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Abstract: A celebrated theorem of Kapranov states that the Atiyah class of the tangent
bundle of a complex manifold X makes TX [−1] into a Lie algebra object in D+(X),
the bounded below derived category of coherent sheaves on X . Furthermore, Kapranov
proved that, for a Kähler manifold X , the Dolbeault resolution �•−1(T 1,0

X ) of TX [−1]
is an L∞ algebra. In this paper, we prove that Kapranov’s theorem holds in much wider
generality for vector bundles over Lie pairs. Given a Lie pair (L , A), i.e. a Lie algebroid
L together with a Lie subalgebroid A, we define the Atiyah class αE of an A-module
E as the obstruction to the existence of an A-compatible L-connection on E . We prove
that the Atiyah classes αL/A and αE respectively make L/A[−1] and E[−1] into a Lie
algebra and a Lie algebra module in the bounded below derived category D+(A), where
A is the abelian category of left U(A)-modules and U(A) is the universal enveloping
algebra of A.Moreover,we produce a homotopyLeibniz algebra and a homotopyLeibniz
module stemming from the Atiyah classes of L/A and E , and inducing the aforesaid
Lie structures in D+(A).
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Introduction

The Atiyah class of a holomorphic vector bundle E over a complex manifold X , as
initially introduced by Atiyah [3], constitutes the obstruction to the existence of a holo-
morphic connection on said holomorphic vector bundle. It is constructed in the following
way. The vector bundle J 1E of jets (of order 1) of holomorphic sections of E → X
fits into the canonical short exact sequence

0 → T ∗
X ⊗ E → J 1E → E → 0

of holomorphic vector bundles (over the complex manifold X ). The Atiyah class of
E → X is the extension class

αE ∈ Ext1X (E, T ∗
X ⊗ E) ∼= H1(X, T ∗

X ⊗ End E)

of this short exact sequence [3,23].
In the late 1990s, Rozansky and Witten proposed a construction of a family of 3-

dimensional topological quantum field theories, indexed by compact (or asymptotically
flat) hyper-Kähler manifolds [46]. Thus, to each compact hyper-Kähler manifold, the
Rozansky–Witten procedure associates a topological invariant of 3-manifolds. In sub-
sequent work, Kapranov [23] and Kontsevich [25] revealed the crucial role played by
Atiyah classes in the construction of the Rozansky–Witten invariants. In particular, they
showed that the hyper-Kähler restriction is unnecessary and that the theory devised by
Rozansky and Witten works for all holomorphic symplectic manifolds [23,25]. Kapra-
nov’s work highlighted a key fact: the Atiyah class of the tangent bundle of a complex
manifold X yields a morphism TX [−1] ⊗ TX [−1] → TX [−1] in the bounded below
derived category D+(X) of coherent sheaves on X , which turns TX [−1] into a Lie alge-
bra object in D+(X). Therefore, Kapranov’s approach shone light on many similarities
between the Rozansky–Witten and Chern–Simons theories [4,5] as stressed by Roberts
and Willerton [45].

Atiyah classes have also enjoyed renewed vigor due to Kontsevich’s seminal work
on deformation quantization [24,26]. Kontsevich indicated the existence of deep ties
between the Todd genus of complex manifolds and the Duflo element in Lie the-
ory [11,24,26,47]. This discovery inspired several subsequent works on Hochschild
(co)homology and the Hochschild–Kostant–Rosenberg isomorphism for complex man-
ifolds, by Dolgushev et al. [17,18], Căldăraru [16], Markarian [38], Ramadoss [43],
and Calaque and Van den Bergh [12] among many others. In particular, the work of
Markarian [38] (see also Ramadoss [43]) led to an alternative proof of the Hirzebruch–
Riemann–Roch theorem and its variations.

In [41,42], Molino introduced an Atiyah class for connections “transverse to a fo-
liation,” which measures the obstruction to their “projectability.” Molino’s class has
applications in geometry, for instance, in the study of differential operators on foliated
manifolds [50] and in deformation quantization [6].
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From Atiyah Classes to Homotopy Leibniz Algebras 311

This paper is the first in a sequence of works [13,31,32,39,54] that aim at develop-
ing in a general setting a theory of Atiyah classes and their applications. Our goal is to
explore emerging connections between derived geometry and classical areas of math-
ematics such as complex geometry, foliation theory, Poisson geometry and Lie theory.
The present paper develops a framework that encompasses both the original Atiyah class
of holomorphic vector bundles and the Molino class of real vector bundles foliated over
a foliation as special cases.

Lie algebroids are the starting point of our approach. Indeed, holomorphic vector
bundles and vector bundles foliated over a foliation may both be seen as instances of the
concept of module over a Lie algebroid, a straightforward generalization of the well-
known representations of Lie algebras. Given a Lie algebroid L over a base manifold M
with anchor ρ : L → T M , an L-connection on a vector bundle E → M is a bilinearmap
X ⊗ s �→ ∇Xs from �(L)⊗�(E) to �(E) satisfying the usual axioms: ∇ f X s = f ∇Xs
and ∇X ( f s) = ρ(X) f · s + f ∇Xs for all f ∈ C∞(M). If the connection is flat, E is
said to be a module over the Lie algebroid L . When the base is the one-point space,
the L-modules are simply Lie algebra modules in the classical sense. When the base
is a complex manifold X , the holomorphic vector bundles over X are equivalent to the
modules of the complex Lie algebroid T 0,1

X stemming from the complex manifold X .
Molino’s foliated bundles are modules over the Lie algebroid structure corresponding
to the foliation of their base.

We introduce a general theory of Atiyah classes of vector bundles over Lie algebroid
pairs. By a Lie algebroid pair (L , A), we mean a Lie algebroid L (over a manifold M)
together with a Lie subalgebroid A (over the same base M) of L . And by a vector bundle
E over the Lie algebroid pair (L , A), we mean a vector bundle E (over M), which
is a module over the Lie subalgebroid A. Given such a Lie algebroid pair (L , A) and
A-module E , we consider the jet bundle J 1

L/AE (of order 1), whose smooth sections
are the L-connections on E extending the (infinitesimal) A-action on E in a compatible
way. We prove the following

Theorem A. The jet bundle J 1
L/AE is naturally an A-module. It fits in a short exact

sequence of A-modules

0 → A⊥ ⊗ E → J 1
L/AE → E → 0.

Here A⊥ denotes the annihilator of A in L.

We call the extension class

αE ∈ Ext1A(E, A⊥ ⊗ E) ∼= H1(A, A⊥ ⊗ End E)

of this short exact sequence, the Atiyah class of E because, when L = TX ⊗ C and
A = T 0,1

X for a complex manifold X , J 1
L/AE is the space of 1-jets of holomorphic

sections of E → X and αE is the (classical) Atiyah class of E → X ; and, when L is the
tangent bundle of a smooth manifold M and A is an integrable distribution on M , αE is
the Molino class of the vector bundle E foliated over A. Geometrically, the Atiyah class
can thus be interpreted as the obstruction to the existence of a compatible L-connection
on E , which extends the A-action with which E is endowed.

It turns out that the Atiyah class introduced in our general context and the classical
Atiyah class of holomorphic vector bundles enjoy similar algebraic properties.

We denote the abelian category of left modules over the universal enveloping
algebra U(A) of the Lie algebroid A by the symbol A. Every vector bundle over M
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312 Z. Chen, M. Stiénon, P. Xu

endowed with an A-action—more precisely its space of smooth sections—is an object
of A. The bounded below derived category of A will be denoted by D+(A).

Given a Lie algebroid pair (L , A), the quotient L/A is naturally an A-module. When
L is the tangent bundle to a manifold M , and A is an integrable distribution on M , the
A-action on L/A is given by the Bott connection [8]. We consider L/A as a complex
concentrated in degree 1 and refer to it as L/A[−1]. We show that the Atiyah class of
L/A makes L/A[−1] into a Lie algebra object in the derived category D+(A). Indeed,
being an element of

Ext1A(L/A, A⊥ ⊗ L/A) ∼= Ext1A(L/A ⊗ L/A, L/A)

∼= HomD+(A)(L/A ⊗ L/A, L/A[1])
∼= HomD+(A)(L/A[−1] ⊗ L/A[−1], L/A[−1]),

the Atiyah class αL/A of the A-module L/A defines a “Lie bracket” on L/A[−1].
Moreover, if E is an A-module, its Atiyah class

αE ∈ Ext1A(E, A⊥ ⊗ E) ∼= Ext1A(L/A ⊗ E, E)

∼= HomD+(A)(L/A[−1] ⊗ E[−1], E[−1])
defines a “representation” on E[−1] of the “Lie algebra” L/A[−1]. In summary, we
prove the following

Theorem B. Let (L , A) be a Lie algebroid pair with quotient L/A. Then the Atiyah
class of L/A turns L/A[−1] into a Lie algebra object in the derived category D+(A).
Moreover, if E is an A-module, then E[−1] is a module object over the Lie algebra
object L/A[−1] in the derived category D+(A).

The above result suggests that, on the cochain level, the Atiyah class should define some
kind of Lie algebra up to homotopy. But how does one obtain a cocycle representing the
Atiyah class? Recall that a Dolbeault representative of the Atiyah class of a holomorphic
vector bundle E → X can be obtained in the following way. Considering T 1,0

X as a com-

plex Lie algebroid, choose a T 1,0
X -connection ∇1,0 on E . Being a holomorphic vector

bundle, E carries a canonical flat T 0,1
X -connection ∂ . Adding ∇1,0 and ∂ , we obtain a

TX ⊗C-connection∇ on E . The elementR ∈ �1,1(End E) defined byR(X0,1,Y 1,0) =
∇X0,1∇Y 1,0 − ∇Y 1,0∇X0,1 − ∇[X0,1,Y 1,0] is a Dolbeault 1-cocycle whose cohomology
class (which is independent of the choice of∇1,0) is theAtiyah classαE ∈ H1,1(X,End E)∼= H1(X, T ∗

X ⊗End E). In the more general setting of vector bundles over Lie algebroid
pairs, the Atiyah class can be recovered from a Lie algebroid connection as follows.
Assume (L , A) is a Lie pair, and E is an A-module. Let ∇ be any L-connection on
E extending its A-action. The curvature of ∇ is the bundle map R∇ : ∧2L → End E
defined by R∇(l1, l2) = ∇l1∇l2 − ∇l2∇l1 − ∇[l1,l2], for all l1, l2 ∈ �(L). Since E is
an A-module, the restriction of R∇ to ∧2A vanishes. Hence the curvature determines
a section R∇

E ∈ �(A∗ ⊗ A⊥ ⊗ End E), which happens to be a 1-cocycle for the Lie
algebroid A with values in the A-module A⊥ ⊗ End E . We prove that the cohomology
class αE ∈ H1(A, A⊥⊗End E) of the 1-cocycle R∇

E is the Atiyah class of the A-module
E .

When the A-module E is the quotient L/A of the Lie algebroid pair (L , A), the
choice of an L-connection∇ on L/A extending the A-action yields the Atiyah 1-cocycle
R∇
L/A ∈ �(A∗ ⊗ (L/A)∗ ⊗ End(L/A)), which may be regarded as a bundle map R2 :
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From Atiyah Classes to Homotopy Leibniz Algebras 313

L/A⊗ L/A → A∗ ⊗ L/A. Starting from R2 and a splitting of the short exact sequence
of vector bundles 0 → A → L → L/A → 0, a sequence (Rn)

∞
n=2 of bundle maps

Rn : ⊗n(L/A) → Hom(A, L/A)

can be defined inductively by the relation Rn+1 = ∂∇ Rn , for n ≥ 2. Alternatively, Rn
can be seen as a section of the vector bundle A∗ ⊗ (⊗n(L/A)∗)⊗ L/A. Then the graded
vector space V = ⊕∞

n=0 �(∧n A∗ ⊗ L/A) can be endowed with a sequence (λk)k∈N
of multibrackets λk : ⊗kV → V : the unary bracket λ1 is chosen to be the coboundary
operator ∂ A of exterior forms on the Lie algebroid A taking values in the A-module
L/A, while all higher order brackets λk are defined by the relation

λk(ξ1 ⊗ b1, . . . , ξk ⊗ bk) = (−1)|ξ1|+···+|ξk |ξ1 ∧ · · · ∧ ξk ∧ Rk(b1, . . . , bk),

where b1, . . . , bk ∈ �(L/A) and ξ1, . . . , ξk are arbitrary homogeneous elements of
�(∧•A∗).

By an A-algebra, wemean a bundle of associative algebras C overM endowedwith an
A-module structure such that �(A) acts by derivations. For a commutative A-algebra C,
(λk)

∞
k=1 extends in a natural way to the graded vector space

⊕∞
n=0 �(∧n A∗ ⊗ L/A⊗C).

We prove

Theorem C. Assume that (L , A) is a Lie pair and C is a commutative A-algebra. When
endowedwith the sequence of multibrackets (λk)k∈N, the graded vector space�(∧•A∗⊗
L/A ⊗ C)[−1] becomes a Leibniz∞ algebra—a natural generalization of Stasheff’s
L∞ algebras [29] first introduced by Loday [34] in which the requirement that the
multibrackets be (skew-)symmetric is dropped.

If E is an A-module, the graded vector space �(∧•A∗ ⊗ E ⊗ C)[−1] becomes a
Leibniz∞ module over the Leibniz∞ algebra �(∧•A∗ ⊗ L/A ⊗ C)[−1].

As a consequence,
⊕

i≥1 H
i−1(A, L/A ⊗ C) is a graded Lie algebra and

⊕
i≥1

Hi−1(A, E ⊗ C) a module over it.

We also identify a simple criterion for detecting when this Leibniz algebra is actually an
L∞ algebra. This criterion being satisfiedwhen X is a Kähler manifold, L = TX ⊗C and
A = T 0,1

X , we recover the L∞-structure on �0,•−1(T 1,0) discovered by Kapranov [23].
Recently, we proved that the sequence of multibrackets {λk}k∈N of Theorem C can

be tweaked so as to make �(∧•A∗ ⊗ L/A) an L∞[1] algebra rather than a mere
Leibniz∞[1] algebra [31,32]. Such an L∞[1] algebra should be related to the L∞-
spaces of Costello [14,15]. The intrinsic meaning of this homotopy algebraic structure
arising from the Atiyah class of a Lie algebroid pair is explored in [31–33]. Our de-
finition of the Atiyah class can also be extended to complexes of A-modules [13] as
was done in [38] for complexes of coherent sheaves of OX -modules. The universal en-
veloping algebra of the Lie algebra object L/A[−1] in the derived category D+(A) (see
Theorem B) is described in that same paper [13]. We note that the Atiyah class of Lie
algebroid pairs plays a central role in the construction of new Rozansky–Witten type
invariants of 3-manifolds from symplectic Lie pairs [54]. In another direction, Atiyah
classes were defined for differential graded vector bundles and these yield homotopy
algebraic structures as well [39].

We also would like to point out works of others that are related to the present paper.
Vitagliano studied various homotopy algebra structures associated to foliations (a special
case of Lie algebroid pairs) [51–53]. For the Atiyah class of a DG-module over a dDG-
algebra, the reader will want to consult Calaque and Van den Bergh’s work [12]. After

Author's personal copy



314 Z. Chen, M. Stiénon, P. Xu

the first draft of this paper was posted on arXiv, Calaque inferred that, for Lie algebra
pairs (d, g), i.e. Lie algebroid pairs with the one-point space as basemanifold, the Atiyah
class of the quotient d/g coincides with the class capturing the obstruction to the “PBW
problem” studied by Calaque–Căldăraru–Tu [10] (see also [19]). Bordemann gave a nice
interpretation of the Calaque–Căldăraru–Tu class as the obstruction to the existence
of invariant connections on homogeneous spaces [7]. Another recent development is
Calaque’s beautiful work [9] on the relation between the Atiyah class of the A-module
L/Awith respect to the Lie pair (L , A) and the relative PBW problem previously solved
by Căldăraru–Calaque–Tu [10]. For more on this topic, we also refer the reader to the
work of Laurent-Gengoux and Voglaire [33]. Calaque also pointed out to us that our
results should be related to the obstruction to a relative Hochschild–Kostant–Rosenberg
isomorphism for closed embeddings of algebraic varieties identified by Arinkin and
Căldăraru [2]. This certainly deserves further investigation. Finally, we would like to
mention, in relation to the homotopy algebra results of the present paper, Yu’s work on
L∞ algebroids [56]. Stasheff’s work on constrained Poisson algebras [48] is another
interesting result that could well be related to the present paper.

1. Preliminaries: Connections, Modules, Lie Pairs, and Matched Pairs

Let M be a smooth manifold, let L → M be a Lie algebroid, and let E
π−→ M be a vector

bundle. The anchor map of L is denoted by ρ.
Recall that the Lie algebroid differential d : �(∧•L∗) → �(∧•+1L∗) is given by

(
dμ

)
(x0, . . . , xn) =

n∑

i=0

(−1)iρ(xi )
(
μ(x0, . . . , x̂i , . . . , xn)

)

+
∑

i< j

(−1)i+ jμ([xi , x j ], x0, . . . , x̂i , . . . , x̂ j , . . . , xn),

∀μ ∈ �(∧nL∗), xi ∈ �(L), i = 0, . . . , n.

The traditional description of a (linear) L-connection on E is in terms of a covariant
derivative

�(L) × �(E) → �(E) : (x, e) �→ ∇x e

characterized by the following two properties:

∇ f x e = f ∇xe,

∇x ( f e) = ρ(x) f · e + f · ∇x e,

for all x ∈ �(L), e ∈ �(E), and f ∈ C∞(M).
Here, we give three equivalent descriptions of (linear) L-connections on E : covariant

differential, horizontal lifting, and horizontal distribution.

Definition 1.1. A (linear) L-connection on E is a map �(E)
d∇−→ �(L∗ ⊗ E), called

covariant differential, satisfying the Leibniz rule

d∇( f e) = ρ∗(d f ) ⊗ e + f · d∇e,

for all f ∈ C∞(M) and e ∈ �(E).
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The covariant differential �(E)
d∇−→ �(L∗ ⊗ E) extends uniquely to a degree 1 operator

�(∧•L∗ ⊗ E)
d∇−→ �(∧•+1L∗ ⊗ E)

satisfying the Leibniz rule

d∇(β ⊗ e) = dβ ⊗ e + (−1)bβ ⊗ d∇e,

for all β ∈ �(∧bL∗) and e ∈ �(E).

Definition 1.2. A (linear) L-connection on E is a map L×M E
h−→ TE , called horizontal

lifting, such that the diagram

L
ρ ��

���
��

��
��

� TM

����
��

��
��

L ×M E
h ��

�����������������

����������� TE

π∗
�����������������

����
��

��
�

M

E

π

�����������������

commutes and its faces

L ×M E
h ��

��

TE

��
E

id
�� E

and L ×M E
h ��

��

TE

π∗
��

L ρ
�� TM

are vector bundle maps.

A vector field X on E is said to be projectable onto M if π(e1) = π(e2) implies
π∗(Xe1) = π∗(Xe2). By Xπ (E), we denote the space of vector fields X on E which are
projectable onto M and whose flow�X

t : E → E is a vector bundle automorphism over
the flow �

π∗X
t : M → M of the projected vector field π∗X on M . These vector fields

are normally called linear vector fields on E (see [37] for details). The space Xπ (E) of
linear vector fields on E is obviously a module over the ring C∞(M).

Definition 1.3. A(linear) L-connectionon E is amorphismofC∞(M)-modules�(L)
H−→

Xπ (E), called horizontal distribution, such that the diagram

�(L)
H ��

ρ
����

��
��

��
� Xπ (E)

π∗�����������

X(M)

commutes.
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Covariant differential, covariant derivative, horizontal lift, and horizontal distribution
are related to one another by the identities

∇l e = 〈d∇e, l〉;
e∗ρ(lx ) − h(lx , ex ) = τex (∇l e)x ;

H(l)|ex = h(lx , ex ),

for all x ∈ M , l ∈ �(L), and e ∈ �(E). Here in the second equation, τex denotes the
canonical isomorphism between the fiber Ex and its tangent space at the point ex . This
second equation can be rewritten as

h(lx , ex ) fν = 〈∇lx ν, ex 〉, (1)

where fν denotes the fiberwise linear function on E determined by ν ∈ �(E∗).
The following assertions are equivalent:

∇l1∇l2 − ∇l2∇l1 = ∇[l1,l2];
H([l1, l2]) = [H(l1), H(l2)].

When they are satisfied for all l1, l2 ∈ �(L), the connection is said to be flat. An L-
module is a vector bundle E → M endowed with a flat (linear) L-connection. A flat
(linear) L-connection will also be called an L-action or L-representation. When the L-
connection on E is flat, (d∇)2 = 0 and (�(∧•L∗ ⊗E), d∇) is a cochain complex, whose
cohomology groups H•(L , E) are the so-called Lie algebroid cohomology groups of L
with values in E .

By a Lie algebroid pair, or simply a Lie pair (L , A), we mean a Lie algebroid L and
a Lie subalgebroid A of L over the same base manifold M .

Proposition 1.4. The quotient L/A of a Lie pair (L , A) is an A-module; the action of
A on L/A is defined by

∇a
(
q(l)

) = q([a, l]), ∀a ∈ �(A), l ∈ �(L),

where q denotes the projection L → L/A. Being dual to L/A, the annihilator A⊥ of A
in L∗ is also an A-module.

Assume now that A and B are two Lie subalgebroids of a Lie algebroid L such that L
and A ⊕ B are isomorphic as vector bundles. Then L/A ∼= B is naturally an A-module
while L/B ∼= A is naturally a B-module. The Lie algebroids A and B are said to form
a matched pair.

Definition 1.5 ([35,36,40]). Two (real or complex) Lie algebroids A and B over the same
base manifold M and with respective anchors ρA and ρB are said to form a matched pair
if there exists an action ∇ of A on B and an action � of B on A such that the identities

[ρA(X), ρB(Y )] = −ρA
(
�Y X

)
+ ρB

(∇XY
)
,

∇X [Y1,Y2] = [∇XY1,Y2] + [Y1,∇XY2] + ∇�Y2 X
Y1 − ∇�Y1 X

Y2,

�Y [X1, X2] = [�Y X1, X2] + [X1,�Y X2] + �∇X2Y
X1 − �∇X1Y

X2,

hold for all X1, X2, X ∈ �(A) and Y1,Y2,Y ∈ �(B).

Proposition 1.6 ([36,40]).Given a matched pair (A, B) of Lie algebroids, there is a Lie
algebroid structure A �� B on the direct sum vector bundle A ⊕ B, with anchor
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X ⊕ Y �→ ρA(X) + ρB(Y )

and bracket

[X1 ⊕ Y1, X2 ⊕ Y2] = ([X1, X2] + �Y1X2 − �Y2X1
) ⊕ ([Y1,Y2] + ∇X1Y2 − ∇X2Y1

)
.

Conversely, if A ⊕ B has a Lie algebroid structure for which A ⊕ 0 and 0 ⊕ B are
Lie subalgebroids, then the representations ∇ and � defined by

[X ⊕ 0, 0 ⊕ Y ] = −�Y X ⊕ ∇XY

endow the couple (A, B) with a structure of matched pair.

Example 1.7. A Lie algebra is a Lie algebroid whose base manifold is the one-point
space. If the direct sum g⊕ g∗ of a vector space g and its dual g∗ is endowed with a Lie
algebra structure such that the direct summands g and g∗ are Lie subalgebras and

[X, α] = ad∗
X α − ad∗

α X, ∀X ∈ g, α ∈ g∗,

the pair (g, g∗) is said to be a Lie bialgebra. Lie bialgebras are instances of matched
pairs of Lie algebroids.

Example 1.8. Let X be a complex manifold. Then (T 0,1
X , T 1,0

X ) is a matched pair, where
the actions are given by

∇X0,1X1,0 = pr1,0[X0,1, X1,0] and �X1,0X0,1 = pr0,1[X1,0, X0,1],
for all X0,1 ∈ �(T 0,1

X ) and X1,0 ∈ �(T 1,0
X ). Hence T 0,1

X �� T 1,0
X and TX ⊗C are isomor-

phic as complex Lie algebroids. More generally, given a holomorphic Lie algebroid A,
the pair (A0,1, A1,0) is a matched pair of Lie algebroids and A0,1 �� A1,0 is isomorphic,
as a complex Lie algebroid, to A ⊗ C [30].

Example 1.9. Let D be an integrable distribution on a smooth manifold M . Then D is a
Lie subalgebroid of TM , and the normal bundle TM/D is canonically a D-module. The
D-action on TM/D is usually called Bott connection [8]. Moreover, ifF1 andF2 are two
transversal foliations on a smooth manifold M , the corresponding tangent distributions
TF1 and TF2 constitute a matched pair of Lie algebroids with TF1 �� TF2

∼= TM .

Example 1.10. Let G be a Poisson Lie group and let (P, π) be a Poisson G-space, i.e.
a Poisson manifold P together with a G-action such that the action map G × P → P
is a Poisson map. According to Lu [35], A = (T ∗P)π and B = P � g form a matched
pair of Lie algebroids.

Remark 1.11. A matched pair of Lie algebroids L = A �� B can be seen as a Lie pair
(L , A) together with a splitting j : B → L of the short exact sequence 0 → A → L →
B → 0, whose image j (B) happens to be a Lie subalgebroid of L .

2. Atiyah Classes

2.1. Prelude: holomorphic connections. The Atiyah class of a holomorphic vector bun-
dle E over a complexmanifold X is the obstruction class to the existenceof a holomorphic
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(linear) connection. It is constructed in the following way. The vector bundle J 1E of
jets (of order 1) of holomorphic sections of E → X fits into the canonical short exact
sequence of holomorphic vector bundles

0 → T ∗
X ⊗ E → J 1E → E → 0

over the complex manifold X . The Atiyah class of E → X is the extension class

αE ∈ Ext1X (E, T ∗
X ⊗ E)

of this short exact sequence [3,23].
There are canonical isomorphisms between the abelian groups Ext1X (E, T ∗

X ⊗E) and
HomD+(X)(TX ⊗ E, E[1]), the sheaf cohomology group H1(X, T ∗

X ⊗ End E) and the
Dolbeault cohomology group H1,1(X,End E). ADolbeault representative of the Atiyah
class can be obtained in the followingway. Considering T 1,0

X as a complex Lie algebroid,

choose a T 1,0
X -connection ∇1,0 on E . Being a holomorphic vector bundle, E carries a

canonical flat T 0,1
X -connection ∂ . Adding ∇1,0 and ∂ , we obtain a TX ⊗ C-connection

∇ on E . The element R ∈ �1,1(End E) defined by

R(X0,1,Y 1,0) = ∇X0,1∇Y 1,0 − ∇Y 1,0∇X0,1 − ∇[X0,1,Y 1,0] (2)

is a Dolbeault 1-cocycle whose cohomology class (which is independent of the choice
of ∇1,0) is the Atiyah class αE ∈ H1,1(X,End E).

2.2. Existence of A-compatible L-connections.

2.2.1. Extension of an A-action to a compatible L-connection. Throughout this section,
(L , A) is a Lie pair and E is an A-module. The symbols E andL will denote the sheaves
on M defined by

E (U ) = {e ∈ �(U ; E) s.t. ∇ae = 0, ∀a ∈ �(U ; A)} ,

and

L (U ) = {l ∈ �(U ; L) s.t. [a, l] ∈ �(U ; A), ∀a ∈ �(U ; A)} ,

where U denotes an arbitrary open subset of M .

Lemma 2.1. Given an A-module E, there always exists an L-connection on E extending
the given A-connection. Moreover, if ∇1 and ∇2 are two such extensions, then d∇2 −
d∇1 ∈ �(A⊥ ⊗ End E), where A⊥ denotes the annihilator of A in L∗.

Proof. Choose a subbundle B of L such that L = A⊕ B and a TM -connection∇(TM ) on
E — this is always possible. Then extend the given A-connection ∇(A) to an L-
connection ∇(L) on E by setting

∇(L)
a+b = ∇(A)

a + ∇(TM )
ρ(b) ,

where ρ denotes the anchor map L → TM . The difference l �→ ∇1
l − ∇2

l of two such
extensions ∇1 and ∇2 is a bundle map L → End E , which vanishes on A. ��
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Definition 2.2. An L-connection ∇ on E is said to be A-compatible, if

(a) it extends the given A-action on E , and
(b) it satisfies

∇a∇l − ∇l∇a = ∇[a,l], ∀a ∈ �(A), l ∈ �(L).

Proposition 2.3. Let ∇ be an L-connection on E extending its A-action. Provided that
the sheaf of smooth sections of E is isomorphic to C∞

M ⊗R E and the sheaf of smooth
sections of L is isomorphic to C∞

M ⊗R L , the L-connection ∇ is A-compatible if and
only if ∇L E ⊂ E .

Proof. For any a ∈ �(U ; A), l ∈ L (U ) and e ∈ E (U ), we have [a, l] ∈ �(U ; A),
∇ae = 0, and ∇[a,l]e = 0 so that, if ∇ is A-compatible, we obtain

∇a∇l e = ∇a∇l e − ∇l∇ae − ∇[a,l]e = 0.

Hence ∇l e ∈ E (U ). This proves that ∇L E ⊂ E . Conversely, if ∇L E ⊂ E , then
(∇a∇ f ·l − ∇ f ·l∇a − ∇[a, f ·l]

)
(g · e) = f g · ∇a∇l e = 0,

for all a ∈ �(U ; A), f, g ∈ C∞
U , l ∈ L (U ) and e ∈ E (U ). Since �(U ; E) = C∞

U ⊗RE
and �(U ; L) = C∞

M ⊗R L , it follows that ∇ is A-compatible. ��
Remark 2.4. Given amatched pair of Lie algebroids (A, B) and an A-module E , consider
the Lie algebroid L = A �� B. An A-compatible L-connection on E determines a B-
connection on E satisfying

∇a∇be − ∇b∇ae = ∇[a,b]e, ∀a ∈ �(A), b ∈ �(B), e ∈ �(E).

The converse is also true.

2.2.2. Atiyah class: obstruction to compatibility. Assume that (L , A) is a Lie pair, E is
an A-module, and ∇ is an L-connection on E extending its A-action. The curvature of
∇ is the bundle map R∇ : ∧2L → End E defined by

R∇(l1, l2) = ∇l1∇l2 − ∇l2∇l1 − ∇[l1,l2], ∀ l1, l2 ∈ �(L).

Since E is an A-module, its restriction to ∧2A vanishes. Hence the curvature induces a
section R∇

E ∈ �(A∗ ⊗ A⊥ ⊗End E) or, equivalently, a bundle map R∇
E : A⊗ (L/A) →

End E given by

R∇
E

(
a; q(l)

) = R∇(a, l) = ∇a∇l − ∇l∇a − ∇[a,l], ∀a ∈ �(A), l ∈ �(L). (3)

The L-connection ∇ is compatible with the A-module structure of E if and only if
R∇
E = 0.

Theorem 2.5. (a) The section R∇
E of A∗⊗A⊥⊗End E is a1-cocycle for theLie algebroid

A with values in the A-module A⊥ ⊗ End E.
(b) The cohomology class αE ∈ H1(A, A⊥ ⊗ End E) of the 1-cocycle R∇

E does not
depend on the choice of L-connections on E extending the A-action.

(c) The Atiyah class αE of E vanishes if and only if there exists an A-compatible L-
connection on E.
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Proof. We use the symbol ∂ A to denote the covariant differential associated to the action
of the Lie algebroid A on A⊥ ⊗ End E .

(a) The second Bianchi identity states that d∇ R∇ : ∧3L → End E is identically
zero. Thus, for any a1, a2 ∈ �(A), l ∈ �(L), we have

0 = (d∇ R∇)(a1, a2, l)

= ∇a1(R
∇(a2, l)) − ∇a2(R

∇(a1, l)) + ∇l(R
∇(a1, a2))

− R∇([a1, a2], l) + R∇([a1, l], a2) − R∇([a2, l], a1)
= ∇a1

(
R∇
E (a2; q(l))

) − ∇a2

(
R∇
E (a1; q(l))

)

− R∇
E ([a1, a2]; q(l)) − R∇

E (a2; ∇a1q(l)) + R∇
E (a1; ∇a2q(l))

=
(
∇a1

(
R∇
E (a2; q(l))

) − R∇
E

(
a2; ∇a1q(l)

))

−
(
∇a2

(
R∇
E (a1; q(l))

) − R∇
E

(
a1; ∇a2q(l)

)) − R∇
E

([a1, a2]; q(l)
)

= (
∂ AR∇

E

)
(a1, a2; q(l)).

Therefore ∂ AR∇
E = 0.

(b) By Lemma 2.1, if ∇1 and ∇2 are two L-connections that extend the A-action,
then ∇1

l − ∇2
l = φ(l) for some φ ∈ �(A⊥ ⊗ End E), and

R∇1
E (a; q(l)) · e − R∇2

E (a; q(l)) · e
= ∇a(∇1

l − ∇2
l )e − (∇1

l − ∇2
l )∇ae − (∇1[a,l] − ∇2[a,l])e

= ∇a
(
φ(l) · e) − φ(l) · (∇ae) − φ([a, l])e

= (
∂ Aφ

)
(a; l) · e.

So R∇1
E − R∇2

E = ∂ Aφ.
(c) It is clear that R∇

E vanishes if and only if ∇ is A-compatible. Now, if R∇
E = ∂ Aφ

for some φ ∈ �(A⊥ ⊗ End E), set ∇′ = ∇ − φ. Then R∇′
E = 0, which implies that ∇′

is A-compatible. ��
We call R∇

E the Atiyah cocycle associated with the L-connection ∇ that extends the
A-module structure of E , and its corresponding cohomology class αE ∈ H1(A, A⊥ ⊗
End E) the Atiyah class of the A-module E .

Remark 2.6. When the Lie pair (L , A) is a matched pair of Lie algebroids, i.e. L =
A �� B, our definition of Atiyah class is a special case of the Atiyah class of a dDG
algebra developed by Calaque and Van den Bergh [12]. Hence in the matched pair case,
Theorem 2.5 (a)–(b) is a consequence of Lemma 8.2.4 in [12].

Example 2.7. Let X be a complex manifold, and E a holomorphic vector bundle over X .
Then A = T 0,1

X and B = T 1,0
X form a matched pair of Lie algebroids and L = A �� B

is isomorphic to TX ⊗ C. Moreover E is an A-module [30]. It is simple to see that
holomorphic TX -connections on E are equivalent to L-connections on E compatible
with the A-action (as well as to A-compatible B-connections on E—see Remark 2.4).
In this case, the Atiyah cocycle is exactly the Dolbeault 1-cocycleR defined by Eq. (2).
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Example 2.8. A holomorphic Lie algebroid K over a complex manifold X yields a
matched pair of complex Lie algebroids (T 0,1

X , K 1,0) [30]. The Atiyah class of the T 0,1
X -

module K 1,0 is the Atiyah class for K studied extensively by Calaque andVan den Bergh
in [12].

Example 2.9. In [41], Molino introduced an Atiyah class for connections “transversal
to a foliation,” which measures the obstruction to their “projectability.” Although not
phrased in the language of Lie algebroids, his construction is a special case of ours.
Here L is the tangent bundle TM , A is the tangent bundle to a foliation F of M , and the
A-module E is a vector bundle on M foliated over F . A transversal connection is an
L-connection on E which extends the A-action. It is said to be projectable precisely if it
is A-compatible, i.e. if it is preserved by parallel transport along any path tangent to F .

Example 2.10. Let g be a Lie subalgebra of a Lie algebra d. Given a g-module E (i.e.
a Lie algebra morphism A : g → End E), and a d-connection on E extending it (i.e. a
linear map L : d → End E whose restriction to g is A), the Atiyah class is the element in
the Chevalley–Eilenberg cohomology group H1(g, g⊥ ⊗ End(E)) determined by ∂gL.
(The symbol ∂g denotes the Chevalley–Eilenberg coboundary of d∗ ⊗ End(E)-valued
g-cochains.) Here L is considered as an element in d∗ ⊗ End(E), which is, in general,
not in g⊥ ⊗ End(E). Hence, in general, ∂gL does not vanish in H1(g, g⊥ ⊗ End(E)).

The following example is due to Calaque–Căldăraru–Tu [10].

Example 2.11. Consider the Lie algebra sl2(C) and its standard basis

h =
(
1 0

0 −1

)

, e =
(
0 1

0 0

)

, f =
(
0 0

1 0

)

.

We have

[e, f ] = h, [h, e] = 2e, [h, f ] = −2 f.

Together, the matrices h and e generate the Lie subalgebra g of 2 × 2 traceless upper
triangular matrices. We identify the quotient sl2(C)/g to the nilpotent Lie subalgebra
n generated by f . Note that g and n form a matched pair of Lie algebras with sum
g⊕ n = sl2(C). The bilinear map θ : n⊗ n → n defined by θ( f, f ) = f is a generator
of the one-dimensional g-module g⊥ ⊗ End(n) ∼= Hom(n ⊗ n, n). The action of g on
Hom(n ⊗ n, n) is given by h · θ = 2θ and e · θ = 0. One checks that the degree 1
cohomology H1(g, g⊥ ⊗ End(n)) is a one-dimensional vector space generated by the
Atiyah class αn of the g-module n.

2.3. Functoriality. Let M and N be smooth manifolds, f : N → M a smooth map, A
a Lie algebroid over M with anchor ρ : A → T M , and E a smooth vector bundle over
M .

Let f ∗E denote the pullback of E through f , i.e. the fibered product of N and E
over M :

f ∗E

��

�� E

��
N

f
�� M.
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If the anchor ρ and the differential of f are transversal (i.e. f∗(T N ) + ρ(A) = T M |N ),
we can consider the fibered product f �A of T N and A over T M :

f �A

��

�� A

ρ

��
T N

f∗
�� T M.

Note that ρ and f∗ are automatically transversal when f is a surjective submersion or
when the Lie algebroid A is transitive. It is clear that f �A is a vector bundle over N .
However, note that f �A �= f ∗A. The fiber of f �A over a point n ∈ N is

( f �A)n = {
(x, a) ∈ TnN ⊕ A f (n)

∣
∣ f∗(x) = ρ(a)

}
.

The Lie algebroid structure on A induces a Lie algebroid structure on f �A → N ; its
anchor is the projection f �A → T N and its bracket is given by

[(x1, a1), (x2, a2)] = ([x1, x2], [a1, a2]),
for any x1, x2 ∈ X(N ) and a1, a2 ∈ �(A) such that f∗(x1) = ρ(a1) and f∗(x2) = ρ(a2)
(see [20] for details).

Proposition 2.12. Let A be a Lie algebroid over M and f : N → M a smooth map
whose differential f∗ : T N → T M is transversal to the anchor of A. Then

(a) If E is a module over A, then f ∗E is a module over f �A.
(b) The map f induces a natural homomorphism

f † : H•(A, E
) → H•( f �A, f ∗E

)
.

Proof. The first assertion is easily proved if one thinks of Lie algebroidmodules in terms
of horizontal lifting. The second assertion follows from a direct verification. ��
The following proposition is immediate.

Proposition 2.13. If (L , A) is a Lie pair over M, and f : N → M a smooth map whose
differential f∗ : T N → T M is transversal to the anchor of A, then ( f �L , f �A) is a Lie
pair over N.

Given aLie pair (L , A) over a smoothmanifoldM and a smoothmap f : N → M whose
differential f∗ : T N → T M is transversal to the anchor of A (otherwise f �A and f �L
could be singular), there is a canonical morphism of vector bundles f �L → f ∗(L/A)

over N :

f �L � (xn, l f (n)) �→ l f (n) + A f (n) ∈ f ∗
(
L

A

)

,

whose kernel is exactly f �A. In other words, we have an exact sequence of vector
bundles

0 → f �A → f �L → f ∗(L/A).

Therefore f �L/ f �A can be seen as a vector subbundle of f ∗(L/A).

Author's personal copy



From Atiyah Classes to Homotopy Leibniz Algebras 323

Lemma 2.14. Under the hypothesis of Proposition 2.13, the inclusion

I : f �L

f �A
→ f ∗

(
L

A

)

intertwines the f �A-module structures on ( f �L)/( f �A) and f ∗(L/A).

Dualizing it, as a consequence, we obtain the epimorphism of vector bundles

I † : f ∗(A⊥) → ( f �A)⊥,

which is a morphism of f �A-modules. Note that, when f is a surjective submersion, I
is surjective and thus both I and I † are isomorphisms of f �A-modules.

We are now ready to state the main result in this subsection.

Theorem 2.15. Let (L , A) be a Lie pair over M, and f : N → M a smooth map whose
differential f∗ : T N → T M is transversal to the anchor of A. Assume that E is an
A-module. Then the composition of homomorphisms

H1(A, A⊥ ⊗ End E
) f †−→ H1( f �A, f ∗(A⊥ ⊗ End E)

)

I †−→ H1( f �A, ( f �A)⊥ ⊗ End( f ∗E)
)

maps the Atiyah class of E relative to the Lie pair (L , A) onto the Atiyah class of f ∗E
relative to the Lie pair ( f �L , f �A):

(I † ◦ f †)(αE ) = α f ∗E .

2.4. Scalar Atiyah classes and Todd class. Let (L , A) be a Lie pair. We define the scalar
Atiyah classes [3] of an A-module E by

ck(E) := 1

k!
(

i

2π

)k

tr
(
αk
E

) ∈ Hk(A,∧k A⊥).

Here αk
E denotes the image of αE ⊗ · · · ⊗ αE under the natural map

H1(A, A⊥ ⊗ End E) × · · · × H1(A, A⊥ ⊗ End E) → Hk(A,∧k A⊥ ⊗ End E)

induced by the composition in End E and the wedge product in ∧•A⊥.
Remark 2.16. If E is a holomorphic vector bundle over a compact Kähler manifold X ,
the natural inclusion of Hk(X,�k) into H2k(X, C) maps the scalar Atiyah classes of E
relative to the Lie pair (L = TX ⊗ C, A = T 0,1

X ) to the Chern classes of E .

The Todd class of the A-module E relative to the Lie pair (L , A) is the cohomology
class

Td(E) = det

(
αE

1 − e−αE

)

∈ H•(A,∧•A⊥).

The following propositions can be verified directly.

Proposition 2.17. Let (L , A) be a Lie pair and let E1, E2 be A-modules. Then

Td(E1 ⊕ E2) = Td E1 · Td E2.

Proposition 2.18. Under the hypothesis of Theorem 2.15, we have

ck( f
∗E) = (I † ◦ f †)(ck E) ∈ Hk( f �A,∧k( f �A)⊥

)
,

Td( f ∗E) = (I † ◦ f †)(Td E) ∈ H•( f �A,∧•( f �A)⊥
)
.
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2.5. Jet short exact sequence.

2.5.1. The jet bundle J 1
L/AE. Let M be a smooth manifold, let L → M be a Lie

algebroid, and let E
π−→ M be a vector bundle.

An L-jet (of order 1) on E (at ex ∈ E) is a linear map Lπ(ex )
φ−→ Tex E such that the

diagram

Lπ(ex )
φ ��

ρ
											

Tex E

π∗ex�����������

Tπ(ex )M

commutes. The jet space J 1
L E is the manifold whose points are L-jets on E . It is a

vector bundle over M : the projection J 1
L E → M maps (Lπ(ex )

φ−→ Tex E) to π(ex ). It
fits into the short exact sequence of vector bundles over M :

0 �� L∗ ⊗ E
f̂ �� J 1

L E
ĝ �� E �� 0. (4)

The surjection ĝ maps (Lπ(ex )
φ−→ Tex E) to ex , while the injection f̂ maps (Lx

ψ−→ Ex )

to (Lx
ρ⊕ψ−−−→ TxM ⊕ Ex ∼= T0x E).

The following result is straightforward.

Proposition 2.19. A splitting s : E → J 1
L E of the short exact sequence of vector

bundles (4) determines a (linear) L-connection on E. The converse is also true.

In general, there is no canonical choice of splitting for (4). However, the induced short
exact sequence

0 �� �(L∗ ⊗ E)
f̂� �� �(J 1

L E)
ĝ� �� �(E) �� 0 (5)

at the level of spaces of smooth sections splits canonically: if e is a section of E , then
σe := e∗ ◦ ρ is a section of J 1

L E such that ĝ�(σe) = e.
We note that the covariant differential d∇ : �(E) → �(L∗ ⊗ E) associated to a

splitting s : E → J 1
L E of the short exact sequence (4) is given by

f̂�(d
∇e) = σe − s�(e), ∀e ∈ �(E).

Now assume A is a Lie subalgebroid of L and E is an A-module. The symbol h will
denote the horizontal lifting associated to the A-action on E .

An h-extending L-jet (of order 1) on E is a linear map Lπ(ex )
φ−→ Tex E such that the

diagram
Aπ(ex )

��









h(−,ex )

		���������

Lπ(ex )
φ ��

ρ
											

Tex E

π∗ex�����������

Tπ(ex )M
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commutes. The jet space J 1
L/AE is the manifold whose points are h-extending L-jets

on E . It is a vector bundle over M : the projectionJ 1
L/AE → M maps (Lπ(ex )

φ−→ Tex E)

to π(ex ).

Example 2.20. When E is a holomorphic vector bundle over a complex manifold X ,
A = T 0,1

X and L = TX ⊗C, the jet bundleJ 1
L/AE is simply the bundle of jets (of order

1) of holomorphic sections of E .

Consider the surjective morphism of vector bundles ğ : J 1
L/AE → E , which maps

(Lπ(ex )
φ−→ Tex E) to ex . Since T0x E is canonically isomorphic to TxM ⊕ Ex , the kernel

of ğ can be identified naturally with the subbundle K of L∗ ⊗ E → M consisting of all

linear maps (Lx
ψ−→ Ex ) which satisfy

h(ax , 0x ) = ρ(ax ) + ψ(ax ), ∀x ∈ M, ax ∈ Ax .

Since the A-connection h on E is linear, h(ax , 0x ) must be the image of ρ(ax ) under

the differential of the zero section M
0−→ E . Therefore, a linear map (Lx

ψ−→ Ex ) is an
element of K if and only if ψ(ax ) = 0 for all ax ∈ A, so that K ∼= A⊥ ⊗ E . Hence we
obtain the short exact sequence of vector bundles

0 �� A⊥ ⊗ E
f̆ �� J 1

L/AE
ğ �� E �� 0, (6)

where the injection f̆ maps (Lx
ψ−→ Ex ) to the jet

Lx → T0x E ∼= TxM ⊕ Ex lx �→ ρ(lx ) + ψ(lx ).

In general, there is no canonical choice of splitting for (6).

Proposition 2.21. A splitting s : E → J 1
L/AE of the short exact sequence of vector

bundles (6) determines a (linear) L-connection on E extending the A-action h. The
converse is also true.

Obviously, we have the commutative diagram with exact rows

0 �� A⊥ ⊗ E
f̆ ��

��

J 1
L/AE

ğ ��

��

E ��

id

��

0

0 �� L∗ ⊗ E
f̂ �� J 1

L E
ĝ �� E �� 0,

all of whose vertical arrows denote inclusions.

2.5.2. An equivalent description of the jet bundle.

Proposition 2.22. An L-jet (of order 1) on E extending the A-action∇ is a pair (Dx , ex )
consisting of a linearmap Dx : �(E∗) → L∗

x and a point ex in the fiber of E over x ∈ M,
satisfying

〈Dx (ε), ax 〉 = 〈∇ax ε, ex 〉 (or equivalently Dx (ε) = 〈d∇ε, ex 〉); (7)

Dx ( f ε) = f (x) · Dx (ε) + 〈εx , ex 〉 · ρ∗(d f ), (8)

for all ax ∈ Ax , ε ∈ �(E∗), and f ∈ C∞(M).
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Proof. Given such a pair (Dx , ex ), each lx ∈ Lx determines uniquely a tangent vector
τx ∈ Tex E through the relations

τx (π
∗ f ) = ρ(lx ) f = 〈ρ∗(d f ), lx 〉 and τx ( fε) = 〈Dx (ε), lx 〉,

where ε ∈ �(E∗), f ∈ C∞(M), and fε ∈ C∞(E) is the fiberwise linear function
associated to ε:

fε(ex ) = 〈εx , ex 〉.
LetφD : Lx → Tex E be themap lx �→ τx . Clearly,φD is linear and satisfiesπ∗◦φD = ρ.
Moreover, φD is an extension of the A-action since

(
φD(ax )

)
( fε) = 〈Dx (ε), ax 〉 = 〈∇ax ε, ex 〉 = h(ax , ex )( fε).

Herewehavemade use of Eq. (1).HenceφD ∈ (
J 1

L/AE
)
x and ğ(φD) = ex . Conversely,

given an element φ : Lx → Tex E of
(
J 1

L/AE
)
x that projects to ex under ğ, we can

define a linear map Dφ
x : �(E∗) → L∗

x by the relation

〈Dφ
x (ε), lx 〉 = (

φ(lx )
)
( fε).

It is straightforward to check that (Dφ
x , ex ) satisfies (7) and (8). ��

Remark 2.23. The surjection ğ : J 1
L/AE → E in (6) maps the 1-jet (Dx , ex ) to ex . The

injection f̆ in (6) maps ψ ∈ (A⊥ ⊗ E)x to (ψ
†
x , 0x ) ∈ (

J 1
L/AE

)
x , where 0x is the zero

vector of Ex and ψ
†
x : �(E∗) → L∗

x is the linear map defined by

〈ψ†
x (ε), lx 〉 = 〈εx , ψ(lx )〉, ∀lx ∈ Lx , ε ∈ �(E∗). (9)

Here ψ is considered as a linear map Lx → Ex whose kernel contains Ax .

2.5.3. The jet bundle as an A-module. The jet bundleJ 1
L/AE can be naturally endowed

with an A-action.
In the language of Proposition 2.22, a section ofJ 1

L/AE → M consists of a section
e of E → M and an R-linear map D : �(E∗) → �(L∗) satisfying

〈D(ε), a〉 = 〈∇aε, e〉;
D( f ε) = f · D(ε) + 〈ε, e〉 · ρ∗(d f ),

for all f ∈ C∞(M), ε ∈ �(E∗), and a ∈ �(A).

Proposition 2.24. (a) The jet bundle J 1
L/AE is a module over A; the covariant deriv-

ative

�(A) × �(J 1
L/AE) → �(J 1

L/AE)

is given by

∇a(D, e) = (∇aD,∇ae),

where the R-linear map ∇aD : �(E∗) → �(L∗) is defined as follows:

〈(∇aD
)
(ε), l〉 = ρ(a)〈D(ε), l〉 − 〈D(∇aε), l〉 − 〈D(ε), [a, l]〉. (10)
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(b) Diagram (6) is a short exact sequence of A-modules.

Proof. (a) Checking that (10) determines a connection is straightforward. The flatness
of the A-connection onJ 1

L/AE is a consequence of the flatness of the A-connection on
E .

(b) By definition, ğ is a morphism of A-modules. Let us check that f̆ is also a
morphism of A-modules. For any ψ ∈ �(A⊥ ⊗ E), we have

〈(∇aψ
†)(ε), l〉 = ρ(a)〈ψ†(ε), l〉 − 〈ψ†(∇aε), l〉 − 〈ψ†(ε), [a, l]〉

= ρ(a)〈ψ(l), ε〉 − 〈ψ(l),∇aε〉 − 〈ψ([a, l]), ε〉
= 〈(∇aψ)(l), ε〉 = 〈(∇aψ)†(ε), l〉.

Here the map ψ† is defined by Eq. (9). ��

2.5.4. Alternative description of the A-action onJ 1
L/AE. In this section, B denotes the

quotient L/A of the Lie pair (L , A).
The proof of the following lemma is a tedious computation, which we omit.

Lemma 2.25. The splitting σ : �(E) → �(J 1
L E) of the short exact sequence (5) is

not C∞(M)-linear. For every e ∈ �(E) and f ∈ C∞(M), we have

σ( f · e) − f · σe = f̂�
(
ρ∗(d f ) ⊗ e

)
.

In general, σe need not be a section of J 1
L/AE . Nevertheless, fixing a splitting of the

short exact sequence of vector bundles

0 �� A
i �� L

q �� B �� 0 ,

i.e. a pair of bundle maps j : B → L and p : L → A such that q ◦ j = idB , p ◦ i = idA
and i ◦ p + j ◦ q = idL :

0 ��
A

i ��

 L
q ��

p


 B

��
j



 0

 ,

naturally determines a splitting ς : �(E) → �(J 1
L/AE) of the short exact sequence of

spaces of smooth sections

0 �� �(A⊥ ⊗ E)
f̆� �� �(J 1

L/AE)
ğ� �� �(E) �� 0

induced by (6). The image of x ∈ M under the section ςe of J 1
L/AE associated to a

section e of E by the splitting ς is the 1-jet

Lx � lx
(ςe)x�−−−→ h(p(lx ), ex ) + e∗x

(
ρ ◦ j ◦ q(lx )

) ∈ Tex E .

It is not difficult to see that ğ�(ςe) = e.
The proof of the following lemma is a tedious computation, which we omit.
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Lemma 2.26. The splitting ς : �(E) → �(J 1
L/AE) is not C∞(M)-linear. For every

e ∈ �(E) and f ∈ C∞(M), we have

ς( f · e) − f · ςe = f̆�
((
l �→ ρ( j ◦ q(l)) f

) ⊗ e
)
.

Since both E and A⊥ are modules over A, so is A⊥ ⊗ E :

〈∇a(λ ⊗ e), l〉 = ρ(a)
(
λ(l)

) · e − λ([a, l]) · e + λ(l) · ∇ae,

where a ∈ �(A), λ ∈ �(A⊥), e ∈ �(E), and l ∈ �(L).

Remark 2.27. Since �(J 1
L/AE) is the direct sum of f̆�(�(A⊥ ⊗ E)) and ς(�(E)), to

define an A-module structure on the jet bundleJ 1
L/AE , it suffices to define the A-action

on f̆�(�(A⊥ ⊗ E)) and ς(�(E)). Naively, one might expect to define such an A-action
by setting

∇a
(
f̆�(λ ⊗ e)

) = f̆�
(∇a(λ ⊗ e)

); (11)

∇a(ςe) = ς(∇ae). (12)

However, according to a tedious computation, we have

ς(∇ f ·ae) − ∇ f ·a(ςe) = f · (ς(∇ae) − ∇a(ςe)
)
+ f̆�

((
l �→ ρ( j ◦ q(l)) f

) ⊗ ∇ae
)

and

ς
(∇a( f · e)) − ∇a

(
ς( f · e)) = f · (ς(∇ae) − ∇a(ςe)

)

+ f̆�
((
l �→ ρ(i ◦ p[ j ◦ q(l), a]) f ) ⊗ e

)
,

for any a ∈ �(A), e ∈ �(E), and f ∈ C∞(M). This means that Eq. (12) must be
modified.

To modify Eq. (12), let us introduce some new notations. Given a ∈ �(A) and
e ∈ �(E), define �(a, e) ∈ �(A⊥ ⊗ E) by the relation

〈�(a, e), l〉 = ∇i◦p[ j◦q(l),a]e, ∀l ∈ �(L).

The proof of the following Lemma is a tedious computation, which we omit.

Lemma 2.28. For any f ∈ C∞(M),

�( f · a, e) − f · �(a, e) = (
l �→ ρ( j ◦ q(l)) f

) ⊗ ∇ae;
�(a, f · e) − f · �(a, e) = (

l �→ ρ(i ◦ p[ j ◦ q(l), a]) f ) ⊗ e.

This suggests the following proposition.

Proposition 2.29. (a) The jet bundle J 1
L/AE → M is an A-module: the flat

A-connection on J 1
L/AE is given by

∇a
(
f̆�(λ ⊗ e)

) = f̆�
(∇a(λ ⊗ e)

)
(13)

∇a(ςe) = ς(∇ae) − f̆�
(
�(a, e)

)
, (14)

for all a ∈ �(A), λ ∈ �(A⊥), and e ∈ �(E).
(b) Diagram (6) is a short exact sequence of A-modules.
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Sketch of proof. (a) It follows from Lemmas 2.26 and 2.28 that what we have defined
is indeed a covariant derivative. Flatness follows from the Jacobi identity of the Lie
algebroid L , and the flatness of the A-connections on E and A⊥ ⊗ E .

(b) It suffices to check that ğ is a morphism of A-modules. We have

ğ�

(∇a(ςe)
) = ğ�

(
ς(∇ae)

) − ğ� f̆�
(
�(a, e)

) = ∇ae = ∇a
(
ğ�(ςe)

)
. ��

Remark 2.30. Observe that, for a matched pair L = A �� B, �(a, e) ∈ �(B∗ ⊗ E) is
given by the simple formula:

〈�(a, e), b〉 = ∇�bae.

Proposition 2.31. The A-actions onJ 1
L/AE defined in Propositions 2.24 and 2.29 are

identical.

Proof. The R-linear map Dςe : �(E∗) → �(L∗) determined by the section ςe of
J 1

L/AE → M (as explained in the proof of Proposition 2.22) satisfies

〈Dςe(ε), a〉 = 〈∇aε, e〉;
〈Dςe(ε), j (b)〉 =

(
ςe

(
j (b)

))
( fε) =

(
e∗ ◦ ρ

(
j (b)

))
( fε) = ρ

(
j (b)

)〈ε, e〉,
for all e ∈ �(E), ε ∈ �(E∗), a ∈ �(A), and b ∈ �(B). The image of Dςe under the
action of a ∈ �(A) is the R-linear map ∇aDςe : �(E∗) → �(L∗) defined by (10). We
have

〈(∇a′ Dςe)(ε), a〉
= ρ(a′)〈Dςe(ε), a〉 − 〈Dςe(∇a′ε), a〉 − 〈Dςe(ε), [a′, a]〉
= ρ(a′)〈∇aε, e〉 − 〈∇a∇a′ε, e〉 − 〈∇[a′,a]ε, e〉
= ρ(a′)〈∇aε, e〉 − 〈∇a′∇aε, e〉
= 〈∇aε,∇a′e〉
= 〈Dς(∇a′e)(ε), a〉

and

〈(∇a′ Dςe)(ε), j (b)〉
= ρ(a′)〈Dςe(ε), j (b)〉 − 〈Dςe(∇a′ε), j (b)〉 − 〈Dςe(ε), [a′, j (b)]〉
= ρ(a′)ρ

(
j (b)

)〈ε, e〉 − ρ
(
j (b)

)〈∇a′ε, e〉
− 〈Dςe(ε),−p[ j (b), a′] + j (∇a′b)〉

= ρ(a′)ρ
(
j (b)

)〈ε, e〉 − ρ
(
j (b)

)
ρ(a′)〈ε, e〉 + ρ

(
j (b)

)〈ε,∇a′e〉
+ 〈∇p[ j (b),a′]ε, e〉 − ρ

(
j (∇a′b)

)〈ε, e〉
= ρ([a′, j (b)])〈ε, e〉 + ρ

(
j (b)

)〈ε,∇a′e〉 + ρ(p[ j (b), a′])〈ε, e〉
− 〈ε,∇p[ j (b),a′]e〉 − ρ

(
j (∇a′b)

)〈ε, e〉
= ρ

(
j (b)

)〈ε,∇a′e〉 − 〈ε,∇p[ j (b),a′]e〉
= 〈Dς(∇a′e)(ε), j (b)〉 − 〈(�(a′, e)

)†
(ε), j (b)〉.
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Therefore, we obtain

∇a′ Dςe = Dς(∇a′e) − (
�(a′, e)

)†
,

which is equivalent to Eq. (14). ��

2.5.5. The abelian category A. It is a classical result that the space �(A) of smooth
sections of a Lie algebroid A over a smooth manifold M is a Lie–Rinehart algebra over
the commutative ring C∞(M) [21,44]. We denote the abelian category of modules over
this Lie–Rinehart algebra by the symbolA. Alternatively,A can be seen as the category
of left modules over the universal enveloping algebra U(A) [55] of the Lie algebroid A.
In particular, the space of smooth sections of an A-module, i.e. a vector bundle over M
endowed with an A-action, is an object inA. By D+(A), we denote the bounded below
derived category of A, which is a symmetric monoidal category [22]. The interchange
isomorphism τ : X � Y → Y � X of a pair of objects X and Y of D+(A) is given by

τ(x � y) = (−1)|x ||y|y � x . (15)

2.5.6. Extension class of the jet sequence. A short exact sequence of A-modules

0 �� P
α �� Q

β �� R �� 0 (16)

determines an extension class in the group Ext1A(R, P), which is naturally isomorphic
to the Lie algebroid cohomology group H1(A, R∗ ⊗ P) [21].

Indeed, given a homomorphism of vector bundles s : R → Q such that β ◦ s = idR ,
we have

s�(∇ar) − ∇a
(
s�(r)

) ∈ ker β, ∀a ∈ �(A), r ∈ �(R)

so that the equation

s�(∇ar) − ∇a
(
s�(r)

) = α�

(
ξs(a) · r) (17)

defines a vector bundle map ξs : A → Hom(R, P). Rewriting (17) as

(idR∗ ⊗α) ◦ ξs = ∂ As (18)

and recalling that α : P → Q is a morphism of A-modules, we immediately see that

(idR∗ ⊗α) ◦ ∂ Aξs = ∂ A((idR∗ ⊗α) ◦ ξs
) = ∂ A(∂ As) = 0.

Therefore ∂ Aξs = 0, i.e. ξs is a 1-cocycle for the Lie algebroid A with values in the
A-module R∗⊗P . It follows fromEq. (18) that the cohomology class [ξs ] ∈ H1(A, R∗⊗
P) of the 1-cocycle ξs defined by (17) is independent of the choice of the section
s : R → Q. In fact, [ξs] is the extension class in Ext1A(R, P) ∼= H1(A, R∗ ⊗ P) of the
short exact sequence of A-modules (16).

Proposition 2.32. Given a Lie pair (L , A) and an A-module E, let ∇ denote the L-
connection on E determined by a section s : E → J 1

L/AE of the short exact sequence

(6). When considered as sections of A∗ ⊗ A⊥ ⊗ End E, the bundle maps ξs : A →
Hom(E, A⊥ ⊗E) and R∇

E : A⊗(L/A) → End E (respectively defined by (17) and (3))
are one and the same.
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Proof. Define d̆∇ : �(E) → �(A⊥ ⊗ E) by

f̆�(d̆
∇e) = ςe − s�(e), ∀e ∈ �(E). (19)

Then, for all b ∈ B, we have 〈d̆∇e, j (b)〉 = ∇ j (b)e.
For all a ∈ �(A), and e ∈ �(E), we have

f̆�
(
ξs(a) · e)

= s�(∇ae) − ∇a(s�e) by (17),

= (
ς(∇ae) − f̆�d̆

∇(∇ae)
) − (∇a(ςe) − ∇a f̆�(d̆

∇e)
)

by (19),

= f̆�
(
�(a, e) + ∇a(d̆

∇e) − d̆∇(∇ae)
)

by (13) and (14).

Hence, for all b ∈ �(B), we get

〈ξs(a) · e, j (b)〉
= 〈�(a, e) + ∇a(d̆

∇e) − d̆∇(∇ae), j (b)〉
= ∇p[ j (b),a]e + ∇a〈d̆∇e, j (b)〉 − 〈d̆∇e, j (∇ab)〉 − 〈d̆∇(∇ae), j (b)〉
= ∇p[ j (b),a]e + ∇a∇ j (b)e − ∇ j (∇ab)e − ∇ j (b)∇ae

= ∇a∇ j (b)e − ∇ j (b)∇ae − ∇ j (∇ab)+p[a, j (b)]e
= ∇a∇ j (b)e − ∇ j (b)∇ae − ∇[a, j (b)]e
= R∇(

a, j (b)
)
e

= R∇
E (a; b) · e.

This proves that ξs = R∇
E . ��

Corollary 2.33. Let (L , A) be a Lie pair, and E an A-module.

(a) A section s : E → J 1
L/AE of the short exact sequence (6) is a morphism of

A-modules if and only if the L-connection it induces on E is compatible with the
A-action on E.

(b) The short exact sequence of A-modules (6) splits if and only if the Atiyah class αE
vanishes.

Theorem 2.34. Let (L , A) be a Lie pair, and E an A-module. The natural isomorphism

Ext1A(E, A⊥ ⊗ E)
∼=−→ H1(A, A⊥ ⊗ End E)

maps the extension class of the short exact sequence of A-modules (6) to the Atiyah class
of E.

We refer the reader to [12, Lemma 8.2.4] for a related result regarding the Atiyah class of
dDG algebras, which correspond to the matched pair case as pointed out in Remark 2.6.
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3. Leibniz∞ Algebras

In this section, we will explore the rich algebraic structures underlying the Atiyah class
of a Lie pair. As we will see in the subsequent discussion, the adequate framework is the
notion ofLeibniz∞ algebras. Loday’sLeibniz∞ algebras [34] are a natural generalization
of Stasheff’s L∞ algebras [28,29], where the (skew-)symmetry requirement is dropped.

Throughout this section, we implicitly identify objects of A to complexes in A con-
centrated in degree 0. Moreover, we make frequent use of the shifting functor: the shift
V [k] of a graded vector space V = ⊕

n Vn is determined by the rule
(
V [k])n = Vk+n .

We defer most proofs to Sect. 3.5.

3.1. L/A[−1] as a Lie algebra object. Recall that a Lie algebra object in a monoidal
category C is an object � of C together with a morphism λ ∈ HomC(� ⊗ �,�) such
that

(a) λ ◦ τ = −λ (skew-symmetry), and
(b) λ ◦ (id⊗λ) = λ ◦ (λ ⊗ id) + λ ◦ (id⊗λ) ◦ (τ ⊗ id) (Jacobi identity), where τ :

� ⊗ � → � ⊗ � is the braiding isomorphism.

Let (L , A) be a Lie pair with quotient B = L/A. Note that

HomD+(A)(B ⊗ B, B[1]) ∼= HomD+(A)(B[−1] ⊗ B[−1], B[−1]).
Being an element of

Ext1A(B, B∗ ⊗ B) ∼= Ext1A(B ⊗ B, B) ∼= HomD+(A)(B ⊗ B, B[1])
∼= HomD+(A)(B[−1] ⊗ B[−1], B[−1]),

the Atiyah class αB of the A-module B defines a “Lie bracket” on B[−1]. If, moreover,
E is an A-module, its Atiyah class

αE ∈ Ext1A(E, B∗ ⊗ E) ∼= Ext1A(B ⊗ E, E) ∼= HomD+(A)(B[−1] ⊗ E[−1], E[−1])
defines a “representation” on E[−1] of the “Lie algebra” B[−1].

More precisely, we have the following theorem, whose proof is deferred to Sect. 3.5.

Theorem 3.1. Let (L , A) be a Lie pair with quotient B = L/A. Then B[−1] is a Lie
algebra object in the derived category D+(A). Moreover, if E is an A-module, then
E[−1] is a module object over the Lie algebra object B[−1] in the derived category
D+(A).

Remark 3.2. From the skew-symmetric property of a Lie algebra, it follows that the
Atiyah class αB can indeed be considered as an element in H1(A, S2B∗ ⊗ B), or more
precisely, in the image of the map H1(A, S2B∗ ⊗ B) → H1(A, B∗ ⊗ End B) induced
by the A-modules morphism S2B∗ ⊗ B → B∗ ⊗ B∗ ⊗ B(∼= B∗ ⊗ End B).

Remark 3.3. It is implicitly stated in [23] (see also [43,45]) that, if X is a complex
manifold, then TX [−1] is a Lie algebra object in the bounded below derived category
D+(X) of coherent sheaves on X . This is simply Theorem 3.1 in the special case when
L = TX ⊗ C and A = T 0,1

X .
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3.2. Jacobi identity up to homotopy. Let (L , A) be a Lie pair and E an A-module. The
quotient B = L/A is naturally an A-module (see Proposition 1.4).

Consider the graded vector spaces

V =
∞⊕

n=0

�(∧n A∗ ⊗ B)

and

W =
∞⊕

n=0

�(∧n A∗ ⊗ E),

and the covariant differentials

∂ A : �
( ∧• A∗ ⊗ B

) → �
( ∧•+1 A∗ ⊗ B

)

∂ A : �
( ∧• A∗ ⊗ E

) → �
( ∧•+1 A∗ ⊗ E

)

associated to the A-actions on B and E , respectively. Choosing an L-connection ∇ on
L/A extending the A-action, we obtain the bundle maps R2 : B ⊗ B → Hom(A, B)

and S2 : B ⊗ E → Hom(A, E) given by

A � a
R2(b1,b2)�−−−−−→ R∇

B (a; b1)b2 ∈ B, (20)

A � a
S2(b,e)�−−−−→ R∇

E (a; b)e ∈ E, (21)

where R∇
B : A⊗ B → End B and R∇

E : A⊗ B → End E denote the Atiyah cocycles of
B and E , respectively.

Theorem 3.4. Up to homotopies, the complex (V [−1], ∂ A) is a differential graded Lie
algebra and the complex (W [−1], ∂ A) is a differential graded module over it. The Lie
algebra bracket

V [−1] � V [−1] λ−→ V [−1]
and the representation

V [−1] � W [−1] μ−→ W [−1]
are given by

λ
(
(ξ1 ⊗ b1), (ξ2 ⊗ b2)

) = (−1)k2ξ1 ∧ ξ2 ∧ R2(b1, b2)

and

μ
(
(ξ1 ⊗ b), (ξ2 ⊗ e)

) = (−1)k2ξ1 ∧ ξ2 ∧ S2(b, e),

where ξ1 ∈ �(∧k1 A∗), ξ2 ∈ �(∧k2 A∗), b1, b2, b ∈ �(B), and e ∈ �(E).

Consequently, the cohomology
⊕

i≥1 H
i−1(A, E) = H•(W [−1], ∂ A) is a module

over the (graded) Lie algebra
⊕

i≥1 H
i−1(A, B) = H•(V [−1], ∂ A).

In Sect. 3.4, we will describe a result which keeps track of higher homotopies.
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3.3. Leibniz∞[1] algebras. Recall that a graded Leibniz algebra is a Z-graded vector

space V = ⊕
n∈Z Vn equipped with a bilinear bracket V ⊗ V

[−,−]−−−→ V of degree 0
satisfying the graded Leibniz rule

[x, [y, z]] = [[x, y], z] + (−1)|x ||y|[y, [x, z]],

for all homogeneous elements x, y, z ∈ V .
If, moreover, V is endowed with a differential δ of degree 1 satisfying

δ[x, y] = [δx, y] + (−1)|x |+1[x, δy]

for all homogeneous elements x, y ∈ V , then we say that (V, [−,−], δ) is a differential
graded Leibniz algebra.

Definition 3.5. A Leibniz∞[1] algebra is a Z-graded vector space V = ⊕
n∈Z Vn en-

dowed with a sequence (λk)
∞
k=1 of multilinear maps λk : ⊗kV → V of degree 1

satisfying the identity

∑

1� j�k�n

∑

σ∈Sj−1
k− j

ε(σ ; v1, . . . , vk−1)(−1)|vσ(1)|+|vσ(2)|+···+|vσ(k− j)|

λn− j+1
(
vσ(1), . . . , vσ(k− j), λ j (vσ(k+1− j), . . . , vσ(k−1), vk),

vk+1, . . . , vn
) = 0 (22)

for each n ∈ N and for any homogeneous vectors v1, v2, . . . , vn ∈ V . Here S
j−1
k− j

denotes the set of (k − j, j − 1)-shuffles,1 and ε(σ ; v1, . . . , vk−1) denotes the Koszul
sign2 of the permutation σ of the (homogeneous) vectors v1, v2, . . . , vk−1.

Remark 3.6. If all λk are zero except for λ1, (V, λ1) is simply a cochain complex. If
λk = 0 (k ≥ 3), then (V [−1], [−,−], d) is a graded differential Leibniz algebra, where
[x, y] = (−1)|x |λ2(x, y), and d = λ1.

Remark 3.7. A graded vector space V is a Leibniz∞[1] algebra if and only if the shifted
graded vector space V [−1] is a Leibniz∞ algebra in the sense of Loday [1,49]. Working
with Leibniz∞[1] algebras rather than Leibniz∞ algebras is convenient, as all maps in
the sequence (λk)

n
k=1 have the same degree in this setting.

Definition 3.8. A module over a Leibniz∞[1] algebra V is a Z-graded vector space
W = ⊕

n∈Z Wn together with a sequence (μk)
∞
k=1 of multilinear maps

μk : (⊗k−1V ) ⊗ W → W

1 A (k − j, j − 1)-shuffle is a permutation σ of the set {1, 2, . . . , k − 1} such that σ(1) � σ(2) � · · · �
σ(k − j) and σ(k − j + 1) � σ(k − j + 2) � · · · � σ(k − 1).

2 The Koszul sign of a permutation σ of the (homogeneous) vectors v1, v2, . . . , vn is determined by the
relation vσ(1) � vσ(2) � · · · � vσ(n) = ε(σ ; v1, . . . , vn) · v1 � v2 � · · · � vn .
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of degree 1 satisfying the identity:
∑

1� j�k�n−1

∑

σ∈Sj−1
k− j

ε(σ ; v1, . . . , vk−1)(−1)|vσ(1)|+|vσ(2)|+···+|vσ(k− j)|

μn− j+1
(
vσ(1), . . . , vσ(k− j), λ j (vσ(k+1− j), . . . , vσ(k−1), vk), vk+1, . . . , vn−1, w

)

+
∑

1� j�n

∑

σ∈Sj−1
n− j

ε(σ ; v1, . . . , vn−1)(−1)|vσ(1)|+|vσ(2)|+···+|vσ(n− j)|

μn− j+1
(
vσ(1), . . . , vσ(n− j), μ j (vσ(n+1− j), . . . , vσ(n−1), w)

) = 0,

for each n ∈ N and any homogeneous vectors v1, v2, . . . , vn−1 ∈ V and w ∈ W .

Remark 3.9. A graded vector space W is a module over a Leibniz∞[1] algebra V if and
only if V ⊕ W is a Leibniz∞[1] algebra such that V is a Leibniz∞[1] subalgebra [27].
The proof of the next proposition is a direct verification, which we omit.

Proposition 3.10. If
(
V, (λk)

∞
k=1

)
is a Leibniz∞[1] algebra, then (V, λ1) is a cochain

complex and its cohomology H•(V )[−1] is a graded Leibniz algebra with bracket
H(λ2), the image of λ2 (seen as a chain map) under the cohomology functor. Moreover,
if
(
W, (μk)

∞
k=1

)
is a module over

(
V, (λk)

∞
k=1

)
, then (W, μ1) is a cochain complex and

H(μ2) is a representation of H•(V )[−1] on the cohomology H•(W )[−1] of (W, μ1).

3.4. Main theorem. Unless we state otherwise, we assume throughout this section that
(L , A) is a Lie pair and E is an A-module. The quotient B = L/A is naturally an A-
module (see Proposition 1.4). We use the symbol ∂ A to denote the covariant differential

∂ A : �
( ∧• A∗ ⊗ (⊗�B∗) ⊗ E

) → �
( ∧•+1 A∗ ⊗ (⊗�B∗) ⊗ E

)

associated to the A-action on (⊗�B∗)⊗E . In particular, for any bundlemapμ : (∧k A)⊗
(⊗l B) → B, we have

(
∂ Aμ

)
(a0 ∧ · · · ∧ ak; b1 ⊗ · · · ⊗ bl)

=
k∑

i=0

(−1)i
{∇ai

(
μ(âi ; b1 ⊗ · · · ⊗ bl)

) − μ
(
âi ; ∇ai (b1 ⊗ · · · ⊗ bl)

)}

+
∑

i< j

(−1)i+ jμ([ai , a j ] ∧ aî, j ; b1 ⊗ · · · ⊗ bl),

where âi stands for a0 ∧· · ·∧ âi ∧· · ·∧ak and aî, j for a0 ∧· · ·∧ âi ∧· · ·∧ â j ∧· · ·∧ak ,

and ∇ai (b1 ⊗ · · · ⊗ bl) for
∑l

j=1 b1 ⊗ · · · ⊗ ∇ai b j ⊗ · · · ⊗ bl .

3.4.1. The operator ∂∇ . Now choose an extension of the A-action on E to an L-
connection ∇ on E , an extension of the A-action on B to an L-connection ∇ on B,
and a splitting of the short exact sequence of vector bundles

0 �� A
i �� L

q �� B �� 0 , (23)

i.e. a pair of bundle maps j : B → L and p : L → A such that q ◦ j = idB , p ◦ i = idA
and i ◦ p + j ◦ q = idL :
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0 ��
A

i ��

 L
q ��

p


 B

��
j



 0

 .

This splitting determines a map

�(B) × �(A) → �(A) : (b, a) �→ p[ j (b), i(a)],
which we will denote by � since it satisfies the relations

� f ba = f �ba and �b( f a) = 〈ρ∗d f, j (b)〉a + f �ba,

for all f ∈ C∞(M), b ∈ �(B), and a ∈ �(A). In some sense, B “acts” on A.
Identifying sections of ∧•A∗ ⊗ (⊗�B∗)⊗ E with bundle maps ∧•A⊗ (⊗�B) → E ,

we define a differential operator

∂∇ : �(∧k A∗ ⊗ (⊗l B∗) ⊗ E) → �(∧k A∗ ⊗ (⊗l+1B∗) ⊗ E) (24)

by

(−1)k ιb0(∂
∇ω) = ∇ j (b0)ω

or, more precisely,

(−1)k
(
∂∇ω

)
(a1, . . . , ak; b0, . . . , bl)

= ∇ j (b0)
(
ω(a1, . . . , ak; b1, . . . , bl)

)

−ω(�b0a1, . . . , ak; b1, . . . , bl) − · · ·
−ω(a1, . . . ,�b0ak; b1, . . . , bl)
−ω(a1, . . . , ak; ∇ j (b0)b1, . . . , bl) − · · · − ω(a1, . . . , ak; b1, . . . ,∇ j (b0)bl),

where a1, . . . , ak ∈ �(A), b0, . . . , bl ∈ �(B), and ω : ∧k A ⊗ (⊗l B) → E .
Note that ∂∇ depends on the choice of the L-connections extending the A-actions

and the splitting j : B → L of the short exact sequence (23), while ∂ A does not.
The chosen splitting of (23) does also determine three vector bundle maps

α : ∧2B → A, β : ∧2B → B, and � : ∧2B → End B (25)

given by

α(b1, b2) = p[ j (b1), j (b2)], (26)

β(b1, b2) = ∇ j (b1)b2 − ∇ j (b2)b1 − q[ j (b1), j (b2)], (27)

and

�(b1, b2) = ∇ j (b1)∇ j (b2) − ∇ j (b2)∇ j (b1) − ∇[ j (b1), j (b2)]. (28)

We note that β is actually independent of the choice of splitting.

Proposition 3.11. For any a ∈ �(A) and b1, b2 ∈ �(B), we have

R∇
B (a; b1)b2 − R∇

B (a; b2)b1 = (∇aβ
)
(b1, b2)

or, equivalently,

R2(b1, b2) − R2(b2, b1) = (
∂ Aβ

)
(b1, b2).
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Proof. For convenience, we set b̃ = j (b), ∀b ∈ �(B). Hence [a, b̃] = −�ba + ∇̃ab and

[b̃1, b̃2] = α(b1, b2) + ∇̃b̃1b2 − ∇̃b̃2b1 − ˜β(b1, b2).

A straightforward computation yields the equality

q
([[a, b̃1], b̃2] + [[b̃1, b̃2], a] + [[b̃2, a], b̃1]

)

= R∇
B (a; b2)b1 − R∇

B (a; b1)b2 + ∇a
(
β(b1, b2)

) − β(∇ab1, b2) − β(b1,∇ab2).

The result follows from the Jacobi identity of the Lie algebroid L . ��

3.4.2. The maps Rn. Recall the bundle map R2 : B ⊗ B → Hom(A, B) associated to
the Atiyah cocycle of B given by (20). Since B is an A-module, we can substitute B for
E in Eq. (24) and define a sequence of bundle maps

Rn : ⊗n B → Hom(A, B)

inductively by the relation

Rn+1 = ∂∇ Rn, for n ≥ 2. (29)

Hence, we have

Rn+1(b0 ⊗ b1 ⊗ · · · ⊗ bn) = Rn
(∇ j (b0)(b1 ⊗ · · · ⊗ bn)

) − ∇ j (b0)
(
Rn(b1 ⊗ · · · ⊗ bn)

)
.

Example 3.12. Let L = A �� B be a matched pair of Lie algebras. Any bilinear map
γ : B ⊗ B → B determines an L-connection ∇ on B extending its A-module structure
(and conversely): ∇b1b2 = γ (b1, b2). Taking γ = 0, the Atiyah cocycle reads

R∇
B (a; b1)b2 = ∇�b1a

b2.

Hence

Rn(b1, b2, b3, . . . , bn) = ∇�bn−1�bn−2 ···�b1 (−)bn .

3.4.3. Leibniz∞[1] algebra (and modules) arising from a Lie pair. Consider the se-
quence of k-ary operations λk : ⊗kV → V (k ∈ N) on the graded vector space

V =
∞⊕

n=0

�(∧n A∗ ⊗ B)

defined by λ1 = ∂ A and, for k ≥ 2,

λk(ξ1 ⊗ b1, . . . , ξk ⊗ bk) = (−1)|ξ1|+···+|ξk |ξ1 ∧ · · · ∧ ξk ∧ Rk(b1, . . . , bk), (30)

where b1, . . . , bk ∈ �(B) and ξ1, . . . , ξk are homogeneous elements in �(∧•A∗).
We are now ready to state the main result of the paper.
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Theorem 3.13. When endowed with the sequence of multibrackets (λk)k∈N defined
above, the graded vector space V = ⊕∞

n=0 �(∧n A∗ ⊗ B) becomes a Leibniz∞[1]
algebra.

Similarly, we can introduce the bundle map S2 : B ⊗ E → Hom(A, E) given by

A � a
S2(b;e)�−−−−→ R∇

E (a; b) · e ∈ E,

where R∇
E : A ⊗ B → End E denotes the Atiyah cocycle of the A-module E , and then

define a sequence of bundle maps

Sn : (⊗n−1B) ⊗ E → Hom(A, E)

inductively by the relation

Sn+1 = ∂∇ Sn, for n ≥ 2.

Consider the graded vector space W = ⊕∞
n=0 �(∧n A∗ ⊗ E) and the sequence of k-ary

brackets μk : (⊗k−1V ) ⊗ W → W (k ∈ N) defined by μ1 = ∂ A and, for k ≥ 2,

μk(ξ1 ⊗ b1, · · · , ξk−1 ⊗ bk−1; ξk ⊗ e)

= (−1)|ξ1|+···+|ξk |ξ1 ∧ · · · ∧ ξk ∧ Sk(b1, · · · , bk−1; e),
where b1, . . . , bk−1 ∈ �(B), e ∈ �(E), and ξ1, . . . , ξk are homogeneous elements of
�(∧•A∗).

Theorem 3.14. When endowed with the sequence of multibrackets (μk)k∈N defined
above, the graded vector space W = ⊕∞

n=0 �(∧n A∗ ⊗ E) becomes a Leibniz∞[1]
module over the Leibniz∞[1] algebra (

V, (λk)k∈N
)
.

Example 3.15. A Lie bialgebra (g, g∗) is a matched pair of Lie algebras. Therefore, it
induces two Lie pairs: (g �� g∗, g) and (g �� g∗, g∗). It follows from Example 3.12 and
Theorem 3.13 that both

⊕
n≥0 ∧ng∗ ⊗ g∗ and

⊕
n≥0 ∧ng⊗ g are Leibniz∞[1] algebras.

Let A be a Lie algebroid over amanifoldM . By an A-algebra, wemean a bundle (of finite
or infinite rank) of associative algebras C over M , which is an A-module, and on which
�(A) acts by derivations. For a commutative A-algebra C, the sequence of maps (λk)k∈N
extends, in a natural way, to the graded vector space

⊕∞
n=0 �(∧n A∗ ⊗ B⊗C). Similarly,

the sequence of maps (μk)k∈N extends to the graded space
⊕∞

n=0 �(∧n A∗ ⊗ E ⊗ C).

Theorem 3.16. Let (L , A) be a Lie pair with quotient B, and let C be a commutative A-
algebra. When endowed with the sequence of multibrackets (λk)k∈N, the graded vector
space�(∧•A∗⊗B⊗C) becomes a Leibniz∞[1] algebra. Moreover, if E is an A-module,
the graded vector space �(∧•A∗ ⊗ E ⊗ C)[−1] becomes a Leibniz∞[1] module over
the Leibniz∞[1] algebra �(∧•A∗ ⊗ B ⊗ C)[−1].
As an immediate consequence, we have the following

Corollary 3.17. Under the same hypothesis as in Theorem 3.16,
⊕

i≥1 H
i−1(A, B⊗C)

is a graded Lie algebra, and
⊕

i≥1 H
i−1(A, E ⊗ C) a module over it.
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Example 3.18. Let g be a Lie subalgebra of a Lie algebra d as in Example 2.10. Assume
that C is a commutative g-algebra.

Every linear map L : d → End(d/g) that extends the g-module structure g →
End(d/g) induces a 2-ary bracket on ∧•−1g∗ ⊗ d/g ⊗ C:

[ξ1 ⊗ b1 ⊗ c1, ξ2 ⊗ b2 ⊗ c2] = (−1)|ξ2|ξ1 ∧ ξ2 ⊗ (
∂gL

)
(−; b1) · b2 ⊗ c1c2, (31)

which in turn induces a (graded) Lie algebra bracket on the Chevalley–Eilenberg coho-
mology

⊕
H•−1(g, d/g⊗C). Here ξi⊗bi⊗ci (i = 1, 2) are cocycleswith ξ1, ξ2 ∈ ∧•g∗,

b1, b2 ∈ d/g and c1, c2 ∈ C.
Moreover, if E is a g-module, every linear map M : d → End E that extends the

g-module structure g → End E gives rise to a bilinear map

(ξ1 ⊗ b ⊗ c1) � (ξ2 ⊗ e ⊗ c2) = (−1)|ξ2|ξ1 ∧ ξ2 ⊗ (
∂gM

)
(−; b) · e ⊗ c1c2,

which induces a representation on
⊕

H•−1(g, E ⊗ C) of the graded Lie algebra⊕
H•−1(g, d/g⊗C). Here ξ1 ⊗b⊗ c1 and ξ2 ⊗ e⊗ c2 are cocycles with ξ1, ξ2 ∈ ∧•g∗,

b ∈ d/g, e ∈ E and c1, c2 ∈ C.
Take a complement h of g in d so that we can write d = g ⊕ h. Then d/g can be

identifiedwith h, onwhich the h-action is given by a ·h = prh[a, h]. Take L : d → End h
to be the trivial extension of the g-module structure g → End h, i.e. set L|h = 0. Then
the 2-ary bracket in Eq. (31) is given by

[ f ⊗ c1, g ⊗ c2] = [ f, g] ⊗ c1c2,

where f is a linear map from ∧pg to h, g is a linear map from ∧qg to h, c1, c2 ∈ C, and
[ f, g] is a linear map from ∧p+q+1g to h given by

[ f, g](a0, a1, . . . , ap+q)
= −

∑

σ∈S1,p,q

sgn(σ ) prh[prg[aσ(0), f (aσ(1), · · · , aσ(p))], g(aσ(p+1), · · · , aσ(p+q))].

HereS1,p,q is the set of all permutations σ of {0, 1, · · · , p+q} satisfying σ(1) < · · · <

σ(p) and σ(p + 1) < · · · < σ(p + q).

Remark 3.19. It is natural to ask how the Leibniz∞[1] algebra structure obtained in The-
orem 3.13 and the Leibniz∞[1] module structure in Theorem 3.14 depend on the choice
of connections and the splitting data. This question will be investigated somewhere else.

3.4.4. L∞ rather than Leibniz∞.

Theorem 3.20. Let (A, B) be a matched pair of Lie algebroids with direct sum L =
A �� B. Assume there exists a flat torsion free B-connection on B. Then the maps Rn
defined as in Eq. (29) are totally symmetric, the multibrackets λk : ⊗kV → V (k ∈ N)
defined as in Eq. (30) on the graded vector space V = ⊕∞

n=0 �(∧n A∗ ⊗ B) are graded
symmetric, and V [−1] is actually an L∞ algebra.

The following example is due to Camille Laurent-Gengoux.
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Example 3.21. The general Lie algebra gln(C) decomposes as the direct sum of the
unitary Lie algebra un and the Lie algebra tn of upper triangular matrices with real diag-
onal coefficients. Both un and tn are isotropic with respect to the natural nondegenerate
ad-invariant inner product

X ⊗ Y �→ im
(
tr(XY )

)

on gln(C). Hence (un, tn) is a matched pair of Lie algebras as well as a Lie bialgebra.
Matrix multiplication being associative, setting ∇XY = XY for any X,Y ∈ tn defines
a flat torsion free tn-connection on tn . It follows from Theorem 3.20 that �(∧•u∗

n ⊗
tn)[−1] ∼= �(∧•tn ⊗ tn)[−1] is an L∞ algebra.

As an application of Theorem 3.20, consider a Kähler manifold X . The complexifica-
tion ∇C of its Levi–Civita connection is a TX ⊗C-connection on TX ⊗C. Set A = T 0,1

X

and B = T 1,0
X . Then (A, B) is amatched pair of Lie algebroids, whose direct sum A �� B

is isomorphic, as a Lie algebroid, to TX ⊗C. It is easy to see that∇C induces a flat torsion
free B-connection on B. In this context, the tensors Rn ∈ �0,1

(
Hom(⊗nT 1,0

X , T 1,0
X )

)

are the curvature R2 ∈ �1,1(End T 1,0
X ) ∼= �0,2

(
Hom(T 1,0

X ⊗T 1,0
X , T 1,0

X )
)
and its higher

covariant derivatives: Ri+1 = ∂∇ Ri . Applying Theorem 3.20, we recover a result of
Kapranov [23]:

Corollary 3.22 (Kapranov). The shifted Dolbeault complex �0,•−1(T 1,0
X ) of a Kähler

manifold X is an L∞ algebra. The n-th multibracket

λn : �0, j1(T 1,0
X ) ⊗ · · · ⊗ �0, jn (T 1,0

X ) → �0, j1+···+ jn+1(T 1,0
X )

is the composition of the wedge product

�0, j1(T 1,0
X ) ⊗ · · · ⊗ �0, jn (T 1,0

X ) → �0, j1+···+ jn (⊗nT 1,0
X )

with the map

�0, j1+···+ jn (⊗nT 1,0
X ) → �0, j1+···+ jn+1(T 1,0

X )

associated to Rn ∈ �0,1
(
Hom(⊗nT 1,0

X , T 1,0
X )

)
in the obvious way.

3.5. Proofs. This part is devoted to the proofs of the theorems claimed earlier in this
section. For convenience, we set b̃ = j (b), ∀b ∈ �(B).

3.5.1. Atiyah class as a Lie bracket Below we follow the notations introduced in Sect.
3.4.1.

Lemma 3.23. For any a1, a2 ∈ �(A) and b ∈ �(B), we have

[�ba1, a2] + [a1,�ba2] − �b[a1, a2] = �∇a1b
a2 − �∇a2b

a1.
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Proof. We have

p
([[̃b, a1], a2] + [[a1, a2], b̃] + [[a2, b̃], a1]

)

= p[p[̃b, a1] + ˜q [̃b, a1], a2] − p[̃b, [a1, a2]] + p[p[a2, b̃] + ˜q[a2, b̃], a1]
= [p[̃b, a1], a2] − p[ ˜q[a1, b̃], a2] − p[̃b, [a1, a2]] + [a1, p[̃b, a2]] + p[ ˜q[a2, b̃], a1]
= [�ba1, a2] − �∇a1b

a2 − �b[a1, a2] + [a1,�ba2] + �∇a2b
a1.

The result follows from the Jacobi identity of the Lie algebroid L . ��
Note that a bundle map ω : (∧k A) ⊗ (⊗l B) → E determines a bundle map

←−ω : ∧k A → (⊗l B∗) ⊗ E (32)

and vice versa.

Lemma 3.24. For any bundle map ω : (∧k A) ⊗ (⊗l B) → E, any a0, . . . , ak ∈ �(A)

and any b0, . . . , bl ∈ �(B), we have

(−1)k
(
∂ A∂∇ω + ∂∇∂ Aω

)
(a0, . . . , ak; b0, . . . , bl)

=
k∑

i=0

(−1)i
〈
∇ai ∇b̃0

(←−ω (âi )
) − ∇b̃0∇ai

(←−ω (âi )
) − ∇[ai ,b̃0]

(←−ω (âi )
)∣∣
∣b1 ⊗ · · · ⊗ bl

〉

=
k∑

i=0

(−1)i

⎧
⎨

⎩
R∇
E (ai ; b0) · ω(âi ; b̂0)−

l∑

j=1

ω
(
âi ; b1, . . . , R∇

B (ai ; b0) · b j , . . . , bl
)
⎫
⎬

⎭
,

where âi stands for a0 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ ak and b̂0 for b1 ⊗ · · · ⊗ bl .

Sketch of proof. The first equality follows from a cumbersome computation at the last
step of which use is made of Lemma 3.23. The second equality is immediate. ��

Given μ ∈ �((∧k1 A∗) ⊗ (⊗l1B∗) ⊗ B), ν ∈ �((∧k2 A∗) ⊗ (⊗l2B∗) ⊗ B), and
arbitrary sections b1, . . . , bl1 , b

′
1, . . . , b

′
l2
of B, let

⌈
μ
(
b1, . . . , bi−1, ν(b′

1, . . . , b
′
l2), bi+1, . . . , bl1

)⌋ ∈ �(∧k1+k2 A∗ ⊗ B),

denote the section of ∧k1+k2 A∗ ⊗ B corresponding to the bundle map ∧k1+k2 A → B
sending a1 ∧ · · · ∧ ak1+k2 to

∑

σ∈Sk2
k1

sgn(σ )μ
(
aσ(1), . . . , aσ(k1); b1, . . . , bi−1,

ν(aσ(k1+1), . . . , aσ(k1+k2); b′
1, . . . , b

′
l2), bi+1, . . . , bl1

)
.

In particular, if μ = α1 ⊗ β1 ⊗ u and ν = α2 ⊗ β2 ⊗ v with α1 ∈ �(∧k1 A∗), α2 ∈
�(∧k2 A∗), β1 ∈ �(⊗l1B∗), β2 ∈ �(⊗l2B∗), and u, v ∈ �(B), then

⌈
μ
(
b1, . . . , bi−1, ν(b′

1, . . . , b
′
l2), bi+1, . . . , bl1

)⌋

= β1(b1, . . . , bi−1, v, bi+1, . . . , bl1)β2(b
′
1, . . . , b

′
l2) · (α1 ∧ α2) ⊗ u.
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Corollary 3.25. For any n ≥ 2 and b0, . . . , bn ∈ �(B), we have

−(
(∂ A∂∇ + ∂∇∂ A)Rn

)
(b0, . . . , bn)

= ⌈
R2

(
b0, Rn(b1, . . . , bn)

)⌋

+
n∑

j=1

⌈
Rn

(
b1, . . . , b j−1, R2(b0, b j ), b j+1, . . . , bn

)⌋
.

Proof. Apply Lemma 3.24 to ω = Rn . ��
Corollary 3.26. For any b0, b1, b2 ∈ �(B), we have

− (
∂ AR3

)
(b0, b1, b2) = ⌈

R2
(
b0, R2(b1, b2)

)⌋
+
⌈
R2

(
R2(b0, b1), b2

)⌋

+
⌈
R2

(
b1, R2(b0, b2)

)⌋
. (33)

Proof. Since ∂ AR2 = 0 and ∂∇ R2 = R3, taking n = 2 in Corollary 3.25 yields the
result. ��
Sketch of proof of Theorem 3.1. The interchange isomorphism τ : B[−1] ⊗ B[−1] →
B[−1] ⊗ B[−1] is the image in D+(A) of the chain map τ : B[−1] ⊗ B[−1] →
B[−1] ⊗ B[−1] given by τ(b1 ⊗ b2) = −b2 ⊗ b1, ∀b1, b2 ∈ B — the negative sign is
due to B[−1] being a complex concentrated in degree 1 [see Eq. (15)]. Recall that R2 is
a cocycle (w.r.t. ∂ A). Its cohomology class αB , the Atiyah class of B, can be seen as an
element of HomD+(A)(B[−1] ⊗ B[−1], B[−1]). Proposition 3.11 implies the equality
αB ◦ τ = −αB in HomD+(A)(B[−1] ⊗ B[−1], B[−1]). Corollary 3.26 implies that the
Jacobi identity αB ◦ (id�αB) = αB ◦ (αB � id) + αB ◦ (id�αB) ◦ (τ � id) holds in
D+(A). Indeed, each of the terms in the right hand side of Eq. (33) can be interpreted
as a Yoneda product, a composition of morphisms in the derived category. ��
3.5.2. Jacobi identity up to homotopy. Consider the cochain complex (V [−1], ∂ A),
where the graded vector space V = ⊕∞

k=0 Vk is given by Vk = �(∧k A∗ ⊗ B) so that,
if ξ ∈ �(∧k A∗) and b ∈ �(B), then ξ ⊗ b ∈ (

V [−1])k+1.
Lemma 3.27. The graded linear map λ : V [−1] � V [−1] → V [−1] given by

λ(v1 � v2) = (−1)k2ξ1 ∧ ξ2 ∧ R2(b1, b2)

for any v1 = ξ1 ⊗ b1 ∈ (V [−1])k1+1 and v2 = ξ2 ⊗ b2 ∈ (V [−1])k2+1 is a chain map.

Proof. A straightforward computation yields
(
∂ A ◦ λ − λ ◦ ∂ A)(v1 � v2) = (−1)k1ξ1 ∧ ξ2 ∧ (

∂ AR2
)
(b1, b2).

The result follows from ∂ AR2 = 0 (see Theorem 2.5 and the Definition (20) of R2). ��
Now, consider the interchange isomorphism τ : V [−1] � V [−1] → V [−1] � V [−1]
given by τ(v1 � v2) = (−1)|v1||v2|v2 � v1.

Lemma 3.28. The chain map λ is skew-symmetric up to homotopy:

λ + λ ◦ τ = ∂ A ◦ � + � ◦ ∂ A,

where the graded map � : V [−1] � V [−1] → V [−2] is given by

�(v1 � v2) = (−1)k1ξ1 ∧ ξ2 ⊗ β(b1, b2)

for any v1 = ξ1 ⊗ b1 ∈ (V [−1])k1+1 and v2 = ξ2 ⊗ b2 ∈ (V [−1])k2+1.
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Proof. Straightforward computations yield

(
λ + λ ◦ τ

)
(v1 � v2) = (−1)k2ξ1 ∧ ξ2 ∧ (

R2(b1, b2) − R2(b2, b1)
)

and
(
∂ A ◦ � + � ◦ ∂ A)(v1 � v2) = (−1)k2ξ1 ∧ ξ2 ∧ ((

∂ Aβ
)
(b1, b2)

)

The result follows from Proposition 3.11. ��
Lemma 3.29. The chain map λ satisfies the Jacobi identity up to homotopy:

−λ ◦ (id�λ) + λ ◦ (λ � id) + λ ◦ (id�λ) ◦ (τ � id) = ∂ A ◦ � + � ◦ ∂ A,

where the graded map � : V [−1] � V [−1] � V [−1] → V [−2] is given by

�(v0 � v1 � v2) = (−1)k0+k2ξ0 ∧ ξ1 ∧ ξ2 ∧ R3(b0, b1, b2)

for any vi = ξi ⊗ bi ∈ (V [−1])ki+1 with i ∈ {0, 1, 2}.
Proof. Straightforward computations yield

(
λ ◦ (id�λ)

)
(v0 � v1 � v2) = (−1)k1ξ0 ∧ ξ1 ∧ ξ2 ∧ �R2(b0, R2(b1, b2))� ,

(
λ ◦ (λ � id)

)
(v0 � v1 � v2) = −(−1)k1ξ0 ∧ ξ1 ∧ ξ2 ∧ �R2(R2(b0, b1), b2)� ,

(
λ ◦ (id�λ) ◦ (τ � id)

)
(v0 � v1 � v2)

= −(−1)k1ξ0 ∧ ξ1 ∧ ξ2 ∧ �R2(b1, R2(b0, b2))� ,

and
(
∂ A ◦ � + � ◦ ∂ A)(v0 � v1 � v2) = (−1)k1ξ0 ∧ ξ1 ∧ ξ2 ∧ ((

∂ AR3
)
(b0, b1, b2)

)
.

The result follows from Corollary 3.26. ��
Theorem 3.4 immediately follows from Lemmas 3.27, 3.28, and 3.29.

Note that Theorem 3.4 could also be seen as a corollary of Theorems 3.13 and 3.14.

3.5.3. Leibniz∞[1] algebra (and modules) arising from a Lie pair.

Lemma 3.30. For any n ≥ 3 and any arbitrary sections b1, . . . , bn of B, we have

−(
∂ ARn

)
(b1, . . . , bn)

=
∑

i+ j=n+1
i≥2
j≥2

n∑

k= j

∑

σ∈Sj−1
k− j

⌈
Ri

(
bσ(1), . . . , bσ(k− j), R j (bσ(k+1− j), . . . , bσ(k−1), bk), bk+1, . . . , bn

)⌋
.

Proof. We reason by induction. The formula holds for n = 3 by Corollary 3.26. As-
suming the formula holds for n = N , we get
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(
∂∇∂ ARN

)
(b0, . . . , bN )

= (∇b0(∂
ARN )

)
(b1, . . . , bN )

=
∑

i+ j=N
i≥2
j≥2

N∑

k= j

∑

σ∈Sj−1
k− j

{ ⌈
Ri+1

(
b0, bσ(1), . . . , bσ(k− j), R j (bσ(k+1− j), . . . , bσ(k−1), bk), bk+1, . . . , bn

)⌋

+
⌈
Ri

(
bσ(1), . . . , bσ(k− j), R j+1(b0, bσ(k+1− j), · · · , bσ(k−1), bk), bk+1, . . . , bn

)⌋}
.

Observing that

∂ ARN+1 = (∂ A∂∇ + ∂∇∂ A)RN − ∂∇∂ ARN

and recalling Corollary 3.25, it is easy to check that the desired formula holds for
n = N + 1 as well. ��
Lemma 3.31. For any bundlemapω : (∧k A)⊗(⊗l B) → B andany b1, . . . , bl ∈ �(B),
we have

∂ A(←−ω (b1, . . . , bl)
) − (←−−

∂ Aω
)
(b1, . . . , bl)

= (−1)k
l∑

j=0

⌈
ω(b1, . . . , b j−1, ∂

Ab j , b j+1, . . . , bl)
⌋

,

where ←−ω is defined by Eq. (32).

Proof. For any a0, . . . , ak ∈ �(A), we have
〈

∂ A(←−ω (b1, . . . , bl)
) − (←−−

∂ Aω
)
(b1, . . . , bl)

∣
∣
∣
∣a0 ∧ · · · ∧ ak

〉

=
l∑

j=0

k∑

i=0

(−1)iω(a0, . . . , ai−1, ai+1, . . . , ak; b1, . . . ,∇ai b j , . . . , bl)

= (−1)k
l∑

j=0

∑

σ∈S1
k

sgn(σ )ω(aσ(0), . . . , aσ(k−1); b1, . . . ,∇aσ(k)b j , . . . , bl)

= (−1)k
l∑

j=0

〈⌈
ω(b1, . . . , b j−1, ∂

Ab j , b j+1, . . . , bl)
⌋∣
∣
∣a0 ∧ · · · ∧ ak

〉
.

��
Proof of Theorem 3.13. Weonly need to check that the generalized Leibniz identity (22)
holds. Since λ1 = ∂ A and (∂ A)2 = 0, Eq. (22) is obviously true for n = 1. Let n ≥ 2
and vi = ξi ⊗ bi ∈ �(∧pi A∗ ⊗ B) for all i ∈ {1, . . . , n}. The l.h.s. of (22) is

∑

1� j�k�n

∑

σ∈Sj−1
k− j

ε(σ ; v1, . . . , vk−1)(−1)|vσ(1)|+|vσ(2)|+···+|vσ(k− j)|

λn− j+1
(
vσ(1), . . . , vσ(k− j), λ j (vσ(k+1− j), . . . , vσ(k−1), vk), vk+1, . . . , vn

)
.
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Separating the terms involving λ1 (aka ∂ A) from the others, it can be rewritten as

∂ A(λn(v1, . . . , vn)
)
+

∑

i+ j=n+1
i≥2
j≥2

n∑

k= j

∑

σ∈S j−1
k− j

ε(σ ; ξ1, . . . , ξk−1)(−1)pσ(1)+···+pσ(k− j)

λi
(
vσ(1), . . . , vσ(k− j), λ j (vσ(k+1− j), . . . , vσ(k−1), vk), vk+1, . . . , vn

)

+
n∑

k=1

(−1)p1+···+pk−1λn
(
v1, . . . , vk−1, (∂

Aξk) ⊗ bk + (−1)pk ξk ⊗ (∂ Abk), vk+1, . . . , vn
)
.

Since each λk is given by Eq. (30) in terms of the corresponding Rk , it in turn becomes

∂ A((−1)p1+···+pn ξ1 ∧ · · · ∧ ξn ∧ Rn(b1, . . . , bn)
)

+
∑

i+ j=n+1
i≥2
j≥2

n∑

k= j

∑

σ∈S j−1
k− j

ε(σ ; ξ1, . . . , ξk−1)ξσ(1) ∧ · · · ∧ ξσ(k−1) ∧ ξk ∧ · · · ∧ ξn ∧

⌈
Ri

(
bσ(1), . . . , bσ(k− j), R j (bσ(k+1− j), . . . , bσ(k−1), bk), bk+1, . . . , bn

)⌋

+
n∑

k=1

(−1)1+pk+pk+1+···+pn ξ1 ∧ · · · ∧ ξk−1 ∧ ∂ Aξk ∧ ξk+1 ∧ · · · ∧ ξn ∧ Rn(b1, . . . , bn)

+
n∑

k=1

ξ1 ∧ · · · ∧ ξn ∧
⌈
Rn(b1, . . . , bk−1, ∂

Abk, bk+1, . . . , bn)
⌋

,

which simplifies to

ξ1 ∧ · · · ∧ ξn ∧
{
∂ A(Rn(b1, . . . , bn)

)
+

∑

i+ j=n+1
i≥2
j≥2

n∑

k= j

∑

σ∈Sj−1
k− j

⌈
Ri

(
bσ(1), . . . , bσ(k− j), R j (bσ(k+1− j), . . . , bσ(k−1), bk), bk+1, . . . , bn

)⌋

+
n∑

k=1

⌈
Rn(b1, . . . , bk−1, ∂

Abk, bk+1, . . . , bn)
⌋ }

.

The result now follows from Lemmas 3.30 and 3.31. ��
The proofs of Theorem 3.14, Theorem 3.16 and Corollary 3.17 go along the same line
mutatis mutandis.

3.5.4. L∞ rather than Leibniz∞.

Lemma 3.32. For any b0, b1, b2 ∈ �(B), we have

R3(b0, b1, b2) − R3(b1, b0, b2) = R2
(
β(b0, b1), b2

) − (
∂ A�

)
(b0, b1) · b2,

where β : ∧2B → B and � : ∧2B → End B are the bundle maps introduced in Eqs.
(27)–(28).

Proof. The second Bianchi identity d∇ R∇ = 0 holds for the curvature R∇ : ∧2L →
End B of the L-connection ∇ on B extending the A-action. Hence, for any a ∈ �(A)

and b0, b1, b2 ∈ �(B), we have
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0 = (
d∇ R∇)

(a, b̃0, b̃1)

= ∇a
(
R∇ (̃b0, b̃1)

) − ∇b̃0

(
R∇(a, b̃1)

)
+ ∇b̃1

(
R∇(a, b̃0)

)

− R∇([a, b̃0], b̃1) + R∇([a, b̃1], b̃0) − R∇([̃b0, b̃1], a)

= ∇a
(
R∇ (̃b0, b̃1)

) − ∇b̃0

(
R∇(a, b̃1)

)
+ ∇b̃1

(
R∇(a, b̃0)

)

− R∇(∇̃ab0, b̃1) + R∇(�b0a, b̃1) + R∇(∇̃ab1, b̃0) − R∇(�b1a, b̃0)

− R∇(
α(b0, b1), a

) − R∇(∇̃b̃0b1, a) + R∇(∇̃b̃1b0, a) + R∇(
˜β(b0, b1), a

)

and thus

0 = (
d∇ R∇)

(a, b̃0, b̃1) · b2
= (

∂∇ R∇
B

)
(a; b0, b1) · b2 − (

∂∇ R∇
B

)
(a; b1, b0) · b2 − R∇

B

(
a, β(b0, b1)

) · b2
+ ∇a

(
R∇ (̃b0, b̃1)

) · b2 − R∇(∇̃ab0, b̃1
) · b2 − R∇(

b̃0, ∇̃ab1
) · b2

or, equivalently,

0 = R3(b0, b1, b2) − R3(b1, b0, b2) − R2
(
β(b0, b1), b2

)
+
(
∂ A�

)
(b0, b1) · b2.

��
Lemma 3.33. For any a ∈ �(A) and b0, b1 ∈ �(B), we have

[α(b0, b1), a] + α(∇ab0, b1) + α(b0,∇ab1) = �b0�b1a − �b1�b0a − �q[b̃0,b̃1]a.

Proof. We have

p
([̃b1, [̃b0, a]] + [̃b0, [a, b̃1]] + [a, [̃b1, b̃0]]

)

= p[̃b1, p[̃b0, a]] + p[̃b0, p[a, b̃1]] + p[a, p[̃b1, b̃0]]
+ p[̃b1, ˜q [̃b0, a]] + p[̃b0, ˜q[a, b̃1]] + p[a, ˜q [̃b1, b̃0]]

= �b1�b0a − �b0�b1a + p[a, α(b1, b0)] + p[∇̃ab0, b̃1]
+ p[̃b0, ∇̃ab1] + p[ ˜q [̃b0, b̃1], a]

= �b1�b0a − �b0�b1a + [α(b0, b1), a] + α(∇ab0, b1) + α(b0,∇ab1) + �q[b̃0,b̃1]a.

The result follows from the Jacobi identity of L . ��
Lemma 3.34. For any n ≥ 3, a ∈ �(A) and b0, b1, . . . , bn ∈ �(B), we have

Rn+1(a; b0, b1, b2, . . . , bn) − Rn+1(a; b1, b0, b2, . . . , bn)
= �(b0, b1) · Rn−1(a; b2, . . . , bn) −

n∑

j=2

Rn−1
(
a; b2, . . . , �(b0, b1) · b j , . . . , bn

)

+∇α(b0,b1)
(
Rn−1(a; b2, . . . , bn)

) −
n∑

j=2

Rn−1
(
a; b2, . . . ,∇α(b0,b1)b j , . . . , bn

)

− Rn−1
([α(b0, b1), a] + α(∇ab0, b1) + α(b0,∇ab1); b2, . . . , bn

)

+ Rn
(
a;β(b0, b1), b2, . . . , bn

)
.

Here Rk(a; b1, . . . , bk) means Rk(b1, . . . , bk)(a).
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Sketch of proof. Straightforward computation at the last step of which use is made of
Lemma 3.33. ��
Proposition 3.35. Let L = A �� B be a matched pair of Lie algebroids endowed with
a flat torsion free B-connection on B. (These data determine a splitting of the short
exact sequence of vector bundles 0 → A → L → B → 0 and an L-connection on
B extending the A-action such that the three associated bundle maps α, β, and � are
trivial.) Then each Rn : ⊗n B → Hom(A, B) is totally symmetric in its n arguments.

Proof. It follows from Proposition 3.11 and Lemma 3.32 that R2 and R3 are invariant
under the permutation of their first two arguments. By Lemma 3.34, the same property
holds for all higher Rn . Moreover, it is easy to see that, if Rn is symmetric in its n
arguments, then Rn+1 is symmetric in its last n arguments since Rn+1 = ∂∇ Rn . The
result follows by induction. ��
Theorem 3.20, which says that V [−1] is an L∞-algebra when the assumptions of Propo-
sition 3.35 are satisfied, is an immediate consequence of Proposition 3.35 and Theo-
rem 3.13.
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