make the tail of the distance
vector large enough such that the key can be got from a size reduction (in
real attack of lattice based cryptography). We only introduce the case of lattice
challenge here since the another is totally similar.

For example, if we want to do BKZ-100 on a 700 dimensional lattice. For
the last 6 tour of SVP subroutine, we don’t need to visit all index. In fact
we just need to visit the index in [1, 600], [1, 500], [1, 400], [1, 300], [1, 200], [1, 100]
respectively since doing BKZ on [1,m] only relates to the first m + 99 vectors.
This way we can save half of the time for the last 6 epoch. Notice that if we use
a progressively larger blocksize, even if we jump by two or more usually we stay
on one dimension for only 3 ∼ 4 tours. It at least saves constant ratio of time
since currently the best SVP algorithm takes exponential time. This technique
can be used totally for free.

4.4 a large final run

In BKZ for large dimensional lattice, we can choose a much larger dimension
d in last SVP subroutine (working on [1, d]) to get a much shorter vector, to
save the time for several tours of SVP subroutine with a normal blocksize. Since
one tour costs n/s · Tsvp, which is much larger than an SVP subroutine, this
method works well in practice (If we are search for the secret key hidden in the
lattice, just do a large enumeration or sieving at the tail of the basis). A detailed
analysis based on simulation of BKZ is presented in next section.

5 Lattice challenges and the simulation of BKZ

5.1 ideal lattice challenges

The Ideal Lattice challenge [27] was started at 2012. It provides many different
ideal lattices with dimension up to 1024. The original goal of this challenge is

Several Improvements on BKZ Algorithm 7

to test the algorithms for finding short vector in ideal lattice. But we will treat
it as high dimensional random lattices to test our BKZ techniques. For each
given lattice, a vector shorter than 1.05 · gh(L) can enter SVP Hall of Fame and
a vector shorter than n · det(L) 1

n can enter Approximate SVP Hall of Fame.
We find a vector of norm 670275 in a 656 dimensional lattice, the root Hermite
Factor is about 1.010.

This challenge was first finished in the summer of 2021, we used a laptop
with Intel Core i7-7500U cpu (2.70 GHz) and a none optimized c++ program
which was modified several times while running. The total cost is about 700
core-hours (the information uploaded to the website of ideal lattice challenge
is wrong). Later we optimized the program and rerun it on a Xeon Silver 4208
CPU (2.10GHz). It takes only 380 core hours, much faster than the previous
record which takes 4637 thread hours to solve a 652-dimensional approximate
SVP challenge.

For the SVP subroutine, to get a reduced basis we used a variant of DeepBKZ
[37]. DeepBKZ replaces the LLL in the original BKZ algorithm by DeepLLL (see
[34]), which allows an operation called deep insertion. We modified the algorithm
by further check for all short vectors from an enumeration if it can be inserted
into some former place, and always choose the candidate that can be inserted
the deepest. For 20 random lattices (dim = 96) with determinant 1000, we run
our modified DeepBKZ for 800 seconds, and compute the average of the distance
vectors, we take square root of each element and presented it below (the Gaussian
Heuristic is 2442):

[2515 2519 2491 2442 2445 2409 2378 2352 2301 2271 2255 2208 2184 2152 2113 2080 2059 2041

1981 1948 1939 1882 1871 1842 1826 1790 1761 1735 1689 1670 1624 1585 1583 1538 1521 1467 1445

1401 1356 1344 1303 1269 1249 1213 1192 1153 1128 1110 1061 1044 1010 991 955 929 899 880 865

837 819 800 760 746 728 705 684 665 652 630 618 595 580 563 541 533 518 504 491 479 466 459 448

433 417 412 399 386 380 362 360 352 345 341 332 323 321 327]

These shows our SVP algorithm performs essentially on the same order of
magnitude as [2]’s, so the acceleration of the whole task (4637/380 ≈ 23.6) mainly
comes from the techniques in the previous section. And we did not use a highly
optimized blocksize strategy which may give further speed up.

5.2 simulation and analysis

It is easy to simulate the BKZ based on local processing if we know the behavior
of the SVP algorithm. Actually the only we need is the (average) distance vector
of basis after running the SVP subroutine.

To measure the quality of a basis, we introduce the following notation:

Pot(L) =

n∏
i=1

Bn+1−i
i

now we can analyze the techniques in the previous section.

8 Ziyu Zhao, Jintai Ding

Algorithm 2: Simulation of BKZ algorithm
Input: a distance vector [B1, B2, · · · , Bn], blocksize d and an average distance

vector [D1, · · · , Dd]
Output: the new distance vector after run one tour of BKZ d

1 Divide Di’s by some number to make
∏d

i=1 Di = 1;
2 for s = 1, · · · , n− d+ 1 do
3 det = (

∏s+d−1
i=s Bi)

1
d ;

4 for i = 0, · · · , d− 1 do
5 Bi+s = det ·Di+1;

jump by two or more We take a reduced 700 dimensional lattice (from ideal
lattice challenge) and compute its distance vector, to compare the jumping s-
trategies. The determinant is 1023.35700 and the root Hermite factor of the first
vector is 1.010205, corresponds to blocksize ≈ 80. we generate the ideal distance
vector of the HKZ-reduced basis of dimension from 80 to 94 by Algorithm 3,
which is based on Gaussian Heuristic (this distance vector will be slight better
than the average of real samples, since for real samples sometimes the algorithm
unluckily failed to find the shortest one, but it can not find a vector shorter than
the shortest vector even if we are very lucky. This will not affect the results we
get since we only interested in the speed up ratio):

Algorithm 3: generate ideal distance vector
Input: dimension d and an average distance vector [D1, · · · , D60] for

60-dimensional HKZ-basis (get from real samples)
Output: the ideal distance vector

1 det = 1.0;
2 for i = 1, · · · , d− 60 do

3 Ai = det
1

d−i+1 · Γ (d−i+1
2

+1)
1

d−i+1
√
π

;
4 det = det /Ai;

5 det = det
1
60 ;

6 for i = d− 59, · · · , d do
7 Ai = Di−d+60 · det;
8 return [A1, · · · , Ad]

We run the simulation for different dimensions and different jumping steps,
the result is in the following tables. We set the cost of an 80 dimensional sub-
routine to be 1, and the cost of 80+ i dimensional subroutine to be 20.36i (based
on the performance of 3-sieve in practical, dim ∼ 90).

The first table shows the cost and the change of Pot after one tour of local
processing if we only jump one index each time. The result shows it’s optimal

Several Improvements on BKZ Algorithm 9

Table 1. Jumping step = 1

blocksize 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

cost 622 797 1021 1309 1676 2149 2753 3528 4520 5792 7421 9509 12184 15611 20003
∆Pot -408 179 788 1417 2069 2741 3434 4149 4884 5641 6418 7217 8036 8875 9736
∆Pot

cost
-0.66 0.22 0.77 1.08 1.23 1.27 1.25 1.18 1.08 0.97 0.86 0.76 0.66 0.57 0.49

Table 2. best jumping step for different blocksize

blocksize 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

optimal step 1 1 2 3 4 5 6 7 8 9 9 10 12 12 13
∆Pot

cost
-0.66 0.22 0.94 1.81 2.62 3.28 3.79 4.11 4.24 4.26 4.15 3.97 3.72 3.45 3.15

to choose blocksize to be 85 (always assume we have enough RAM for sieving!)
and Pot decreases 1.27 per cost. The second table shows the optimal jumping
step with different blocksize. We can see if we take the blocksize to be a little
bit larger, we can decrease the Pot 4.26 per cost. The jumping technique lead
to a speed up of 4.26/1.27 ≈ 21.75, more than 20.56 mentioned in the previous
section, as expected.

a large final run For a given lattice, Pot is an increase function in the root
Hermite factor of the first vector in the basis, if we accept the GSA assump-
tion [32]. So always choosing the blocksize and jumping step such that Pot of
the lattice decrease the fastest is optimal in a certain sense. For the same 700
dimensional lattice, we used a brute force search to find the following optimal
reduction path:

Table 3. the optimal BKZ path

num tours blocksize step cost total cost ∥b1∥
1 89 9 652 652 1230727
2 89 8 737 1399 1217066
3 89 8 737 2125 1203294
4 90 9 836 2962 1184848
5 90 8 836 3908 1172181
6 90 8 945 4854 1158387
7 91 9 945 5928 1140806
8 91 8 1073 7142 1128556
9 91 8 1214 8356 1115499
10 91 8 1214 9570 1103897

10 Ziyu Zhao, Jintai Ding

If we want a vector with norm 1100000 by BKZ tours, the table shows the
cost is more than 9570. But a straightforward computation based on Gaussian
Heuristic shows that an SVP subroutine on the first 110 vector can also do this,
which only costs 1782. So the large final run saves the time of the final 8 tours
of BKZ in this example.

We can search the optimal time to do a final run by a brute force search since
the cost of simulation is neglectable. For instance if we want a vector of length
350000, we have the following graph

Fig. 1. part of the optimal reduction path

After each tour, we draw the current cost (blue points) and the total cost if
we use a final run to get a vector shorter than 350000 now (red points) on the
graph. It shows that if we do a final run when the length is about 388000 the
total cost will be 225.495, less than 226.52 if we simply run the BKZ tours. We
can save more than half of the time with this technique (the time to get BKZ-80
reduce is negelectable here). Note that with a sieving based SVP algorithm, this
technique will cost more RAM. In this example, the blocksize of the final run
will be 144, and we need blocksize only 129 if we only do BKZ tours, so the
RAM we need grows 23 times. We can also get 20.55 faster if we stop at about
366000, which requires one times more RAM. Anyway, this is completely for free
enumeration based algorithms.

References

1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
IACR Cryptol. ePrint Arch. (2019) 4.1, 4.2

2. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive bkz algorithms
and their precise cost estimation by sharp simulator. In: EUROCRYPT (2016) 1,
3.3, 5.1

Several Improvements on BKZ Algorithm 11

3. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: IACR Cryptol. ePrint Arch.
(2015) 1

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Rogaway, P. (ed.) Advances in Cryp-
tology – CRYPTO 2011. pp. 505–524. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011) 1

5. Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: ASIACRYPT
(2011) 1, 3.2, 3.3

6. Coppersmith, D., Shamir, A.: Lattice attacks on ntru. In: Fumy, W. (ed.) Advances
in Cryptology — EUROCRYPT ’97. pp. 52–61. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997) 1

7. Fincke, U., Pohst, M.E.: Improved methods for calculating vectors of short length
in a lattice. Mathematics of Computation (1985) 1

8. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Advances in Cryptology – Proceedings of EUROCRYPT ’10. LNCS, vol. 6110.
Springer (2010) 1

9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: EUROCRYPT (2008)
2, 3.1, 8, 3.2

10. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: EUROCRYPT (2010) 3.2, 4.1

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009) 1

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007),
https://ia.cr/2007/432 1

13. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) Coding and Cryptology. pp. 159–190. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011) 1

14. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: CRYPTO (2011) 3.2

15. Haque, M.M., Rahman, M.O.: Analyzing progressive-bkz lattice reduction algorith-
m. International Journal of Computer Network and Information Security (2019)
3.3

16. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 267–288. Springer
Berlin Heidelberg, Berlin, Heidelberg (1998) 1

17. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. Proceedings of the fifteenth annual ACM symposium on Theory of computing
(1983) 1

18. Lenstra, A.K., Lenstra, H.W., Lovász, L.M.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515–534 (1982) 1

19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011. pp. 319–339. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011) 1

20. Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009), https://doi.org/10.1007/

978-3-540-88702-7_5 1

https://ia.cr/2007/432
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5

12 Ziyu Zhao, Jintai Ding

21. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem 1

22. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. Electron. Colloquium
Comput. Complex. 17, 14 (2010) 1

23. Nguyen, P.Q.: Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from
crypto ’97. In: CRYPTO (1999) 1

24. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh and n-
tru signatures. In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. Lecture Notes in Computer Science, vol. 4004, pp. 271–288. Springer (2006),
https://iacr.org/archive/eurocrypt2006/40040273/40040273.pdf 1

25. Nguyen, P.Q., Valle, B.: The lll algorithm - survey and applications. In: Information
Security and Cryptography (2010) 1

26. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology 2(2), 181–207 (2008), https://

doi.org/10.1515/JMC.2008.009 1
27. Plantard, T., Schneider, M.: Creating a challenge for ideal lattices. Cryptology

ePrint Archive, Report 2013/039 (2013), https://ia.cr/2013/039 1, 5.1
28. Pohst, M.E.: On the computation of lattice vectors of minimal length, successive

minima and reduced bases with applications. SIGSAM Bull. 15, 37–44 (1981) 1
29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: In STOC. pp. 84–93. ACM Press (2005) 1
30. Schneider, M., Gama, N.: Darmstadt svp challenges. https://www.

latticechallenge.org/svp-challenge/index.php (2010) 3.3
31. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.

Theor. Comput. Sci. 53, 201–224 (1987) 1
32. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:

STACS (2003) 8
33. Schnorr, C.P.: Accelerated and improved slide-and lll-reduction (2012) 3.3
34. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms

and solving subset sum problems. Mathematical Programming 66, 181–199 (1994)
1, 3.1, 5.1

35. Schnorr, C.P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved
lattice reduction. In: Advances in Cryptology - EUROCRYPT ’95, International
Conference on the Theory and Application of Cryptographic Techniques, Saint-
Malo, France, May 21-25, 1995, Proceeding. Lecture Notes in Computer Science,
vol. 921, pp. 1–12. Springer (1995) 1

36. Schnorr, C.P., Shevchenko, T.: Solving subset sum problems of densioty close to 1
by "randomized" bkz-reduction. IACR Cryptol. ePrint Arch. 2012, 620 (2012) 3.3

37. Yamaguchi, J., Yasuda, M.: Explicit formula for gram-schmidt vectors in lll with
deep insertions and its applications. In: NuTMiC (2017) 5.1

https://iacr.org/archive/eurocrypt2006/40040273/40040273.pdf
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://ia.cr/2013/039
https://www.latticechallenge.org/svp-challenge/index.php
https://www.latticechallenge.org/svp-challenge/index.php

	Several Improvements on BKZ Algorithm

