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Abstract We propose a new method to obtain landmark-matching transformations between n-dimensional
Euclidean spaces with large deformations. Given a set of feature correspondences, our algorithm searches
for an optimal folding-free mapping that satisfies the prescribed landmark constraints. The standard
conformality distortion defined for mappings between 2-dimensional spaces is first generalized to the
n-dimensional conformality distortion K(f) for a mapping f between n-dimensional Euclidean spaces
(n ≥ 3). We then propose a variational model involving K(f) to tackle the landmark-matching prob-
lem in higher dimensional spaces. The generalized conformality term K(f) enforces the bijectivity of the
optimized mapping and minimizes its local geometric distortions even with large deformations. Another
challenge is the high computational cost of the proposed model. To tackle this, we have also proposed a
numerical method to solve the optimization problem more efficiently. Alternating direction method with
multiplier (ADMM) is applied to split the optimization problem into two subproblems. Preconditioned
conjugate gradient method with multi-grid preconditioner is applied to solve one of the sub-problems,
while a fixed-point iteration is proposed to solve another subproblem. Experiments have been carried out
on both synthetic examples and lung CT images to compute the diffeomorphic landmark-matching trans-
formation with different landmark constraints. Results show the efficacy of our proposed model to obtain
a folding-free landmark-matching transformation between n-dimensional spaces with large deformations.

Keywords Large deformation registration · n-D quasi-conformal · conformality · alternating direction
method of multipliers · landmarks

1 Introduction

Finding an optimal transformation between corresponding data, such as images or geometric shapes, is
an important task in various fields, such as computer visions [60], computer graphics [6,22,24], video
processing [38,45,58,59] and medical imaging [1,25,28,29,32,48,54]. Such a process is called registration.
For example, in neuroimaging, it is often required to align medical images from different modalities, such
as magnetic resonance (MR), X-ray computed tomography (CT) images and so on. In computer graphics,
registration is necessary for texture mapping [22,24]. Due to its important applications in different areas,
an enormous amount of research has been carried out to develop effective models for registration.

Registration methods can mainly be divided into three categories, namely, 1. intensity-based registra-
tion, 2. landmark-based registration and 3. hybrid registration using both intensity and landmark infor-
mation. Intensity-based registration computes a transformation between corresponding data by matching
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intensity functions, such as image intensity for image registration or surface curvature for surface ge-
ometric registration. Different intensity-based registration algorithms have been recently proposed [60],
such as Demons [50,55], spherical Demons [57], elastic registration [23], Large Deformation diffeomorphic
Metric Mapping (LDDMM) frameworks [9,10] and so on. On the other hand, landmark-based registra-
tion computes a smooth 1-1 dense pointwise correspondence between corresponding data that matches
important features [2,14,15,16,28,39,40,41,51,53,56]. Such a feature-based registration approach usually
comprises of two steps, namely, 1. the extraction of corresponding feature landmarks and 2. the compu-
tation of a transformation between the data that matches corresponding features. The main advantage
of the landmark-based method is that intuitive user-interaction can be incorporated to guide the regis-
tration process. Recently, hybrid registration that combines landmark-based and intensity-based methods
have also gained increased attention. Hybrid approaches use both the landmark and intensity information
to guide the registration. This type of approaches can usually obtain more accurate registration results,
since the advantages of landmark-based and intensity-based registration can be combined. Different hybrid
registration models have also been proposed recently [7,17,26,27,44].

In this work, we will focus on the landmark-based registration. Landmark-based registration has found
important applications. One typical example is the brain cortical surface registration for which sulcal
landmarks are usually extracted to guide the registration [41,51,56]. Landmark-based registration has also
been applied to register gene expression data to a neuroanatomical mouse atlas [36]. Feature-matching
image registration can also be used as an initial guess for intensity-based registration between images
with large deformations [27,33]. Over the past few decades, numerous landmark-based registration models
have been proposed [2,21,28,31,46]. One of the first and most important landmark-based registration
algorithm is the Thin-Plate Spline (TPS) method proposed by Bookstein [2]. TPS minimizes the bending
energy together with the landmark mismatching term. A unique and closed-form solution is guaranteed in
this model. TPS is efficient and works well under small deformations. However, under larger deformations,
TPS generally cannot preserve the bijectivity of the mapping [11].

In some situations like medical image registration or constrained texture mapping of surfaces, a bijective
and topology-preserving mapping is desirable for the registration problem [48]. For example, Christensen
et. al [9] proposed a regridding algorithm to restrict the transformation of the image deformation to have
a globally positive definite Jacobian. Statistically, Leow et. al [35] studied the statistical properties of
Jacobian maps (the determinant of the Jacobian matrix of a deformation field) and proposed a framework
for constructing unbiased deformation fields. Modat et.al [43] also proposed a variational model with the
joint bending energy and the squared Jacobian determinant penalty terms to obtain a transformation for
lung registration.

Recently, quasi-conformal (QC) theory has been introduced to handle large deformation landmark-
matching registration problem [30,33,37,58]. The Beltrami coefficient, which measures the conformality
distortion, can be effectively used to enforce the bijectivity of the mapping. By optimizing an energy
functional involving the Lp-norm of the Beltrami coefficient, large deformation diffeomorphic registration
can be accurately computed. Several works have also been proposed to deal with surface-based landmark-
matching problem with different genus [32,42]. QC theory has provided an effective framework to handle
registration problem with large deformations for 2-dimensional spaces. However, for general n-dimensional
spaces, the conformality distortion is not defined. Motivated by this, it is our goal in this paper to extend the
concept of 2D quasi-conformality to general n-dimensional spaces. In particular, a notion of conformality
distortion of a diffeomorphism in the n-dimensional Euclidean space will be formulated. With the definition
of conformality distortion, we can extend the 2D quasi-conformal registration algorithm to general n-
dimensional Euclidean spaces.

In short, the main contributions in this paper are three-folded:

1. We give a definition of n-dimensional conformality distortion K(f) (n ≥ 3) for mapping f between n-
dimensional Euclidean spaces. The standard conformality distortion is defined for 2-dimensional space.
Our definition aims to generalize this concept to n-dimensional spaces.

2. With the definition of K(f), we extend our previous model [33] for computing 2-dimensional landmark-
matching bijective mapping with large deformations to higher dimensional spaces. This allows us to
compute bijective landmark-matching mapping of higher dimensional spaces with large deformations.

3. One challenge of the proposed model is the high computational cost for higher-dimensional spaces. In
this paper, we propose a numerical method to solve the optimization problem more efficiently. This is
based on applying the alternating direction method with multiplier (ADMM) to split the problem into
two subproblems. Preconditioned conjugate gradient method with multi-grid V-cycle preconditioner is
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applied to solve one of the subproblems. A fixed-point iteration is proposed to solve another subproblem,
whose convergence to the minimizer is theoretically shown.

This paper is organized as follows. In section 2, basic mathematical background will be explained. In
section 3, we describe our proposed model to obtain the landmark-matching transformation with large
deformation between n-dimensional Euclidean spaces in details. The numerical algorithm will be discussed
in section 4. Experimental results will be demonstrated in section 5. Conclusion and future work will be
discussed in section 6.

2 Mathematical background

In this section, we describe some basic mathematical concepts related to our algorithms. For details, we
refer the readers to [12,34].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann surfaces M
and N , a map f : M → N is conformal if it preserves the surface metric up to a scalar multiplicative
factor called the conformal factor. An immediate consequence is that every conformal map preserves angles.
With the angle-preserving property, a conformal map effectively preserves the local geometry of the surface
structure.

A generalization of conformal maps is the quasi-conformal maps, which are orientation preserving
homeomorphisms between Riemann surfaces with bounded conformality distortion, in the sense that their
first order approximations takes small circles to small ellipses of bounded eccentricity [12]. Surface regis-
trations and parameterizations, which are orientation-preserving homeomorphisms, can be considered as
quasi-conformal maps. Mathematically, f : C→ C is quasi-conformal provided that it satisfies the Beltrami
equation:

∂f

∂z
= µ(z)

∂f

∂z
. (1)

for some complex valued Lebesgue measurable µ satisfying ||µ||∞ < 1. µ is called the Beltrami coefficient,
which is a measure of non-conformality. In particular, the map f is conformal around a small neighborhood
of p when µ(p) = 0. Infinitesimally, around a point p, f may be expressed with respect to its local parameter
as follows:

f(z) ≈ f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter domain, f may be
considered as a map composed of a translation to f(p) together with a stretch map S(z) = z+µ(p)z, which
is postcomposed by a multiplication of fz(p), which is conformal. All the conformality distortion of S(z) is
caused by µ(p). S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p), we can
determine the angles of the directions of maximal magnification and shrinking and the amount of them
as well. Specifically, the angle of maximal magnification is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|;
The angle of maximal shrinking is the orthogonal angle (arg(µ(p))− π)/2 with shrinking factor 1− |µ(p)|.
The distortion or dilation is given by:

K = (1 + |µ(p)|) / (1− |µ(p)|) . (3)

Thus, the Beltrami coefficient µ gives us all the information about the properties of the map (See
Figure 1a).

Given a Beltrami coefficient µ : C → C with ‖µ‖∞ < 1. There is always a quasi-conformal mapping
from C onto itself which satisfies the Beltrami equation in the distribution sense [12].

However, the above quasi-conformal theories only apply to two dimensional spaces or surfaces. In this
work, our goal is to extend the idea of 2-dimensional quasi-conformal theories to general n-dimensional
spaces. We will introduce a notion of conformality distortion of a diffeomorphism of the n-dimensional Eu-
clidean space. The conformality distortion measures the distortion of an infinitesimal ball to an infinitesimal
ellipsoid under the diffeomorphism (See Figure 1b).
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(a) (b)

Fig. 1: Illustration of the conformality distortion. (a) shows how a small circle is deformed to an ellipse
under a 2D quasi-conformal map. The conformality distortion is measured by the Beltrami coefficient.
(b) shows how a small ball is deformed to a small ellipsoid under a 3D diffeomorphism. The conformality
distortion can be measured by K(f) defined in this paper.

3 Proposed model

In this section, we will explain in details our proposed model to obtain the landmark-matching transfor-
mation between n-dimensional Euclidean spaces. The basic idea is to formulate the notion of conformality
distortion of a diffeomorphism of the n-dimensional Euclidean space. The conformality distortion measures
the distortion of an infinitesimal ball to an infinitesimal ellipsoid under the diffeomorphism. The landmark-
matching problem can then be modelled as minimizing an energy functional involving a conformality term
and a smoothness term under the prescribed landmark constraints. We first introduce the conformality
distortion of a diffeomorphism of the n-dimensional Euclidean space. In subsection 3.2, we describe the
continuous model of the proposed energy functional. Finally, we explain the discretization of the model in
subsection 3.3.

3.1 Conformality distortion

Let Ω1, Ω2 ⊂ Rn be the domain and the image of the diffeomorphism f = (f1, f2, ..., fn) : Ω1 → Ω2

respectively. For any p = (p1, p2, ..., pn) ∈ Ω1, let q = (q1, q2, ..., qn) = f(p). Then, for any x = (x1, ..., xn)
in a neighbourhood of p, we have

y = f(x) ≈ f(p) +Df(x− p), (4)

where Df = ( ∂fi∂xj
)1≤i,j≤n ∈Mn×n(R).

Under a general diffeomorphism f , f distorts an infinitesimal ball Bε(p) := {x ∈ Ω1 : ||x−p|| ≤ ε} to
an infinitesimal ellipsoid Ef (see Figure 1b). More precisely,

Ef = {q +Df(x− p) : x ∈ Bε(p)}

= {q + w : wTCw ≤ ε},
(5)

where C = ((Df)−1)T (Df)−1 is a symmetric positive definite matrix. Obviously, since C is symmetric
positive definite, Ef is an ellipsoid centered at q. Moreover, Ef is a infinitesimal ball if all eigenvalues of C
are equal. This can be observed easily as follows. Suppose C = QTDQ, where Q is an orthogonal matrix
and D is a diagonal matrix consisting of the eigenvalues of A. If D = µI (µ > 0), C = µI. It follows that
for any y ∈ Ef , (y − q)TC(y − q) = µ(y − q)T (y − q) ≤ ε. This gives (y − q)T (y − q) ≤ ε/µ Hence, Ef
is an infinitesimal ball with radius ε/µ.

To define the conformality distortion, we define a measurement that quantifies the geometric distortion
of the ellipsoid Ef from an infinitesimal ball. From the above observation, it is the same as measuring how
far the matrix C is from a symmetric positive definite matrix with equal eigenvalues. It is related to the
Jacobian of the mapping f .
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Consider A = (Df)T (Df). The eigenvalues of C are equal if and only if the eigenvalues of A =
(Df)T (Df) are equal. Suppose λ1, λ2, ..., λn are the eigenvalues of A. Using the AM–GM inequality, we
have

(λ1 · · ·λn)1/n ≤ λ1 + · · ·+ λn
n

or,

1

n

(
λ1 + · · ·+ λn

(λ1 · · ·λn)1/n

)
≥ 1

(6)

where the equality sign holds if and only if λ1 = · · · = λn. Hence, we can define the n-D conformality

distortion as K(f) = 1
n

(
λ1+···+λn

(λ1···λn)
1/n

)
. Note that the AM-GM inequality states that the perimeter of the

n-dimensional cubes is the smallest amongst all n-dimensional rectangular boxes with the same volume.
In the 2-dimensional case, the perimeter of a square is always the smallest amongst all rectangles with a
given area. Hence, K(f) can be interpreted as the ratio of the perimeter of a n-dimensional rectangular
boxes with edges lengths equal to the eigenvalues of A to the perimeter of the n-cube with the same
volume. Let {v1, ...,vn} be the orthonormal basis of eigenvectors of A. Then, the minimum is attained if
the n-dimensional boxes spanned by {v1, ...,vn} is a n-cube. This happens when all eigenvalues are equal.

Now, the arithmetic mean and geometric mean of the eigenvalues of A can be expressed as the Frobenius
norm and determinant of Df respectively. Observe that:

||Df ||2F = Tr(DfTDf) = Tr(A) = λ1 + · · ·+ λn;

det(A) = λ1 · · ·λn = det(DfTDf) = det(Df)2.
(7)

Therefore, we can now introduce the following definition:

Definition 1 (Conformality distortion) The conformality distortion Kf(x) of a mapping f at point
x is defined by

Kf(x) :=

{
1
n

(
||Df(x)||2F

det(Df(x))2/n

)
if det (Df(x)) > 0,

+∞ otherwise
(8)

where ||Df(x)||2F = Tr(Df(x)TDf(x)) denotes the Frobenius norm of Df(x).

Note that Kf(x) ≥ 1 and Kf(x) = 1 if and only if Ex = {x +Df(y− x) : y ∈ Bε(x)} is a n-dimensional
ball. Motivated by this observation, we say f is conformal at point x if the conformality distortion Kf(x)
attains its minimum value 1. By setting Kf(x) = +∞ when det(Df(x)) ≤ 0, we can ensure the bijectivity
of the mapping by minimizing the norm of Kf(x).

For n = 2, denote f(x1, x2) = f1(x1, x2) +
√
−1f2(x1, x2) and assume det(Df(x)) > 0 for all x. Then,

∂f
∂z = ( ∂f1∂x1

+ ∂f2
∂x2

) +
√
−1( ∂f2∂x1

− ∂f1
∂x2

) and ∂f
∂z = ( ∂f1∂x1

− ∂f2
∂x2

) +
√
−1( ∂f2∂x1

+ ∂f1
∂x2

). We have

Kf(x) =
1

2

‖Df(x)‖2F
det(Df(x))

=

(
∂f1
∂x1

)2
+
(
∂f1
∂x2

)2
+
(
∂f2
∂x1

)2
+
(
∂f2
∂x2

)2
2det(Df(x))

=
|fz|2(1 + |µ|2)

|fz|2(1− |µ|2)

=
1 + |µ|2

1− |µ|2

(9)

where µ(x) is the Beltrami coefficient defined in equation (1).

3.2 The continuous model

With the notion of n-D conformality distortion K(f), we can now develop a variational model to compute
a landmark-matching transformation between n-dimensional spaces. Given two domains Ω1 and Ω2 in
Rn. Suppose {pi ∈ Ω1}mi=1 {qi ∈ Ω2}mi=1 are corresponding feature landmarks in Ω1 and Ω2 respectively.
These corresponding sets of feature landmarks gives the landmark constraints on the mapping. Our goal
is to search for a bijective transformation f : Ω1 → Ω2 that satisfies f(pi) = qi for i = 1, 2, ...,m. In other
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words, the selected landmark points pi in Ω1 are required to mapped to the corresponding qi in Ω2. This is
called the landmark-based registration problem. Most of the existing landmark-based registration models
are variational approaches. They can mainly be written as minimizing:

E(f) = Reg(f) subject to: f(pi) = qi for i = 1, ..., n (hard landmark constraints), (10)

where Reg(f) is the regularization of the mapping f . Sometimes, the hard landmark constraints can be
relaxed by minimizing

E(f) = Reg(f) + λ
n∑
i=1

||f(pi)− qi||22 (soft landmark constraints) (11)

For example, the popular thin-plate spline (TPS) landmark-based registration model uses the integral
of the square of the second derivative as the regularizer [2]. In this work, we propose to use the L1-norm
of the conformality distortion K(f) together with a smoothness term ‖∆f‖22 as the regularizer. Note that
the conformality distortion has also been used to obtain registration for 2-dimensional spaces (such as 2D
images or 2D surfaces) [33]. In this paper, with the notion of n-D conformality distortion Kf(x), we extend
this idea to general n-dimensional spaces. This allows us to compute bijective landmark-matching mappings
of higher dimensional spaces with large deformations. Another challenge is the high computational cost of
the proposed model in the high dimensional space. To handle this, we also propose a numerical method to
solve the optimization problem more efficiently (please refer to Section 4).

With conformality distortion Kf(x), the bijectivity of the registration can be easily guaranteed by
enforcing the constraint ||Kf(x)||∞ < K for some K <∞. This can be achieved by minimizing an energy
functional involving ||Kf(x)||∞. In addition, minimizing ||Kf(x)||∞ also helps to reduce the maximal
conformality distortion, and hence reduce the local geometric distortion of the mapping. However, it is
computationally expensive to minimize an energy functional involving the supremum norm. Consequently,
we propose to minimize ||Kf(x)||1. Since Kf(x) is set to be +∞ when det(Df(x)) ≤ 0, our variational
model can still prevent folding by minimizing ||Kf(x)||1.

Besides, ‖Df‖F is included in the term Kf , which is the commonly used squared Frobenius regulariza-
tion term. The smoothness of the mapping can be achieved by merely minimizing the conformality term.
In order to further enhance the smoothness of the mapping, an extra smoothness term can be included
in the energy functional. We now propose the minimization model for the landmark-based registration
problem as follows:

inf
f∈F
‖Kf(x)‖1 +

σ

2
||∆f(x)||22dx (12)

where σ ≥ 0 is a fixed parameter and F = {f : Ω ⊂ Rn → Rn|f(pi) = qi, i = 1, 2, . . .m} is the set of
functions f : Ω → Rn which satisfies the landmark constraint f(pi) = qi, where pi and qi are the given
landmark points (i = 1, 2, . . . ,m). The first energy term helps to obtain a quasi-conformal map with
minimal conformality distortion, while satisfying the landmark constraints. The second energy term aims
to further enhance the smoothness of the mapping, since it involves higher order derivatives. Again, since
‖Df‖F is included in Kf , some smoothness can already be achieved by minimizing the first energy term.
In practice, we set σ = 0, which is enough to give smooth landmark-aligned mappings. This improves the
efficiency of the algorithm. In extreme situations (such as a very large deformation), setting a non-zero σ
can help to achieve much smoother registration results.

3.3 The discrete model

For general Euclidean space, our model (12) can be discretized by using discrete differential forms. For the
ease of explanation, we will explain the discretization of (12) on a cubic domain in the 3-D space here. First,
we pick a tetrahedral mesh for the cubic domain such that each tetrahedron in the mesh contains 3 edges,
each one of them is parallel to the one of the three coordinate axis respectively. In our implementation,
we partition the cubic domain into small equal-size cubes and create similar tetrahedral meshes for each
cubes. For the unit cube with vertices {x1,x2,x3,x4,x5,x6,x7,x8} we use the tetrahedral mesh with 6
tetrahedra. The vertices for these 6 tetrahedra are:

Consider the affine map A associated with each tetrahedron. Denote uk = (xk, yk, zk) ∈ R3, k =
0, 1, 2, 3 be the coordinates of the four vertices of the tetrahedron in Euclidean space. We also denote the
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1 : {x3,x7,x4,x5} ,
2 : {x3,x1,x4,x5} ,
3 : {x4,x1,x2,x5} ,
4 : {x7,x4,x5,x8} ,
5 : {x4,x5,x8,x6} ,
6 : {x4,x2,x5,x6} .

image of the affine map to be A(uk) = vk = (x̃k, ỹk, z̃k) ∈ R3. In matrix notation, we have
x̃0 x̃1 x̃2 x̃3
ỹ0 ỹ1 ỹ2 ỹ3
z̃0 z̃1 z̃2 z̃3
1 1 1 1

 = A


x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
1 1 1 1

 , where A =


a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 (13)

We then have

A =


x̃0 x̃1 x̃2 x̃3
ỹ0 ỹ1 ỹ2 ỹ3
z̃0 z̃1 z̃2 z̃3
1 1 1 1



x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
1 1 1 1


−1

(14)

Thus the Jacobian matrix of the affine map A is

D(A) =

a00 a01 a02a10 a11 a12
a20 a21 a22

 (15)

Denote Df(T ) to be the 3×3 Jacobian matrix of f for tetrahedron T . The discrete version of (12) is given
by

inf
f∈F

∑
tetrahedron T

Kf(T ) +
σ

2

∑
node x

||∆f(x)||22 (16)

where f ∈ F =
{
f : Ω ⊂ R3 → R3|f(pi) = qi, i = 1, 2, . . . ,m

}
is the set of functions defined on nodes

of the mesh, seven-point Laplacian stencil with suitable boundary condition (which will be discussed in
section 4 is used for ∆f and Kf(T ) is defined by:

Kf(T ) =

{
||Df(T )||2F

det(Df(T ))2/3
if det (Df(T )) > 0,

+∞ otherwise
(17)

4 Algorithm

In this section, we explain the numerical algorithm to optimize the energy functional described in the last
section. For the ease of the explanation, we will demonstrate the numerical algorithms for the 3-D case.
The numerical algorithms for general n-D spaces can be done similarly. We split the optimization problem
(16) as follows:

inf
f,R

∑
tetrahedron T

K(f,R, T ) +
σ

2

∑
node x

‖∆f(x)‖22 given R(T ) = Df(T ) (18)

where:

K(f,R, T ) =

{
||Df(T )||2F

det(R(T ))2/3
if det (R(T )) > 0,

+∞ otherwise
(19)
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We apply the alternating direction method of multipliers (ADMM) to optimize (19). ADMM was firstly
proposed in 1975 and has received lots of attention recently due to its simple implementation and extensive
applications to image processing and compressive sensing. We will briefly describe the idea of ADMM. For
details, we refer the readers to [18,4,19]. For a general optimization problem

inf
x,y

E(x, y) subject to y = Ax (20)

where A ∈Mm×n(R). The augmented Lagrangian associated to the problem (20) is given by

L(x, y, λ, µ) = E(x, y) +
µ

2
||Ax− y − λ||2 (21)

The alternating direction method with multiplier (ADMM) decouples the optimization process, which
can be described as follows:

xk+1 = argmin{L(x, yk, λk, µk)}

yk+1 = argmin{L(xk+1, y, λk, µk)}

λk+1 = λk + µk(Axk+1 − yk+1)

(22)

where {λk} is the sequence approximating the Lagrange multiplier of the constraint Ax = y and {µk} is
a sequence of positive real number, called the penalty parameters. A variants of the choices of {λk} and
{µk} have been proposed. In other words, ADMM firstly solves for xk+1 by fixing y = yk, and then solves
for yk+1 by fixing x = xk+1. This leads to efficient and parallelizable optimization algorithm.

Applying the ADMM to our problem, our numerical algorithm can now be described as follows. Suppose
(fk, Rk, λk, µk) is obtained at the k-th iteration. We first solve the f-subproblem:

fk+1 = argmin
f

∑
T

K(f,Rk, T ) +
µ

2

∑
T

||Rk −Df + λk||2F +
σ

2

∑
x

‖∆f‖22

subject to fk+1(pi) = qi for i = 1, ...,m.

(23)

We then solve the R-subproblem:

Rk+1(T ) = argmin
det(R)>0

K(fk+1, R, T ) +
µ

2
||R−Dfk+1 + λk||2F for each tetrahedron T. (24)

The Lagrange multiplier λk+1 and the penalty parameter µk+1 are updated as follows.

λk+1 = λk +Rk+1 −Dfk+1; (25)

µk+1 = max{max
T

30

det (R(T ))2/3
, µk}. (26)

The overall algorithm can now be summarized as Algorithm 1.

Algorithm 1: Quasi-conformal landmark-matching transformation algorithm

Input: Domain Ω; landmark sets {pi ∈ Ω}mi=1 and {qi ∈ Ω}mi=1.
Output: Landmark registration f∗ : S1 → S2.

1 Initial f1 = Identity mapI; R1 = Df1; λ1 = 0;
2 repeat

3 fk+1 ← argmin
f

∑
T K(f,Rk, T ) + µ

2

∑
T ||R

k −Df + λk||2F + σ
2

∑
x ‖∆f‖

2
2

subject to fk+1(pi) = qi for i = 1, . . . ,m;

4 Rk+1 ← argmin
det(R)>0

K(fk+1, R, T ) + µ
2 ||R−Df

k+1 + λk||2F for each tetrahedron T ;

5 λk+1 ← λk +Rk+1 −Dfk+1;

6 Update µk+1 = max{max
T

30
det(R(T ))2/3

, µk};
7 k ← k + 1;

8 until ||fk+1 − fk||∞ ≤ ε;
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There are two subproblems in the algorithm, namely, the f-subproblem and the R-subproblem. In
practice, we solve the f -subproblem first. In the following two subsections, we will explain how the f-
subproblem and the R-subproblem can be solved in details.

4.1 f-subproblem

The f-subproblem is to minimize the energy

Ekfsub(f) =
∑
T

||Df(T )||2F
det(Rk(T ))2/3

+
µ

2

∑
T

||Rk(T )−Df(T ) + λk(T )||2F +
σ

2

∑
x

‖∆f‖22. (27)

Note that f = (f1, f2, f3) : Ω1 ⊂ R3 → Ω2 ⊂ R3 is a vector-valued function. The energy functional
Ekfsub can be decoupled into Efsub(f) = Ekfsub1(f1) +Ekfsub2(f2) +Ekfsub3(f3). The optimization problem
can be solved component-wisely. Therefore, we can regard f as a scalar function only in this section. The
corresponding Euler-Lagrange equation for this problem is of the form{

σ∆2f(x)−∇ · (A(x)∇f(x)) = g(x);

f(pi) = qi,
(28)

where A(x) is a diagonal matrix with diagonal entries∑
six T touch the corresponding edge

(
1

det(R(T ))2/3
+ µ

)
, (29)

and g(x) = −µ∇
(
Rk(T ) + λk(T )

)
. Subtracting both side of (28) by any function that satisfies f(pi) = qi,

we can assume f(pi) = 0.
Equation (28) can be discretized into a linear system. To solve equation (28), we apply the precondi-

tioned conjugate gradient (PCG) method [47]. In order to apply the PCG method, a suitable preconditioner
approximating the inverse of the coefficient matrix of (28) must be chosen. In this work, we use the multi-
grid V-cycle of an approximated linear system of (28) as the preconditioner M [49]. Equation (28) is then
solved by PCG with the preconditioner matrix M .

We will now explain how the multi-grid V-cycle preconditioner M is constructed. Note that the penalty
parameter µ in the ADMM aims to drive R to be closer to Df , so that optimal solution eventually satisfies
the constraint R = Df . If µ is too small, the solution in each ADMM iteration may be far away from the
admissible solution satisfying the constraint R = Df . It may take a long time to converge to the optimizer
of (18) satisfying the constraint R = Df . On the other hand, if µ is too big, the solution in each ADMM
iteration better satisfy the constraint R = Df . But again, it may take a long time to obtain the optimizer
minimizing the energy function of (18). Hence, an optimal penalty parameter has to be carefully chosen
[13]. In our algorithm, the penalty parameter µ is chosen to be µ ≥ max

T

30
det(R(T ))2/3

. This parameter is

good enough for the ADMM converges at a reasonable rate.
With this parameter, we approximate A(x) = 6µI. Hence, equation (28) can be approximated by a

Poisson equation {
σ∆2f(x)− 6µ∆f(x) = g(x),

f(pi) = 0.
(30)

We proceed to approximate the solution of the above approximated system to get a preconditioner M .
We remark that the above approximated system is introduced to obtain the preconditioner M . With the
preconditioner M , the original f-subproblem (28) will be solved exactly using the PCG method.
If σ 6= 0, the equation (30) can be split into two coupled Poisson equations

−h−∆f = 0,

−σ∆h− 6µ∆f = g,

f(pi) = 0.

(31)

If σ = 0, the equation (30) can be simplified to be the following Poisson equation{
−6µ∆f(x) = g(x),

f(pi) = 0.
(32)
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In both cases, the equation can be approximately solved using the multi-grid V-cycle, which gives us a
preconditioner M for solving (28).

We will now explain the multi-grid V-cycle briefly. For details, we refer the readers to [52,5].
Let us first define a hierarchy of discretization of the unit cube, that is V1 ⊂ V2−1 ⊂ · · · ⊂ V2−J

where Vh is a uniform grid on unit cube with spacing h. On Vh, we discretize the equation (31) and (32)
respectively as−

(
I Lh

Lh 6µσLh

)(
h

f

)
=

(
0

g

)
,

f(phi ) = 0.

(33)

{
−6µLhf(x) = g,

f(phi ) = 0.
(34)

where Lh is the seven-point Laplacian stencil with suitable boundary conditions and phi is the landmark

points on the grid Vh. To simplify, let Lh =

(
I Lh
Lh 6µσLh

)
if σ 6= 0 and Lh = 6µLh if σ = 0.

The boundary conditions depends on the setting of the original problem (16). Either Dirchlet, Neumann
or the combination of both can be enforced. For example, suppose the unit cube is mapped to a unit cube,
the boundary conditions can be set as follows. Let f = (f1, f2, f3). Then:

f1(0, y, z) = 0 and f1(1, y, z) = 1,

f2(x, 0, z) = 0 and f2(x, 1, z) = 1,

f3(x, y, 0) = 0 and f3(x, y, 1) = 1.

(35)

Therefore, for f1, we impose the Dirichlet boundary condition on {0, 1} × [0, 1] × [0, 1] and Neumann
boundary condition on other boundaries. For f2 and f3, we do it similarly.

The next question is how we set the landmark constraints on coarser levels. In other words, we need to
choose vertices {pi}mi=1 such that f(pi) = 0. On the finest grid, these points are chosen to be the original
landmark points from the input. On the next coarser grid, these points are chosen to be the set of points
belonging to the neighbourhood of landmark points at the previous finer level. For example, if we have
a landmark point (0.375, 0.375, 0.375) on V2−2 , then on V2−1 , the set of points in the neighbourhood of
it are (0.25, 0.25, 0.25), (0.25, 0.25, 0.5), (0.25, 0.5, 0.25), (0.25, 0.5, 0.5) and so on. All these points will be
selected as landmark points on V2−1 . Although this scheme would probably make the coarsest level having
many landmark points, it does not cause either convergence or complexity problem because more landmark
points means less free variables and faster convergence.

The multi-grid V-cycle can now be described as follows. At level h (the grid with spacing h), (33)
and (34) can both be regarded as a linear system of the form Lhf = c. We first relax Lhf = c using
certain iterative scheme, such as Jacobi, Gauss-Seidel or Successive over-relaxation methods. We denote the
approximated solution f̃h after the relaxation by f̃h = S(f, c). We then compute the residual rh = c−Lhf̃h.
To improve the solution, we relax L2he = r2h on a coarser grid V2h, where r2h = I2hh (rh) is the projection
of rh from level h to level 2h and I2hh is the linear projection operator. Denote the approximated solution of
L2he = r2h by e2h. Then, the approximated solution of Lhf = c can be improved by f̃h by f̃h ← f̃h+Ih2he2h.
This completes a V-cycle at level h. Note that when computing the approximated solution of L2he = r2h,
we can again apply a multi-grid V-cycle on level 2h.

The detailed multi-grid V-cycle algorithm can now be described as in Algorithm 2.

Algorithm 2: f = Vcycleh(f, g)

1 If h = 2−k for some k ≥ 1, return L−1
h g;

2 f ← S(f, g);

3 f ← f + Ih2hVcycle2h
(
0, I2hh (g − Lhf)

)
;

4 f ← S(f, g);

The relaxation S in Algorithm 2 removes the high frequency component in the residual for rh =
c − Lhf̃h. In this paper, the relaxation S is chosen to be the Red-black Gauss-Seidel (RBGS) iterations.
We will briefly describe the RBGS iteration. For details, we refer the readers to [47]. The red-black Gauss-
Seidel modifies the standard Gauss-Seidel method by reordering different equations. The basic idea is
to group the grid points into two groups, identified as black and red nodes, such that black nodes are
surrounded by red nodes only and vice versa. The red-black grouping of grid points in 3-dimensional
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Fig. 2: Illustration of red-black ordering of grid points for 3-dimensional space.

space is as shown in Figure . The Laplace operator Lh under the red-black ordering of grid points can be

rewritten as: Lh =

(
Dr U
L Db

)
, where Dr and Db are diagonal matrices associated to the red nodes and

black nodes respectively. The Gauss-Seidel iteration can now be written as:

f̃r,n+1
h = D−1

r (−Uf̃b,nh + cr),

f̃b,n+1
h = D−1

b (−Lf̃r,n+1
h + cb)

(36)

where f̃r,nh and f̃b,nh are the components of f̃h associated to the red and black nodes respectively at the
n-th iterations. cr and cb are the components of c̃ associated to the red and black nodes respectively.
As a result, instead of solving a triangular system as in the standard Gauss-Seidel iterations, we perform
matrix-vector products and vector scaling operations with half as many variables in each iteration.

In our implementation, we have chosen S to be four iterations of Red-Black Gauss-Seidel method.
The red-black ordering for step 2 in Algorithm 2 is the opposite to the red-black ordering for step 4. This
reverse ordering ensure the obtained multi-grid V-cycle preconditioner M to be symmetric positive definite
for applying PCG [49].

For the restriction and interpolation operator, the full weighting restriction and bilinear interpolation
operator are used. Note that the result of the interpolation operator satisfies the landmark points condition
because of our choices of landmark points on the coarse grid.

The overall Vcycleh(0, g) is a linear operator on f̃ . We simply write it as Mf̃ . M is our desired
preconditioner. With M , we apply the PCG method with the preconditioner matrix M to solve the
original f-subproblem (28) [52]. This can be described as follows.

Algorithm 3: Solving (28)

1 Denote Mg = Vcycleh(0, g);
2 Apply the preconditioned conjugate gradient method on (28) with the preconditioner matrix M ;

4.2 R-subproblem

The R-subproblem in Algorithm 1 is a tetrahedron-wise problem. Therefore, parallel computing can be
adopted in this subproblem. More explicitly, we want to find R(T ) on each tetrahedron T which minimizes
the following energy

min
R(T )∈R3×3,det(R(T ))>0

(
||Dfk||2F

det(R(T ))2/3
+
µ

2
‖R(T )−B‖2F

)
(37)
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where B = Dfk − λk.

Let the SVD of B be UΣV ∗. In the case when R can be written as UΣ̃V ∗, where Σ̃ is an unknown
diagonal matrix. Problem (37) can be much simplified. Since we want det(R(T )) > 0, Σ̃ must satisfy
sgn(det(Σ̃)) = sgn(det(UV ∗)). Denote Γ = {Σ̃ | sgn(det(Σ̃)) = sgn(det(UV ∗))}. By substituting these
representations and constraint to problem (37), we have the following optimization problem with three
variables:

min
Σ̃∈Γ

(
||Dfk||2

det(Σ̃)2/3
+
µ

2
‖Σ̃ −Σ‖2F

)
(38)

In other words, by making the assumption that R can be written as UΣ̃V ∗, we can simply the original
R-subprobem as (38). A natural question is the relationship between the problem (38) and our original
R-subproblem (37). The following theorem gives the answer.

Theorem 1 Suppose Σ is the minimizer of (38). Then, R = UΣV ∗ is the minimizer of (37), where
B = UΣV ∗ is the SVD of B.

Proof This is related to the general two-sided Procrustes problem. Suppose X1 and X2 are n×n matrices.
Define:

EP (Q1, Q2) = ||Q∗1X1Q2 −X2||2F (39)

where Q1 and Q2 are n × n orthogonal matrices. Let X1 = P1Σ1R
∗
1 and X2 = P2Σ2R

∗
2 be the SVDs of

X1 and X2 respectively. Then, the minimizer of EP satisfies:

P1 = Q1P2Π; R1 = Q2R2Π, (40)

where Π is the permutation matrix that maximizes Tr(Σ∗2Π
∗Σ1Π) (see p.89-90 in [20]).

Let B = UΣV ∗ be the SVD of B and let PΣ̃Q be the SVD of U∗RV . Our R-subproblem (37) is
equivalent to minimizing:

EnewR (P̃ , Σ̃, Q̃) :=

{
||P̃ Σ̃Q̃∗ −Σ||2F +

c

det(Σ̃)2/3

}
, (41)

for some positive constant c.

Let Σ be the minimizer of:

min
Σ

{
||Σ −Σ||2F +

c

det(Σ̃)2/3

}
. (42)

Fixing a diagonal matrix D, we consider the minimization problem over (P̃ , Q̃) of EnewR (P̃ ,D, Q̃).

According to (40), the minimizer must satisfy I = P̃Π and I = Q̃Π. Thus, for any orthogonal matrices P
and Q and diagonal matrix D,

EnewP (P,D,Q) = ||PDQ∗ −Σ||2F +
c

(det(D))2/3

≥ ||Π∗DΠ −Σ||2F +
c

(det(Π∗DΠ))2/3

≥ ||Σ −Σ||2F +
c

(det(Σ)2/3

= EnewR (I,Σ, I).

(43)

Thus, (I,Σ, I) is a minimizer of (41). We conclude that: R = UIΣIV ∗ = UΣV ∗ is a minimizer of (37).

Theorem 2 The Euler Lagrange equation of (38) is:

Σ̃ − a

(det(Σ̃))2/3
Σ̃−1 = Σ, where a =

2‖Dfk‖2

3µ
. (44)
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Proof Let xi be the diagonal of Σ and yi be the diagonal of Σ̃. Denote ỹ1 = y1 + ελ1 to be the variation
of y1. Consider the derivative of energy with respective to ε, we have

d

dε

‖Dfk‖2

(ỹ1y2y3)2/3
+
µ

2

[
(ỹ1 − x1)2 + (y2 − x2)2 + (y3 − x3)2

]∣∣∣∣
ε=0

= 0

⇒ λ1

(
−a

(y1y2y3)2/3

(
1

y1

)
+ y1 − x1

)
= 0.

(45)

Since λ1 is arbitrary, we have

−a
(y1y2y3)2/3

(
1

y1

)
+ y1 − x1 = 0 (46)

Similar equations can be obtained for the variations of y2 and y3. By combining the results, we have the
same formula as in (44).

To tackle with the nonlinear recurrence equation (44), we propose Algorithm 4 below that gives the
solution of (47) to obtain a minimizer of the optimization problem (38). More specifically, since the system
(44) is coupled by the term det(Σ̃), we can solve the equation iteratively by

Σ̃n −
a(

det(Σ̃n−1)
)2/3 Σ̃−1

n = Σ (47)

where Σ̃n is the Σ̃ in step n. Define Dn = det(Σ̃n−1)2/3. By element-wise decoupling the nonlinear
recurrence equation (47), we have the quadratic equations yni − a

D (yni )−1 = xi for i = 1, 2, 3, where

Σ̃n = diag(yn1 , y
n
2 , y

n
3 ). Solving the quadratic equations, we have

yni (Dn) =
xi ±

√
x2i + 4a

Dn

2
, i = 1, 2, 3 (48)

where the sign is chosen according to Algorithm 4. The motivation and the convergence analysis of the
proposed iteration scheme is explained in Theorem 3.

Algorithm 4: Solving (47)

1 Compute the SVD of B = UΣV ∗ where the diagonal of Σ is xi ≥ 0;

2 Set D1 = (det(R(last))2/3. Denote Dn+1 = (yn1 y
n
2 y

n
3 )2/3;

3 repeat

4 Set yni = 1
2

(
xi +

√
x2i + 4a

Dn

)
for i = 1, 2, 3;

5 If det(UV ∗) < 0, set yni = 1
2

(
xi −

√
x2i + 4a

Dn

)
for i = argminixi;

6 Dn+1 ← 1
2

(
Dn + (yn1 y

n
2 y

n
3 )2/3

)
;

7 n← n+ 1;

8 until ||Dn+1 −Dn||∞ < ε;

9 R = UΣ̃V ∗ where the diagonal entries of Σ̃ are yi;

Before introducing Theorem 3, the following lemma is necessary.

Lemma 1 Let σ ∈ Rn+ be a vector with positive values. The function

f(σ) =
c∏n

i=1 σ
2/n
i

+ µ
n∑
i=1

(σi − ai)2, c > 0 and µ > 0 (49)

is convex.
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Proof Recall that the log barrier function B(u) = − log(det(u)), where u is a symmetric positive definite
matrix, is convex [3]. This implies that 2

nB(D), where D is a diagonal matrix with positive diagonal
elements {dii}ni=1, is also a convex in D. Note that

exp

(
− 2

n
B(D)

)
= exp

(
− 2

n
log(det(u))

)
= exp

(
log

(
n∏
i=1

1

d
2/n
ii

))
=

1∏n
i=1 d

2/n
ii

. (50)

As the exponential of a convex function is also convex and c > 0, we have shown that c∏n
ii=1 σ

2/n
i

is convex.

Define g(σ) =
∑n
i=1(σi − ai)2. We have

∂2g

∂σjσi
=

{
2 if i = j,
0 otherwise

(51)

Therefore, the Hessian matrix of g is equal to 2In, where In is the n-dimensional identity matrix. Therefore
g is also convex in σ. By combining both results, we can conclude that f(σ) is a convex function.

The above lemma states that the simplified optimization problem (38) is convex in the positive octant
region. In fact, using the same argument, we can show that the optimization problem (38) is convex in
any one of the octant regions. Hence, the optimization is a global minimizer in each octant region.

Now, we will explain the convergence of Algorithm 4 to the minimizer of the optimization problem
(38).

Theorem 3 Given any 3×3 matrix B, a > 0. Algorithm 4 converges linearly to a solution of the nonlinear
recurrence equation (44) with the rate 1

2 , which is a minimizer of (38).

Proof Recall that yni at the nth iteration is defined as follows:

yki (Dn) =
xi ±

√
x2i + 4a

Dn

2
. (52)

The sign of yni is chosen as to minimize the energy functional (38), which is given by the following:

min
Σ̃∈Γ

(
||Dfk||2

det(Σ̃)2/3
+
µ

2
‖Σ̃ −Σ‖2F

)
= µmin

Σ̃∈Γ

(
a

2
3 det(Σ̃)2/3

+
1

2
‖Σ̃ −Σ‖2F

)

= µmin
Σ̃∈Γ

(
3a

2(y1y2y3)2/3
+

1

2

∑
(xi − yi)2

)
.

(53)

Our goal is to make D = (y1y2y3)2/3 larger and yi closer to xi. Therefore, the sign appears in equation
(48) can be determined according to the magnitude of the energy. If det(UV ∗) > 0, we can either set +
sign in equation (48) for all i or we set − sign for only two of yi. However, we can eliminate the second
case by the following argument. Note that the second term in the energy functional dominates the overall
energy and xi ≥ 0 for all i, we havexi − xi +

√
x2i + 4a

D

2

2

≤

xi − xi −
√
x2i + 4a

D

2

2

∀i. (54)

Therefore, the minimizer should satisfy the + sign in equation (48) for all i. If det(UV ∗) < 0, we can either
set − sign in equation (48) for all i or we set − sign for one of the yi. Similar argument can be made and
the minimizer should satisfy the + sign in equation (48) for all i 6= argminixi. This explains the purpose
of step 5. Without loss of generality, we assume argminixi = 1.

Let F (D) = (y1(D)y2(D)y3(D))2/3 and G(D) = D+F (D)
2 . We have

F ′(D) =
−2a

3D2
F (D)

3∑
i=1

sgn(yi)

yi

1√
x2i + 4a

D

(55)

Note that each term sgn(yi)
yi

1√
x2
i+

4a
D

in the sum is positive. Hence F ′(D) < 0.
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For the case det(UV ∗) > 0, we have

− F ′(D) =
2a

3D2
F (D)

3∑
i=1

1

yi

1√
x2i + 4a

D

<
2a

3D2
F (D)

3∑
i=1

D

2a
=
F (D)

D
. (56)

For the case det(UV ∗) < 0, we have

sgn(y1)

y1

√
x21 + 4a

D

=
2√

x21 + 4a
D − x1

1√
x21 + 4a

D

=
D

2a

x1 +
√
x21 + 4a

D√
x21 + 4a

D

(57)

when i = 1. For i = 2, 3, we have

1

yi

√
x2i + 4a

D

=
2

x2i + 4a
D

√
x2i + 4a

D

xi +
√
x2i + 4a

D

≤ D

2a

√
x21 + 4a

D

x1 +
√
x21 + 4a

D

. (58)

Hence we have

−F ′(D) ≤ 2a

3D2
F (D)

D

2a

x1 +
√
x21 + 4a

D√
x21 + 4a

D

+ 2

√
x21 + 4a

D

x1 +
√
x21 + 4a

D

 . (59)

Since 1
2 <

√
x2
1+

4a
D

x1+
√
x2
1+

4a
D

< 1, by considering the function 1
x + 2x on the interval

(
1
2 , 1
)
, we conclude that the

last term inside the parenthesis is less than 3. Hence, in both cases, we have −F ′(D) ≤ F (D)
D .

Now, let D̃ be the solution of G(D) = D. We proceed to show that {Dn}∞n=1 converges to D̃.

Consider the case when Dn ≥ D̃. Since G′(D) = 1
2 + F ′(D)

2 , we have

1

2
≥ G′(D) ≥ 1

2
− F (D)

2D
≥ 1

2
− F (D̃)

2D
=

1

2
− D̃

2D
≥ 0. (60)

This suggests G is an increasing function in D. Also, D̃ = G(D̃) = D̃+F (D̃)
2 implies D̃ = F (D̃). Hence,

D+F (D̃)
2 = D+D̃

2 ≥ D+F (D)
2 = G(D) ≥ D̃ for D ≥ D̃. We get that

Dn ≥
Dn + D̃

2
≥ G(Dn) = Dn+1 ≥ D̃. (61)

{Dn}∞n=1 is thus a decreasing sequence converging to some D∗ ≥ D̃. Also, from the previous inequalities,

we observe that D∗+D̃
2 ≥ D∗ ≥ D̃, which gives D̃ ≥ D∗ ≥ D̃. We conclude that D∗ = D̃.

For the case Dn ≤ D̃, we have G(D) = D+F (D)
2 ≥ D+D̃

2 . Thus,

G(Dn) = Dn+1 ≥
Dn + D̃

2
≥ Dn. (62)

Suppose Dk ≤ D̃ for all k > n. Using a similar argument as before, we conclude that {Dn}∞n=1 is an
increasing sequence converging to D̃. Suppose Dk > D̃ for some k > n. From the previous conclusion, we
can also get the same convergence result. That is, Dn → D̃.

In both cases, we can show that
|Dn+1−Dn|
|Dn−Dn−1| ≤

1
2 . As a result, the sequence {Dn}∞n=1 converges at a

rate 1
2 . Also, since Σ̃n = diag(yn1 (Dn), yn2 (Dn), yn3 (Dn)) depends on Dn, Σ̃n converges to a solution of the

nonlinear recurrence equation (44) with a rate 1
2 .

In other words, algorithm 4 converges to a solution of the Euler-Lagrange equation of (38). Depending
on the sign of det(UV ∗), our algorithm search for a critical point at the first octant region if det(UV ∗) > 0
and at the other octant (with xi < 0) if det(UV ∗) < 0. According to Lemma 1, the critical point must
be the global minimizer of (38) in the corresponding octant region. Hence, algorithm 4 converges to the
minimizer of (38).



16 Yin Tat Lee et al.

5 Experimental Result

To validate the effectiveness of our proposed algorithm, experiments on synthetic examples have been
carried out to compute 3-dimensional quasi-conformal landmark-matching transformation. We have also
applied our proposed algorithm on lung CT images with respiratory deformations. Experimental results
are reported in this section.

(a) Regular mesh on a cube. (b) CT image of a lung.

Fig. 3: The regular reference mesh of the cube and the 3 dimensional lung CT image.

Synthetic examples

We first test our algorithm to compute the landmark-matching transformation with one landmark. Figure
4a shows how the landmark point is deformed. The deformation of the landmark point is large. The point
p1 = [0.6, 0.6, 0.6] is moved to q1 = f(p1) = [0.3, 0.3, 0.3]. Using the proposed algorithm, we obtain a
diffeomorphic transformation that satisfies the landmark constraint exactly. Figure 4b shows the obtained
transformation. It is visualized by the deformation of the original reference mesh as shown in Figure 3a
under the obtained transformation. The reference mesh is a regular grid of a cube discretizing the source
domain. Figure 4c shows the visualization of the obtained transformation with a sparser view (to better
demonstrate the transformation). Note that we set Ω1 = Ω2 = Ω = [0, 1]3 in all our synthetic experiments.
By the boundary setting as discussed in section 4.1, the image of the resultant map is restricted to be the
cube Ω, even though the landmark moves towards the boundary.

Secondly, we test the algorithm to compute the landmark-matching transformation with two landmarks
moving towards different directions. Deformations of both landmark points are large, as shown in Figure
5a. More specifically, two points pi are moved to qi = f(pi) as follows:[

p1(x) p1(y) p1(z)
p2(x) p2(y) p2(z)

]
=

[
0.6 0.7 0.7
0.4 0.6 0.3

]
→
[

0.3 0.2 0.9
0.2 0.9 0.2

]
=

[
q1(x) q1(y) q1(z)
q2(x) q2(y) q2(z)

]
(63)

Figure 5b shows the obtained transformation. Figure 5c shows the visualization of the obtained trans-
formation with a sparser view.

We also test the algorithm to compute the landmark-matching transformation with an inner ball being
chosen as landmarks. Points pi = (pi(x), pi(y), pi(z)) inside the inner ball are moved by the following
transformation:  qi(x)

qi(y)
qi(z)

 =

 f1(pi)
f2(pi)
f3(pi)

 =

 0 −1 0
1 0 0
0 0 0

 pi(x)− 0.5
pi(y)− 0.5
pi(z)− 0.5

 (64)

In other words, points inside the sphere are chosen as landmarks and they are rotated anti-clockwisely, as
shown in Figure 6a. The obtained landmark-matching transformation, which is visualized as the deforma-
tion of the standard grid by the transformation, is shown in Figure 6b. Figure 6c visualizes the obtained
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(a) Landmark (b) QC deformation (c) Sparse view

Fig. 4: One-point landmark-matching experiment

(a) Landmark (b) QC deformation (c) Sparse view

Fig. 5: Two-point landmark-matching experiment

transformation with a sparser view. Note that the obtained transformation is folding-free (Please refer to
Table 1 which will be described later).

Next, we test the algorithm on an example of which all the points on a plane

pi = [0.5, pi(y), pi(z)] ∀(pi(y), pi(z)) ∈ [0, 1]× [0, 1]

are chosen as landmarks (grey plane in Figure 7a). The landmarks are deformed to a wave-shape surface
(red surface in Figure 7b) by the following transformation: qi(x)

qi(y)
qi(z)

 =

 f1(pi)
f2(pi)
f3(pi)

 =

 0.5 + 1
5 sin (4π(pi(y) + pi(z)))

pi(y)
pi(z)

 . (65)

Using our proposed algorithm, we obtain a transformation that satisfies the landmark constraints. Figure 7b
shows the obtained transformation, which is bijective (Refer to Table 1). Figure 7c shows the transformation
with a sparser view.

Finally, we test the algorithm to compute the landmark-matching transformation with random points
being chosen as landmarks. These random landmark points are twisted by the following transformation
(See Figure 8a):

qi(x) = f1(pi) = pi(x)− pi(x) ·A (pi(x), pi(y)) ,
qi(y) = f2(pi) = ρ− pi(z) ·A (ρ, pi(z)) ,
qi(z) = f3(pi) = pi(z) + qi(y) ·A (ρ, pi(z)) .

(66)
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(a) Landmark (b) QC deformation (c) Sparse view

Fig. 6: Landmark-matching experiment to register rotating ball.

(a) Landmark (b) QC deformation (c) Sparse view

Fig. 7: Landmark-matching experiment to register wave deformation

where

ρ = pi(y) + qi(x) ·A (pi(x), pi(y))

A(x, y) = 1
100

(
(cos(πx)+1)(cos(πy)+1)

4 + cos
(
πx
2

)
cos
(
πy
2

)) (67)

The twisting deformation is large and complicated. Using our algorithm, we are able to obtain a diffeomor-
phic landmark-matching transformation. Figure 8b shows the obtained transformation. Figure 8c shows
the registration with a sparser view.

The upper row of figure 9(a)–(e) shows the overall energy (See (12) versus iterations for the “one
point landmark”, “two-point landmark”, “wave-shape deformation”, “rotate sphere” and “twist point
sets” examples respectively. Note that the overall energy of each mapping is iteratively reduced with a
trend of converging to an optimal map with respect to our proposed model 12. The second row shows
the corresponding log-log plot of the overall energy versus iterations. The negative slope appear in all
five examples indicates that our proposed algorithm successfully minimizes the generalized conformality
distortion K(f) while matching the prescribed landmark correspondences.

The above examples demonstrate that our proposed algorithm is effective for computing landmark-
matching folding-free transformation with larger deformations. It works well even with large number of
landmarks or large deformations.
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(a) Landmark (b) QC deformation (c) Sparse view

Fig. 8: Landmark-matching experiment of random points with twisting deformation

Lung CT landmark-based image registration

We have also applied our algorithm to compute landmark-matching transformation of real four dimensional
lung CT data with prescribed landmark correspondences at different times. Five sets of lung CT images
are registered using our proposed algorithm. We choose the maximum inhalation phase image (at time
t = 00) and the maximum exhalation phase image (at time t = 50) as the moving image and the reference
image respectively. This provides the maximum displacement of the landmarks located within the lung
CT images. To demonstrate the independence of our algorithm to the number of landmark points, 300
prescribed feature correspondences are enforced. Figure 10a and 10b show the lung CT images at time
t = 00 and t = 50. The image dimension of this dataset is 256 × 256 × 112. Since the multi-grid method
is applied to obtain a preconditioner to solve the f-subproblem, a linear interpolation on the image is
firstly done to get the position of the landmarks corresponding to the dimension 256× 256× 128, in which
every dimensions has grid spacing equals to the power of 2. The 300 prescribed landmark correspondences
between the two images are shown as the red and blue dots in the figures. Using the proposed algorithm,
the landmark-based image registration of the lung CT images can be computed, which is shown in Figure
10c.

Figure 11a and 11b show another set of lung CT images at time t = 00 and t = 50. The image dimension
of this dataset is 512× 512× 128. The 300 prescribed landmark correspondences are shown as the red and
blue dots in the figures. The obtained landmark-based image registration of the lung CT images is shown
in Figure 11c.

Figure 12(a)–(f) and 13(a)–(f) show the vector fields of the lung deformations obtained from the
registration results. The images are the slides on the x-axis with slide numbers 50, 55, 60, 65, 70 and 75
respectively. The vector fields located inside the lung are projected to the YZ planes and are visualized
as green arrows in the figures. The vector fields are smooth, showing that our proposed algorithm can
produce smooth landmark-based registration result.

Quantitative measurements

Table 1 lists the quantitative measurements of the landmark-matching transformation obtained from the
proposed algorithm and the TPS method. For a fair comparison, we first normalize the domain Ω in
each example to be the unit cube. The maximum and minimum displacement of the prescribed landmark
correspondences are denoted as LMmax and LMmin respectively. The quantities emax and emin shows the
maximum and minimum landmark mismatching error in the L-2 sense.

The maximum of the resulting conformality distortion is denoted by max K. Note that max K obtained
from our proposed algorithm are all finite. This implies that the computed transformations in all examples
are orientation-preserving. However, results generated by the TPS in the five synthetic examples have
infinite value of max K, which indicates folding occurs in the mapping obtained from TPS. For lung
registration examples (CT1 - CT5), we observe that the max K of TPS is relatively smaller than that
of the proposed algorithm. This is mainly due to the inexact alignment of the landmark points by TPS
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(a) One-point (b) Two-point (c) Wave

(d) Rotate (e) Twist

Fig. 9: The overall energy versus iterations.

(a) Lung at time = 00 (b) Lung at time = 50 (c) Registration result

Fig. 10: Lung CT image registration (CT 1)

which provides more freedom for the optimization of the transformation. min Det, which is the minimum of
the Jacobian, is another indicator showing the diffeomorphic property of the mapping [8,9]. #Fold counts
the number of tetrahedra in which the obtained transformation has negative Jacobian. We observe that
foldings occur in TPS method when the landmark displacement is large. For our proposed algorithm, no
foldings are observed for both synthetic and the lung registration examples. This shows the capability of
the generalized conformality distortion K(f) in enforcing the bijectivity of the transformation.
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(a) Lung at time = 00 (b) Lung at time = 50 (c) Registration result

Fig. 11: Lung CT image registration (CT 5)

(a) X-slide 50 (b) X-slide 55 (c) X-slide 60

(d) X-slide 65 (e) X-slide 70 (f) X-slide 75

Fig. 12: Vector field of the registration result (CT1)

The computation time for both algorithms is also reported in the table. With the proposed numerical
method applied in the algorithm, the time required for large deformation is quite reasonable (less than 30
seconds for sparse grids and less than four minutes for dense grid size).

6 Conclusion

This paper present a new method to obtain folding-free landmark-matching transformationn between gen-
eral n-dimensional Euclidean spaces with large deformations. The basic idea is to extend the 2-dimensional
quasi-conformal theories to general n-dimensional spaces. Given a set of landmark constraints, our goal
is to look for an optimal transformation that matches landmarks. In this paper, we introduce a notion



22 Yin Tat Lee et al.

(a) X-slide 50 (b) X-slide 55 (c) X-slide 60

(d) X-slide 65 (e) X-slide 70 (f) X-slide 75

Fig. 13: Vector field of the registration result (CT5)

Proposed Thin Plate Spline
LMmax max K min Det emax/emean max K min Det emax/emean

LMmean #LM Time (s) #Fold #LM Time (s) #Fold

One-point
0.5196 8.9756 0.2519 0 / 0 ∞ -0.0033 0.0017 / 0.0017
0.5196 1 11.3644 s 0 1 0.08727 s 2

Two-point
0.6164 2.9295 0.0989 0 / 0 ∞ -0.0722 0.0383 / 0.0352
0.4953 2 11.7554 s 0 2 0.0134 s 213

Twist
0.5194 4.1488 0.1753 0 / 0 ∞ -0.0848 0.0007 / 0.0004
0.3383 50 18.2556 s 0 50 0.0810 s 131

Rotate
0.5097 3.1939 0.4006 0 / 0 ∞ -0.0755 0.0008 / 0.0004
0.3071 3743 28.7540 s 0 3743 61.0223 s 35337

Wave-shape
0.2000 3.3007 0.3642 0 / 0 ∞ -0.0682 0.0007 / 0.0005
0.1256 1089 30.0948 s 0 1089 2.7450 s 4603

CT1
0.0631 2.2204 0.1606 0 / 0 1.0640 0.0085 0.0121/0.0074
0.0153 300 112.3901 s 0 300 1.3031 s 0

CT2
0.0624 2.3331 0.1406 0 / 0 1.0740 0.0843 0.0136/0.0077
0.0263 300 103.3852 s 0 300 1.1630 s 0

CT3
0.0891 1.7137 0.3973 0 / 0 1.1763 0.0593 0.0123 / 0.0077
0.0314 300 90.1452 s 0 300 1.1706 s 0

CT4
0.0816 6.1340 0.0312 0 / 0 1.3528 0.0639 0.0138 / 0.0079
0.0393 300 81.7555 s 0 300 1.2033 s 0

CT5
0.0920 6.5297 0.0229 0 / 0 1.3226 0.0384 0.0159 / 0.0073
0.0232 300 228.0194 s 0 300 1.5251 s 0

Table 1: Quantitative measures of the registration experiment.

of conformality distortion of a diffeomorphism of the n-dimensional Euclidean space. The conformality
distortion measures the distortion of an infinitesimal ball to an infinitesimal ellipsoid under the diffeomor-
phism. Our problem can then be modelled as a minimization problem of an energy functional involving
the conformality term and a smoothness term. The conformality term allows the algorithm to produce
folding-free transformation with minimized local geometric distortions, even with very large deformations.
Alternating direction method of multipliers (ADMM) is applied in this paper to solve the optimization
problem. The algorithm only involves solving an elliptic problem and a tetrahedron-wise minimization
problem. Preconditioned conjugate gradient method with multi-grid V-cycle preconditioner is applied to
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one of the subproblem, while a fixed-point iteration is used for another subproblem. The time complex-
ity and robustness of the algorithm is independent of the number of landmark constraints. Experimental
results show that our proposed algorithm is effective for computing folding-free landmark-matching trans-
formation, even with large number of landmarks or large deformations. In the future, we will test the
algorithm on other real medical data, such as 3D MRI scan with DTI fibre tracks as the interior landmark
constraints.

Acknowledgements The authors acknowledge the freely available lung CT data from the Deformable Image Registration
Laboratory (www.dir-lab.com).
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