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Abstract—We give proofs, phrased in geometric lan-
guage, of the uniqueness of expressions for block term
tensor decompositions introduced by De Lathauwer. And
we try to demonstrate our results with some numerical
experiments in blind signal separation.

I. INTRODUCTION

A tensor decomposition is the expression of a tensor
as a linear combination of other tensors (presumably
of lower rank). It arises in numerous application areas
(see [1]). In signal processing, the tensor encodes data
from received signals, and one wants to decompose the
tensor to obtain the transmitted signals. If there is a
failure of the uniqueness of decomposition, one cannot
definitively determine what the transmitted signals are. In
biomedical engineering and medicine, many applications
exist in the formation of Brain-Computer Interface for
handicapped persons. In communications, similar prob-
lems arise: receivers need to eliminate interferences in
order to improve on performance. If tensor tools can be
used to compute finitely many directions of arrivals of
interferences, one can construct notch filters matched to
these directions. Therefore, the study of the uniqueness
property of this kind of tensor decompositions is of
interest and important to mathematicians and also to
applied scientists.

Recently, De Lathauwer [2–4] has introduced the con-
cept of block term tensor decompositions (BTD), which
is natural for certain source separation problems in signal
processing and often has better uniqueness properties
than the tensor rank decomposition (referred to CANDE-
COMP or PARAFAC). Block terms are only required to
have low ”multilinear rank”. BTD allows a fundamen-
tally new approach to signal separation. An analogy is
that CANDECOMP or PARAFAC splits data in ”atoms”
(rank-1 terms) while BTD splits data in molecules (made
of atoms). CANDECOMP or PARAFAC owes much of
its success to rank-1 terms that capture the essence of
components that are in fact more complex and better rep-
resented by a block term. That is, it is unlikely that real-
life data components (e.g., of natural images) have all

columns proportional, all rows proportional, and so on,
like a rank-1 term; low (multilinear) rank, as in BTD,
is more likely. In addition, block terms may model mul-
tidimensional sources, variations around mean activity,
mildly nonlinear phenomena, drifts of setting points,
frequency shifts, mildly convolutive mixtures, and so
on. Efficient variants may become a true alternative to
current mainstream algorithms for signal separation. For
example, in spread-spectrum systems (see Chapter 13
in [5]) that employ an antenna array at the receiver, the
received data are naturally represented by the third-order
tensor that shows the signal along the temporal, spectral
and spatial axes (see Section 5 Chapter 3 in [5]). For
Direct Sequence Code Division Multiple Access (DS-
CDMA) systems (see Section 4.5 Chapter 13 in [5]) in
simple propagation scenarios that do not cause Inter-
Symbol-Interference (ISI) (see Section 5 Chapter 6 in
[5]), it is shown that every user contributes a rank-1 term
to the received data. When reflections only take place in
the far field of the receive array, multiple accesses can be
realized through the computation of a decomposition in
multilinear rank (L1, L1, 1), . . . , (LR, LR, 1) terms
[6]. In all these applications, the uniqueness of block
term tensor decompositions is critically important as it
guarantees the unambiguous identification of the signals
or information of interest. We refer the reader to [6–
11] for the background and applications of block term
decomposition in blind source separation.

The results of this paper mainly concern the unique-
ness property of BTD and its applications in blind
signal separation. Throughout this paper, for basic def-
initions, notation and results, we follow [12], which is
addressed to both numerical and algebraic geometrical
research communities. We hope that the interplay be-
tween geometry of tensor and blind signal separation
will be fruitful for both sides.

A. Tensor algebra in geometric language

Definition I.1. If V is a vector space, let

V ∗ := {f : V → R|f is linear}



denote the dual vector space. If β ∈ V ∗ and b ∈ W ,
one can define a linear map β ⊗ b : V → W by u 7→
β (u) b. Such a linear map has rank one. The rank of
a linear map f : V → W is the smallest r such that
there exist β1, . . . , βr ∈ V ∗ and b1, . . . , br ∈ W such
that f =

∑r
i=1 βi ⊗ bi.

Definition I.2. Given β1 ∈ V ∗1 , β2 ∈ V ∗2 , β3 ∈ V ∗3 ,
define an element

β1 ⊗ β2 ⊗ β3 ∈ V ∗1 ⊗ V ∗2 ⊗ V ∗3

by

β1 ⊗ β2 ⊗ β3 (u1, u2, u3) = β1 (u1)β2 (u2)β3 (u3)

for any ui ∈ Vi. An element of V ∗1 ⊗ V ∗2 ⊗ V ∗3 is said
to have rank one if it is of the form β1 ⊗ β2 ⊗ β3 for
some βi ∈ V ∗i . The rank of a tensor T ∈ V1⊗V2⊗V3,
denoted by R (T ), is the minimum number r such that
T =

∑r
u=1 Zu with each Zu of rank one.

Definition I.3. Let V1, V2, V3 be vector spaces. A func-
tion

f : V1 × V2 × V3 → R

is multilinear if it is linear in each factor Vl. The space
of such multilinear functions is denoted V ∗1 ⊗ V ∗2 ⊗ V ∗3
and called the tensor product of the vector spaces
V ∗1 , V

∗
2 , V

∗
3 . Elements T ∈ V ∗1 ⊗ V ∗2 ⊗ V ∗3 are called

tensors .

Definition I.4. Define the multilinear rank (the
duplex rank or Tucker rank of T ∈ V1⊗V2⊗V3 to be
the 3-tuple of natural numbers

Rmultlin (T ) := (dimT (V ∗1 ) , dimT (V ∗2 ) , dimT (V ∗3 )) .

The number dim
(
T
(
V ∗j
))

is sometimes called the
mode j rank of T .

Definition I.5. (see Definition 11 in [7]) A decompo-
sition of a tensor T ∈ RJ×K×I in a sum of rank-
(Lr, Lr, 1) terms, 1 ≤ r ≤ R, is a decomposition of
T of the form

T =

R∑
r=1

Er ⊗ ar,

in which the (J ×K) matrix Er is rank-Lr, 1 ≤ r ≤ R.

It is clear that in T =
∑R
r=1Er ⊗ ar one can

arbitrarily permute the different rank-(Lr, Lr, 1) terms
Er ⊗ ar. Also, one can scale Er, provided that ar
is counter scaled. We call this decomposition to be
essentially unique when it is only subject to these trivial
indeterminacies.

B. outline of the paper

In Section 2, we give a new proof of De Lathauwer’s
criterion of uniqueness of block term tensor decomposi-
tions (Theorem 2.3 in [8]). Then we apply this criterion
to present several conditions for generic uniqueness of
tensor decompositions of multilinear rank (Lr, Lr, 1)
terms. In Section 3, we follow L. Chiantini and G.
Ottaviani’s geometric methods to prove the tangentially
weakly defectivity of joins of relevant subspace varieties.
In Section 4, we discuss blind signal separation with
tensor decomposition model and give several numerical
experiments to demonstrate our uniqueness results.

II. CRITERIA OF UNIQUENESS

As in Chapter 2 in [12], when we need to specify the
elements of S and its linear span, we use the notations
{s1, s2, · · · } and 〈s1, s2, · · · 〉, respectively. Here, we
give a new geometric proof of a criterion of uniqueness
for block term tensor decomposition, due to De Lath-
auwer [8].

Theorem II.1. (Theorem 2.3 in [8]) Assume I ≥ R,
T =

∑R
r=1Er ⊗ ar is essentially unique if and only if

for any Ej1 , · · · , Ejs , we have

〈Ej1 , · · · , Ejs〉∩σLjt (R
J×K) ⊂ {Ej1 , · · · , Ejs},

1 ≤ t ≤ s,
(1)

where σw(RJ×K) is the set of matrices in RJ×K of rank
smaller or equal to w.

Proof. ⇐
Assume the contrary that T =

∑R
r=1 Ẽr ⊗ a′r is

different from T =
∑R
r=1Er ⊗ ar. Since a1, . . . , aR

are independent, we have a′r =
∑R
j=1 α

r
jaj , where αrj

are not all zero. From

T =

R∑
r=1

Ẽr ⊗ a′r =
R∑
r=1

(

R∑
j=1

αrj Ẽj)⊗ ar.

we know that Er =
∑R
j=1 α

r
j Ẽj . Taking the inverse of

the R × R matrix [αrj ], we have Ẽr =
∑R
j=1 α̃

r
jEj .

Consequently, there exists r, j1, j2 ∈ {1, . . . , R} such
that j1 6= j1 and α̃rj1 · α̃

r
j2
6= 0. Therefore, we obtain

Ẽr ∈ 〈Ej1 , . . . , Ejs〉 ∩ σLr (RJ×K).

But Ẽr does not belong to {Ej1 , . . . , Ejs}, contradicts
to Eq. (1).
⇒
If there exists E′jt ∈ 〈Ej1 , . . . , Ejs〉 ∩ σjt

(
RK×J

)
such that E′jt /∈ {Ej1 , . . . , Ejs}, without loss of gener-



ality, we assume that E′jt = E1 + χ2E2 + · · ·+ χRER.
Now

E1 ⊗ a1 + · · ·+ ER ⊗ aR
=E1 ⊗ a′jt − E2 ⊗ χ2a1 − · · · − ER ⊗ χRa1
+ E2 ⊗ a2 + · · ·+ ER ⊗ aR

=E′jt ⊗ a1 + E2 ⊗ (a2 − χ2a1) + · · ·+ ER ⊗ (aR − χRa1)
=E′jt ⊗ a1 + E2 ⊗ a′2 + · · ·+ ER ⊗ a′R.

So T =
∑R
r=1Er ⊗ ar is not unique.

Remark III. Using Kronecker’s canonical form (see
Chapter 10 in [12] and Chapter IX in [13]), there is
a normal form for a general point p of σL(RJ×K) (L
is smaller than J and K), which is

p = b′1 ⊗ c′1 + · · ·+ b′L ⊗ c′L,

and the pencil is 
s

. . .

s

 .

Theorem III.1. (see Fig. 1 for illustration)

T =

2∑
r=1

Er ⊗ ar

in definition I.5 is essentially unique if

(i) : I ≥ 2, J = K >
2Li + Lj

2
, ∀1 ≤ i, j ≤ 2;

is not unique if

(ii) : I ≥ 2, J = K =
2Li + Lj

2
, ∀1 ≤ i, j ≤ 2.

Proof. Case (i):
It is sufficient to prove the case L1, L2 < J =

K <
∑2
r=1 Lr. Let B and C denote vector spaces of

dimensions J,K respectively. Split B = B1 ⊕B0 ⊕B2

and C = C1 ⊕ C0 ⊕ C2, where B1, B0, B2, C1, C0,
and C2 are of dimension L1 − lb, lb, L2 − lb, L1 − lc,
lc, L2 − lc, respectively, and lb = lc <

1
2Lj .

Consider

E1 =b1,1 ⊗ c1,1 + · · ·+ b1,L1−lb ⊗ c1,L1−lb

+ b0,1 ⊗ c1,L1−lb+1 + · · ·+ b0,lb ⊗ c0,lc
∈(B1 ⊕B0)⊗ (C1 ⊕ C0)

∼=RL1 ⊗ RL1

and

E2 =b2,1 ⊗ c2,1 + · · ·+ b2,L1−lb ⊗ c2,L1−lb

+ b0,1 ⊗ c2,L1−lb+1 + · · ·+ b0,lb ⊗ c0,lc
∈(B2 ⊕B0)⊗ (C2 ⊕ C0)

∼=RL2 ⊗ RL2 ,

where {b0,1, . . . , b0,lb}, {b1,1, . . . , b1,L1−lb}, {b2,1, . . . ,
b2,L2−lb}, {c0,1, . . . , c0,lc}, {c1,1, . . . , c1,L1−lc}, and
{c2,1, . . . , c2,L2−lc} are bases for B0, B1, B2, C0, C1

and C2 respectively, J + lb = L1 + L2, and K + lc =
L1 + L2.

Let

E′j = b′1 ⊗ c′1 + · · ·+ b′Lj ⊗ c
′
Lj

be a general point of σLj (RJ×K) and set

E′jt = χ1E1 + χ2E2.

If χ1, χ2 are both nonzero, since lb = lc <
1
2Lj , the

pencil

χ1

. . .

χ1

χ1 + χ2

. . .

χ1 + χ2

χ2

. . .

χ2


has rank bigger than Lj , which implies that E′j is not a
matrix in σLj (RJ×K). Therefore E′j is one of {E1, E2}.
And the uniqueness follows from Theorem II.1.

Case (ii):
In the second case, we have lb = lc =

1
2Lj , so

E1 =b1,1 ⊗ c1,1 + · · ·+ b1,L1−lb ⊗ c1,L1−lb

+ b0,1 ⊗ c0,1 + · · ·+ b0,lb ⊗ c0,lc
∈(B1 ⊕B0)⊗ (C1 ⊕ C0)

∼=RL1 ⊗ RL1

and

E2 =b2,1 ⊗ c2,1 + · · ·+ b2,L2−lc ⊗ c2,L2−lc

+ b0,1 ⊗ c0,1 + · · ·+ b0,lb ⊗ c0,lc
∈(B2 ⊕B0)⊗ (C2 ⊕ C0)

∼=RL2 ⊗ RL2 .

Let E′j be a general point of σLj (RJ×K) and set

E′jt = E1 − E2,

then we have

E′j =b1,1 ⊗ c1,1 + · · ·+ b1,L1−lb ⊗ c1,L1−lb

− b2,1 ⊗ c2,1 − · · · − b2,L2−lc ⊗ c2,L2−lc

has rank equal to Lj , which implies that E′j is a matrix
in σLj (RJ×K). But E′j is not in {E1, E2}. The non-
uniqueness follows from Theorem II.1.



non-unique

unique

Fig. 1: Illustration for Theorem III.1

Example III.1. For T ∈ R3×3×2, considering the
decomposition in a sum of multilinear rank (2, 2, 1), we
have

T = (b1 ⊗ c1 + b2 ⊗ c2)⊗ a1 + (b2 ⊗ c2 + b3 ⊗ c3)⊗ a2
= (b1 ⊗ c1 − b3 ⊗ c3)⊗ a1 + (b2 ⊗ c2 + b3 ⊗ c3)⊗ (a1 + a2)

where {b1, b2, b3}, {c1, c2, c3}, {a1, a2} are bases for
R3,R3,R2. So this is not unique.

Theorem III.2. T =
∑2
r=1Er ⊗ ar in definition I.5 is

not unique if

I ≥ 2, min{J,K} = max{L1, L2}, max{J,K} = L1+L2.

Proof. It is sufficient to prove the case L1 ≤ L2 =
K, J = L1 + L2. Let B and C denote vector spaces
of dimensions J,K respectively. Split B = B1 ⊕ B2

and C = C1 ⊕ C2, where B1, B2, C1, and C2 are of
dimensions L1, L2, L1, L2 − L1.

Consider

E1 = b1,1 ⊗ c1,1 + · · ·+ b1,L1
⊗ c1,L1

∈ B1 ⊗ C1

∼= RL1 ⊗ RL1

and

E2 =b2,1 ⊗ c1,1 + · · ·+ b2,L1
⊗ c1,L1

+ b2,L1+1 ⊗ c1,L1+1 + · · ·+ b2,L2
⊗ c2,L2

∈B2 ⊗ (C1 ⊕ C2)

∼=RL2 ⊗ RL2 ,

where {b1,1, . . . , b1,L1}, {b2,1, . . . , b2,L2}, {c1,1, . . . ,
c1,L1}, and {c2,L1+1, . . . , c2,L2} are bases for B1, B2,
C1 and C2, respectively.

Let E′j be a general point of σLj (RJ×K) and set

E′jt = E1 + E2.

Then we have

E′j =(b1,1 + b2,1)⊗ c1,1 + · · ·+ (b1,1 + b2,1)⊗ c1,L1

+ b2,L1+1 ⊗ c2,L1+1 + · · ·+ b2,L2
⊗ c2,L2

.

E′j has rank equal to L2, which implies that E′j is a
matrix in σL2

(RJ×K). But E′j is not in {E1, E2}. The
non-uniqueness follows from Theorem II.1.

Example III.2. For T ∈ R4×2×2, considering the
decomposition in a sum of multilinear rank (2, 2, 1), we
have

T =(b1 ⊗ c1 + b2 ⊗ c2)⊗ a1
+ (b3 ⊗ c1 + b4 ⊗ c2)⊗ a2

=((b1 + b3)⊗ c1 + (b2 + b4)⊗ c2)⊗ a1
+ (b3 ⊗ c1 + b4 ⊗ c2)⊗ (a2 − a1)

where {b1, b2, b3, b4}, {c1, c2}, {a1, a2} are basis for
R4,R2,R2. So this is not unique.

Theorem III.3. T =
∑R
r=1Er ⊗ ar in definition I.5 is

essentially unique if

I ≥ R, K ≥
R∑
r=1

Lr, J ≥ 2max{Li},(
J

max{Li}

)
≥ R,Li + Lj > Lk ∀1 ≤ i, j, k ≤ R.

Proof. It is sufficient to prove the case I = R, K =∑R
r=1 Lr. Let B and C denote vector spaces of dimen-

sions J, K respectively. Choose the splitting of C as
C =

⊕
1≤r≤R Cr, and fix a basis {b1, . . . , bJ} for B.

Without loss of generality, for 1 ≤ p ≤ R, we can
assume

Ejp =bjp,1 ⊗ cjp,1 + bjp,2 ⊗ cjp,2
+ · · ·+ bjp,Ljp ⊗ cjp,Ljp
∈Bjp ⊗ Cjp ,

where {bjp,1, . . . , bjp,Ljp} ⊂ {b1, . . . , bJ} (since J ≥
2max{Li},

(
J

max{Li}
)
≥ R), {cjp,1, . . . , cjp,Ljp} are

bases for Bjp , Cjp , respectively. Further, let

E′jt = b′1 ⊗ c′1 + · · ·+ b′Ljt ⊗ c
′
Ljt

be a general point of σLjt (R
J×K) and set

E′jt =
∑

1≤p≤s

χpEjp

=
∑

1≤p≤s

χp(bjp,1 ⊗ cjp,1 + bjp,2 ⊗ cjp,2

+ · · ·+ bjp,Ljp ⊗ cjp,Ljp ).



If there exist χµ, χν , which are both nonzero, the
pencil

xµ

. . .

xµ

xµ + xν

. . .

xµ + xν

xν

. . .

xν


has rank at least Ljµ + Ljν , which is bigger than Ljt .
This implies that E′jt is not a matrix in σLjt (R

J×K).
Therefore, we prove that E′jt ∈ {Ej1 , . . . , Ejs}. The
uniqueness follows from Theorem II.1.

The following Corollary, which was Theorem 2.1 in
[8], can be obtained easily using elementary combina-
torics.

Corollary. (Theorem 2.1 in [8]) T =
∑R
r=1Er ⊗ ar in

definition I.5 is essentially unique if

I ≥ R, J, K ≥
R∑
r=1

Lr, Li+Lj > Lk ∀1 ≤ i, j, k ≤ R.

Remark IV. The assumption I ≥ R could be replaced
to be I ≥ 2: see condition C in [14].

V. EXPERIMENTS IN BLIND SIGNAL SEPARATION

In Chapter 12 in [12], J.M. Landsberg discussed
several signal processing applications that are considered
as natural tensor decomposition models.

Definition V.1. Blind source(signal) separation (BSS)
is the separation of a set of source signals from a set
of mixed signals, without the aid of information (or
with very little information) about the source signals or
the mixing process. This problem is in general highly
underdetermined, but useful solutions can be derived
under a surprising variety of conditions.

As in section 3 in [8], we consider the following
data model. Assume we have R source signals being
linearly mixed into K observed signals. For each signal,
N samples are available. The following data mode is
used in BSS:

Y =MS,

with Y ∈ RK×N containing the observed data, S ∈
RR×N the R unknown source signals, M ∈ RK×R the
unknown mixing matrix. The goal for BSS is to recover
the unknown sources in S and the unknown mixing
vectors in M , given only the observed data Y . We
map each observed signal (each row in Y ) to a Hankel
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Fig. 2: (a)-(b) show the true signals; (c)-(d) show the
observed signals.

matrix. Stacking these Hankel matrices, we obtain a
tensor which is assumed to be of low miltilinear rank. By
decomposing the tensorized data, one can immediately
identify the mixing vectors.
BTD can, at least in some interesting cases, be

efficiently performed on computer. Some programs can
be used for the synthesis of artificial signals. Our further
discussion will be on experiments similar to [15].

A. Experiment

In this section, we consider the application of BTD
to BSS problem. We are given two sources:

s1(t) = sin (6πt) · t,
s2(t) = e−1.25t sin (3πt),

(2)

that are uniformly sampled over [−1, 1] with N = 501
samples. The true source is denoted as S = [s1, s2]

T ∈
R2×501. The mixing matrix M is given by(

2 1

−1 1

)
.

We obtain the mixed signals Y = M · S. The true and
observed signals are shown in Fig. 2. We obtain the
mixed signals Y =M ·S. The true and observed signals
are shown in Fig. 2. The observations, Y , are mapped
to a tensor T ∈ R251×251×2. We compress T to size
(4×4×2) and (4×2×2), respectively. The compressed
tensors are decomposed in a sum of three rank-(2,2,1)
terms. Figs. 3 and 4 show the signals separated from
the observed signals by using the compressed tensors of
sizes (4× 4× 2) and (4× 2× 2), correspondingly. We
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Fig. 3: Separation results using compressed tensor of size
(4 × 4 × 2): (a)-(b) show the estimated sources; (c)-(d)
show the optimally permuted and scaled sources.
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Fig. 4: Separation results using compressed tensor of size
(4 × 2 × 2): (a)-(b) show the estimated sources; (c)-(d)
show the optimally permuted and scaled sources.

observe that with compressed tensor of size (4× 4× 2),
which has a unique decomposition (see Theorem II.1),
the true signals can be well separated. However, with
compressed tensor of size (4 × 2 × 2), which has mul-
tiple decompositions (see Theorem III.2), the separated
signals are different from the true signals.
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