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Abstract. Fusion of images with same or different modalities has been
conquering medical imaging field more rapidly due to the presence of
highly accessible patients’ information in recent years. For example, cross
platform non-rigid registration of CT with MRI images has found a sig-
nificant role in different clinical application. In some instances labelling
of anatomical features by medical experts are also involved to further
improve the accuracy and authenticity of the registration. Being moti-
vated by these, we propose a new algorithm to compute diffeomorphic
hybrid multi-modality registration with large deformations. Our itera-
tive scheme consists of mainly two steps. First, we obtain the optimal
Beltrami coefficient corresponding to the diffeomorphic mapping that
exactly superimposes the feature points. The second step detects the
intensity difference in the framework of mutual information. A non-rigid
deformation which minimizes the intensity difference is then obtained.
Experiments have been carried out on both synthetic and real data.
Results demonstrate the stability and efficacy of the proposed algorithm
to obtain diffeomorphic image registration.

1 Introduction

Image registration is one of the important steps in various fields which aims
to align images [1–3]. Existing methods for image registration can be classi-
fied into three categories: landmark-based, intensity-based and hybrid methods.
For landmark-based method, optimal deformation is obtained by aligning the
sparse geometric feature points on both source and target domain. For exam-
ple, the thin-plate spline registration method proposed by Bookstein et al. [4]
aligns landmarks by using the biharmonic regularizer. Later, Joshi et al. [5] pro-
posed to obtain the landmark matching diffeomorphism through the construc-
tion of vector field governed by the Navier-Stokes equation. A diffeomorphism
with exact landmark alignment can be computed even with large deformation.
One main advantages of landmark-based method is the straightforward incor-
poration of medical expert during the registration process [2]. This provides
a reliable deformation approximation once the features alignment is accurate.
In addition, landmark-based method is usually computationally efficient when
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modelling large deformations. Intensity-based registration method aims to match
the intensity information without the help of sparse geometric knowledge. By
taking into account more image information during the registration process,
delineation of feature landmarks is not required. To list a few, the Diffeomor-
phic Demons Registration method in [6], which is proposed based on Thirion’s
demons algorithm [7], obtains the registration result in the space of diffeomorphic
transformations. Glocker proposed the DROP algorithm [8] to register images
by making use of the Markov random field formulation. But without human
supervision, inaccurate registration with underlying large deformation may be
resulted. Hybrid approaches make use of both sparse geometric and intensity
information to guide the registration. By aligning landmark and intensity, we
integrate both merits of matching approaches: reliability of meaningful feature
alignment provided by medical practitioners and accurate registration of local
intensity information. As a consequence, this type of approach can usually pro-
vide better registration results. For instance, Christensen et al. [9] proposed
to apply the unidirectional landmark thin-plate-spline (UL-TPS) registration
technique with the minimization of intensity difference to register images with
inverse consistency property. Chanwimaluang et al. [10] proposed a hybird retina
image registration by the combination of area-based and feature-based alignment
techniques.

A large amount of work has also been published on medical image fusion
recently [11] due to the increasing use of medical diagnostic devices and the
improved accessibility of medical data. There are mainly two stages: (1) image
registration and (2) fusion of image information from the registered images [11].
In the fusion part, various methods have been proposed. To name a few, Li
et al. [12] combine images under the space of wavelet coefficients. The inte-
grated images is obtained by taking the inverse wavelet transform of the fused
wavelet coefficients. Naidu et al. [13] proposed to use principal component analy-
sis (PCA) to obtain a weighted average for the registered images to be fused.

In this paper, we extend the landmark matching algorithm in [14] to obtain
diffeomorphic hybrid image registration which can handle different modalities.
The main idea of the algorithm is to find the optimizer of an energy func-
tional involving the Beltrami coefficients term, which is effective in controlling
the bijectivity and the conformality distortion of the mapping. Diffeomorphism
associated to the optimized Beltrami coefficient will satisfy the landmark con-
straints and maximize the mutual information between the source and target
images. In addition, our proposed algorithm can also control the conformality
distortion of the transformation. The obtained transform thus preserves as much
local geometric information as possible. Noted that an accurate diffeomorphic
alignment is also a key issue as severe artefact in the fused image may be pro-
duced due to misalignment or loss of image information in folding regions. We
therefore propose to restrict the class of registration transformation to Quasi-
Conformal mapping for image fusion problem. To validate the scheme, we have
tested it on different synthetic examples and real medical images. Results show
that our proposed algorithm can successfully align images according to the pre-
scribed landmark constraints and the similarity of image intensity. The use of our
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registration result can improve the image fusion quality and place a significant
amount of trust under the inclusion of experts’ labelling.

2 Mathematical Background

Our algorithm obtains the optimal transformation in the class of Quasi-
Conformal (QC) mapping. QC maps are generalization of conformal maps
which are orientation preserving homeomorphisms between Riemann surfaces
with bounded conformality distortion. Mathematically, let z = x +

√−1y with
x, y ∈ R, f : C → C is a QC map if it satisfies the following Beltrami equation:

∂f

∂z̄
= μ(z)

∂f

∂z
(1)

for some complex-valued function μ satisfying ‖μ‖∞ < 1. The function μ is called
the Beltrami coefficient, which measures the nonconformality of the mapping f .
By the first order Taylor expansion f(z) ≈ f(p)+ fz(p)(z − p+μ(p)(z̄ − p̄)), the
Beltrami coefficient provides us all the information about the conformality of the
mapping. In addition, the following theorem describes the relation between the
set of Beltrami coefficients and the set of orientation preserving homeomorphisms
(See [15] for details).

Theorem 1. Suppose μ : D → D is Lebesgue measurable satisfying ‖μ‖∞ < 1,
then there is a Quasi-Conformal homeomorphism φ from the unit disk to itself,
which is in the Sobolev space W 1,2(Ω) and satisfies the Beltrami equation (1)
in the distribution sense. Furthermore, by fixing 0 and 1, the associated Quasi-
Conformal homeomorphism φ is uniquely determined.

This theorem motivates us to transform the problem of finding the optimal defor-
mation into the problem of finding the corresponding Beltrami coefficient. The
following theorem helps us to understand the relationship between the regularity
of the Beltrami coefficient μ(f) and the associated mapping f .

Theorem 2. For any smooth μ with ‖μ‖∞ < 1, the corresponding Quasi-
Conformal homeomorphism f is a C∞ diffeomorphism.

To measure the similarity of two images with different modalities, we apply
the mutual transform proposed by Kroon [16]. Let M and S be the moving and
the static image. The mutual transform MT of M to S is defined to be

MT (x) = arg max
K

HGr
x
(M,S,K) (2)

where x is the pixel position in the image; K is the intensity level; Gr
x is the

Guassian windows with center x and radius r and HGr
x
(M,S,K) is the number

of pixel in Gr
x of intensity matrix M(x), which is linked to intensity level K in the

static image S. With mutual transform, we define the similarity measurement
to be:

Similar(M,S) =
1
2

∫
Ω

(ST − M)2 +
1
2

∫
Ω

(S − MT )2 (3)

where Ω is the domain of the image M .
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3 Methodology

We now formulate the hybrid multi-modality registration problem as the follow-
ing mathematical model. Let M and S to be the moving image and the static
image respectively. Denote {pi}i=1,...,m ∈ M and {qi}i=1,...,m ∈ S to be the
prescribed landmark correspondences. We also let μ(f) = ∂f

∂z̄ /∂f
∂z and fμ to be

the solution f of the Beltrami equation (1) with Beltrami coefficient μ. The
registration problem can be modelled as follows:

f = arg min
g

Similar(M ◦ g), g : M → S; (4)

subject to:

– f is diffeomorphic;
– f satisfies the landmark constraints: f(pi) = qi for i = 1, . . . ,m;

It is well-known that restricting the transformation to be bijective is difficult.
However, by the Quasi-Conformal theory, there is a one-one correspondence
between the set of Beltrami coefficients and the set of Quasi-conformal homeo-
morphisms. Therefore, we avoid to find the optimal deformation f by optimizing
the associated Beltrami coefficient instead. In other words, we have the follow-
ing energy-based variational framework for solving the hybrid multi-modality
registration problem:

(μ̄, f) = arg min
ν,g

∫
Ω

|∇ν|2 + α

∫
Ω

|ν|p+
1
2

[∫
Ω

(ST − M ◦ g)2 +
∫

Ω

(S − MT ◦ g)2
]

subject to:

– ‖μ̄‖∞ < 1;
– f(pi) = qi ∀i = 1, 2, . . . ,m;
– μ(f) = μ̄.

To solve this minimization problem, we propose to use the penalty splitting
method. We consider to minimize:

(μ̄, ν̄) = arg min
ν,μ

∫
Ω

|∇ν|2 + α

∫
Ω

|ν|p + σ

∫
Ω

|ν − μ|2

+
1
2
β

[∫
Ω

(ST − M ◦ gμ)2 +
∫

Ω

(S − MT ◦ gμ)2
]

and subject to ‖μ̄‖∞ < 1 and gμ̄(pi) = qi ∀i = 1, 2, . . . ,m.
Different from the ordinary penalty method, we fix σ to be a large enough

constant to improve the efficiency of the algorithm. We have also set p = 2 to
ensure ‖μ̄‖∞ < 1 in practice. Experiments show that this simplification can give
satisfactory result even with large deformation.
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μ-Subproblem

We first discuss the minimization problem over μ fixing νn:

μn+1 = argmin
μ

{
1

2
β

[∫
Ω
(ST − M ◦ gμ)

2 +

∫
Ω
(S − MT ◦ gμ)

2

]
+ σ

∫
Ω

|νn − μ|2
}

(5)

To solve the minimization problem, we applied the modified Demon’s algorithm
proposed by Kroon [16] to obtain the descent direction dgμ which minimizes∫

Ω
(ST − M ◦ gμ)2 +

∫
Ω

(S − MT ◦ gμ)2:

dgμ = (MT ◦ gμ − S)
( ∇MT

|∇S|2 + φ2(MT ◦ gμ − S)2

)

+ (M ◦ gμ − ST )
( ∇M

|∇M |2 + φ2(M ◦ gμ − ST )

)

The modified Demon’s direction provide us the adjustment of the mapping dgμ

which minimizes the energy functional. Theoretically, we know that gμ is per-
turbed by g(t) = gμ + tdgμ + o(|t|), in which

dgμ(p) = − gμ(gμ(p) − 1)
π

(∫
Ω

dμ1(z)((gμ)z(z))2

gμ(z)(gμ(z) − 1)(gμ(z) − gμ(p))
dxdy

+
∫

Ω

dμ1(z)((gμ)z(z))2

gμ(z)(1 − gμ(z))(1 − gμ(z)gμ(p)
dxdy

)

when μ is perturbed by μ = μ + tdμ1 + tε(t), where ‖ε(t)‖∞ → 0 as t → 0.
However, it is inefficient to obtain dμ1 from the above equality. Instead, we
consider the first order approximation:

∂(gμ + dgμ)
∂z̄

= (μ + dμ1)
∂(gμ + dgμ)

∂z
(6)

By further substituting the Beltrami equation in (1), we have

dμ1 =
(

∂dgμ

∂z̄
− μ

∂dgμ

∂z

)/
∂(gμ + dgμ)

∂z
(7)

For the second term, the descent direction is simply

dμ2 = −2(μ − νn) (8)

Therefore, the overall descent direction for the μ-subproblem is given by

dμ =
1
2
βdμ1 + σdμ2 (9)

With the updated Beltrami coefficient μ̃n+1 = μn + tdμ for some step size t,
we then solve the Beltrami equation for fn+ 1

2
in least square sense with given

Beltrami coefficients μ̃n+1 and landmark constraints to ensure that feature points
can be superimposed exactly after the registration. The detail for solving the
Beltrami equation will be discussed in Sect. 4. Once fn+ 1

2
is calculated, we obtain

the local minimum μn+1 = μ(fn+ 1
2
) of the sub-problem.
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ν-Subproblem

After updating μ, we optimize the energy function over ν fixing μn+1:

ν̃n+1 = arg min
ν

∫
Ω

|∇ν|2 + α

∫
Ω

|ν|2 + σ

∫
Ω

|ν − μn+1|2 (10)

A straightforward calculation shows that the Euler-Lagrange equation of the
above energy function is

(−Δ + 2αI + 2σI)ν̃n+1 = μn+1 (11)

Similar to the case of μ-subproblem, the Beltrami coefficient ν̃n+1 obtain from
solving (11) is used to solve the Beltrami equation together with landmark con-
straints. This updates the νn+1 = μ(fn+1) in which the associated deformation
fn+1 will match the prescribed feature points. We then keep the iteration going
to obtain a sequence of pairs {(μn, νn)}n. Iteration stops when ‖νn+1 − νn‖ ≤ ε
for some threshold ε.

4 Implementation

We now describe the numerical implementation of our proposed algorithm.

Solving the Beltrami Equation

Given the Beltrami coefficient μ and the landmark constraints, we need to solve
(1) for fμ which closely resembles to the given μ and satisfies f(pi) = qi. We
follow the idea in [17,18] to transform the Beltrami equation into an elliptic
partial differential equation and discretize it by using finite element method:

∇ ·
(

A

(
ux

uy

))
= 0; ∇ ·

(
A

(
vx

vy

))
= 0, where A =

⎛
⎝ (ρ−1)2+τ2

1−ρ2−τ2 − 2τ
1−ρ2−τ2

− 2τ
1−ρ2−τ2

1+2ρ+ρ2+τ2

1−ρ2−τ2

⎞
⎠ (12)

A linear system with symmetric positive definite matrix can be formulated after
discretization. We can then impose the landmark constraints and solve for a
least square solution.

Choice of Parameters

For the step size appears in the μ-subproblem, we adopted an approximation of
the Barzilai and Borwein approach [19] to set the step size t:

t =
(dgμn+1 − dgμn

)T (μn+1 − μn)
(dgμn+1 − dgμn

)T (dgμn+1 − dgμn
)

(13)

The parameter α controls the conformality distortion of the deformation and we
set α = 0.1. The parameter β is responsible for the matching for the intensity
similarity. We set β = 1. The penalty parameter σ is set to 10 which is large
enough for all experiments we reported in the next session. The threshold ε is
set to 0.05 for optimal solution.
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(a) Image M (b) Image S (c) Registration result

(d) Image M (e) Image S (f) Result (g) Merged image

Fig. 1. Image registration of Example 1((a)–(c)) and Example 2((d)–(g)) respectively
(Color figure online).

Image Fusion

Once we have the registered image f(M), we can integrate the two images by
using different well-established method. In this work, we adopted the Discrete
wavelet transform (DWT) fusion method [12] to integrate the registered images.
The main idea of this method is to merge the wavelet decomposition of the two
images in the transformed domain. Since a larger absolute value of the coefficients
correspond to some salient features in the images, important features on images
can be integrated by the fusion of wavelet coefficients effectively.

5 Experimental Result

To validate the efficacy of our algorithm, we have tested it on both synthetic
data together with the real medical data.

Example 1: In the first example, we validate our proposed algorithm by reg-
istering an image with English character “I” to an image with English charac-
ter “C” with different modalities. Figure 1(a) and (b) show the moving image
with character “I” and the static image with character “C” respectively. The
red and blue dots on the images illustrate the prescribed landmark criteria
f(pi) → qi, i = 1, . . . , m in the registration. The green cross in (c) shows the
original landmark position in (a), which indicates that a large displacement is
present in this registration problem. By using our proposed algorithm, a large dif-
feomorphic transformation f superimposing the feature points and maximizing
the intensity similarity is obtained. The registered result is shown in Fig. 1(c).
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(a) Image M (b) Image S (c) Result (d) Merged image

(e) Image M (f) Image S (g) Result (h) Merged image

Fig. 2. Medical image registration and fusion of Example 3((a)–(d)) and Example
4((e)–(h)) respectively (Color figure online).

Example 2: Figure 1(d) and (e) shows the moving image M and S respectively.
Synthetic blood vessels are planted in both images. The registered result is shown
in (f), which is constructed by deforming the moving image M to superimpose
S with maximum intensity similarity. The green cross indicates the original
landmarks position in (d). The registered image and the static image S are
then combined to have the fusion image (g). Note that the blood vessels from
both images are integrated. In other words, local information from both images
are merged together.

Example 3: We have also tested our algorithm with real medical images.
Figure 2(a)–(d) shows an example of image fusion of a lung MRI image and
a lung CT image. Figure 2(a) and (b) show the moving and static image M and
S respectively. By the proposed algorithm, we obtained the registration result,
which is shown in (c). By using the fusion technique discussed in Sect. 4, we have
the integrated image (d). Note that the detail of blood vessels in image S and
the detail of the heart in image M are both included in the integrated image.
This shows that our proposed algorithm can effectively align the images with
different modalities.

Example 4: In this example, we validate our proposed algorithm on the image
registration between brain MRI and CT images. Figure 2(e) and (f) show the
MRI and CT brain images respectively. The red and blue dots represent the
artificial landmark constraints for testing purpose. We have set the parameter
α = 1 due to the highly dissimilarity of the intensity distribution. This prevents
the perturbation of local deformation created by mismatching of intensity. In
other words, conformality distortion contributes a larger portion in the energy
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Table 1. Summary of the registration results using different registration methods

Landmark [14] MI [16] Proposed

LMmax LMmean
emax emean emax emean emax emean

‖µ‖∞ MI ‖µ‖∞ MI ‖µ‖∞ MI

Example 1 0.3309 0.1293
0 0 0.3078 0.1140 0 0

0.9950 0.5324 0.9993 0.1781 0.9775 1.0736

Example 2 0.0196 0.0057
0 0 0.0176 0.0062 0 0

0.7295 0.8088 0.9061 0.8311 0.8807 0.9712

Example 3 0.0023 0.0013
0 0 2.42e−3 1.73e−3 0 0

0.4126 1.3806 0.4126 1.4787 0.2220 1.4758

Example 4 0.0087 0.0027
0 0 0.0094 0.0037 0 0

0.4650 1.1929 0.5243 0.8670 0.4126 1.2025

functional under this setting and so the registration is less sensitive to the inten-
sity difference. Figure 2(g) shows the registration result. It demonstrates that
our proposed algorithm can align images with different modalities well, which is
also illustrated by the image fusion result as shown in (h).

To validate our proposed algorithm, we compare the results obtained with
landmark-based image registration method proposed in [14] and the multi-
modality image registration in [16]. Quantitative measures are reported in
Table 1. We first normalize the image domain into the [0, 1] × [0, 1] domain.
LMmax and LMmean represent the maximum and mean landmark displacement
in the example respectively. emax and emean measure the maximum and the
mean error of the landmark alignment. Note that method in [16] is intensity-
based and so landmark mismatching errors always exist. ‖μ‖∞ measures the
maximum value of the conformality distortion. ‖μ‖∞ < 1 indicates that the
mapping is diffeomorphic. MI measures the mutual information between the tar-
get image and the deformed image. A larger MI value implies a more accurate
image superimposition is achieved. The table shows that our proposed algorithm
can accurately align landmarks exactly and maximize the mutual information
during the registration.

6 Conclusion

In this work, an iterative scheme is proposed to register images with different
modalities under prescribed landmark constraints. The main idea of our method
is to find an optimized Beltrami coefficients for which the associated diffeomor-
phism satisfies the landmark constraints and superimposes the intensities in the
sense of similarity of the images. We have applied our algorithm to register med-
ical images with different modalities for image fusion. Experimental results show
that our proposed algorithm can align images and match landmarks well, which
is important for obtaining accurate image fusion.
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