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Abstract

We address the registration problem of genus-one surfaces (such as vertebrae bones) with prescribed landmark con-
straints. The high-genus topology of the surfaces makes it challenging to obtain a unique and bijective surface map-
ping that matches landmarks consistently. This work proposes to tackle this registration problem using a special class
of quasi-conformal maps called Teichmüller maps (T-Maps). A landmark constrained T-Map is the unique mapping
between genus-1 surfaces that minimizes the maximal conformality distortion while matching the prescribed feature
landmarks. Existence and uniqueness of the landmark constrained T-Map are theoretically guaranteed. This work
presents an iterative algorithm to compute the T-Map. The main idea is to represent the set of diffeomorphism using
the Beltrami coefficients(BC). The BC is iteratively adjusted to an optimal one, which corresponds to our desired
T-Map that matches the prescribed landmarks and satisfies the periodic boundary condition on the universal cover-
ing space. Numerical experiments demonstrate the effectiveness of our proposed algorithm. The method has also
been applied to register vertebrae bones with prescribed landmark points and curves, which gives accurate surface
registrations.
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1. Introduction

Surface-based morphometry of human anatomical
structures has received much attention recently for dis-
ease analysis (Drury et al., 1996; Fischl et al., 1999a,b;
Thompson et al., 2000; Vaillant et al., 2007; Chung
et al., 2003, 2008; Lui et al., 2010b, 2012; Zhang et al.,
2012). For example, surface-based shape analysis has
been extensively applied for examining brain cortical
(Thompson et al., 2000; Vaillant et al., 2007; Chung
et al., 2003, 2008) and sub-cortical structures (Lui et al.,
2010b, 2012; Zhang et al., 2012; Wong et al., 2012)
to analyze diseases such as Alzheimer’s disease (Wang
et al., 2009; Lui et al., 2010b) and William Syndrome
(Thompson et al., 2005; Van Essen et al., 2006). In
order to carry out surface-based morphometry, accu-
rate surface registrations between corresponding struc-
tures of different subjects are necessary. By find-
ing a meaning one-to-one vertex-wise correspondence
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between anatomical surfaces, various statistical shape
analysis (Chung et al., 2001; Lui et al., 2010b; Wang
et al., 2010) and surface processing models (Lui et al.,
2013; Lam et al., 2014b) can be developed.

Due to its importance, a multitude of surface registra-
tion techniques have been recently proposed. Existing
registration algorithms can mainly be divided into three
categories. They are, namely, 1. Landmark-guided sur-
face registration; 2. Geometry-guided surface registra-
tion and 3. Hybrid surface registration. Landmark-
guided surface registration algorithms drive surfaces
into vertex-wise correspondence based on salient fea-
tures, called landmarks, defined on each surfaces. Fea-
ture landmarks can often be extracted on anatomical
structures, which provide important information to drive
for a good registration. For example, sulci or gyri curves
on brain cortical surfaces are important anatomical fea-
tures for neuroscientists to analyze brain diseases (Lui
et al., 2007, 2010a) . Various algorithms have been re-
cently developed to obtain landmark-matching surface
registrations (Bookstein, 1989; Wang et al., 2005; Lui
et al., 2007, 2010a; Tosun et al., 2004; Joshi and Miller,
2000; Glaunès et al., 2004). Another category of sur-
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face registration techniques is the geometry-guided reg-
istration algorithm. Surface registration is obtained by
matching geometric quantities defined on each surfaces.
Some commonly chosen geometric quantities are sur-
face curvatures (Yeo et al., 2010), surface metric (Lord
et al., 2007) , angular structure (Haker et al., 2000; Gu
et al., 2004; Jin et al., 2008; Hurdal and Stephenson,
2009) and convexity (Fischl et al., 1999b). The third
category of registration models is the hybrid surface
registration algorithm, which combines both landmark-
guided and geometry-guided registration together. Op-
timization approaches have been developed to compute
an optimal surface mapping that matches corresponding
landmarks and geometric quantities as much as possible
(Johnson and Christensen, 2002; Lam and Lui, 2014).

This work mainly focuses on the landmark-based
surface registration between genus-one closed surfaces
(such as vertebrae bones). Landmark-guided registra-
tion is often more preferable in medical research since
expert knowledge can be incorporated into the registra-
tion model. Through labeling landmarks, medical doc-
tors and experts can get involved in the registration pro-
cess to assure good correspondences between the sur-
faces. Registration problems for simply-connected sur-
faces have been well-studied. For high-genus surfaces,
the surface registration becomes much more challeng-
ing because of their complicated topologies. For exam-
ple, the vertebral shape is commonly analyzed through
simple geometric measurements of dimensions, which
only describe a limited features of the complex verte-
bral shape. In order to provide a more comprehensive
description, a more sophisticated landmark-based sur-
face registration is essential for analyzing both local
and global geometric information of a vertebral shape.
Some works have been reported recently to handle the
registration problem of high-genus surfaces. In (Zhang
et al., 2014), the authors proposed to cut the high-genus
surfaces into simply-connected patches, and the regis-
tration can be obtained using a patch-by-patch manner.
This method requires the delineation of consistent cuts,
which are sometimes difficult to obtain. In (Lui and
Wen, 2014), the authors proposed to embed the high-
genus surfaces to the universal covering space H in R2,
and carry out the registration process in H. The algo-
rithm computes surface registration between high-genus
surfaces that matches surface curvatures. The proposed
method does not require the extraction of consistent
cuts. However, it is parameter dependent and cannot
give a unique optimizer. The algorithm can easily get
trapped at a local minimum.

On the contrary, a good surface registration model for
high-genus surfaces should satisfy the following crite-

ria:

1. Local geometry preserving: the geometry of a lo-
cal region should be preserved after the transfor-
mation by the surface registration.

2. Diffeomorphic: the surface registration should
be smooth and bijective (folding-free), which de-
scribes the deformation of an anatomical structure.

3. Uniqueness: the algorithm should give a unique
solution satisfying the conditions of the registra-
tion model.

4. Inverse consistency: the forward and backward
registrations should be inversely consistent so that
the registration result is independent of the choice
of source and target surfaces.

5. Parameter independent: ideally, the registration
model should be free of parameters to avoid the
hassle of finding the optimal set of parameters.

6. Stable under landmark selection: the algorithm
should be stable under landmark selection errors.

7. Stable under geometric noises: geometric noises
should not induce serious mis-registration.

This paper presents a novel algorithm to obtain
landmark-based genus-one surface registrations via a
special class of quasi-conformal maps called the Te-
ichmuller maps, which fulfils the above seven crite-
ria. A landmark-matching Teichmuller map between
two genus-one surfaces is the unique bijective surface
map that minimizes the conformality distortion. As
suggested by (Thompson, 1942), conformal transforma-
tions provide the most natural way to describe the de-
formation or growth of biological structures. Hence, T-
Maps are suitable for the surface registration of anatom-
ical structures. Given a prescribed set of corresponding
landmarks (points and/or curves) defined on each sur-
face, the existence and uniqueness of the Teichmüller
map are theoretically guaranteed. In this paper, we pro-
pose an iterative algorithm to compute the unique Te-
ichmüller map of genus-one surfaces by adjusting the
conformality measurement, called the Beltrami differ-
ential. The iterative algorithm aims to search for an opti-
mal Beltrami differential minimizing the supreme norm
subject to the landmark constraints. To facilitate the op-
timization process, each surface is firstly embedded in
the Euclidean plane through introducing boundary cuts.
Nevertheless, the algorithm is invariant to the chosen
boundary cuts since the cuts are allowed to move freely
on the target surface. Besides, the proposed algorithm
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is parameter-free. By controlling the Beltrami differ-
ential, a diffeomorphic (folding-free) surface mapping
can be guaranteed. Numerical experiments also demon-
strate the proposed algorithm satisfies the inverse con-
sistency constraints and is stable under geometry noises.
Therefore, our proposed model can produce a landmark
constrained genus-one surface mapping, which satisfies
the abovementioned seven criteria of being a good sur-
face registration.

The contributions of this work are two-fold. First,
we introduce the landmark-matching Teichmüller map
to the field of medical imaging for genus-one surface
registration. Second, we propose a method to com-
pute landmark-based Teichmüller maps of genus-one
surfaces.

A preliminary version of this work has been pre-
sented at the International Conference on Medical Im-
age Computing and Computer Assisted Intervention
(MICCAI)(Lam et al., 2014a). This paper is a signifi-
cant extension of the preliminary version with more de-
tails about the proposed methodology, and more exten-
sive validations. Moreover, new experiments have been
added to demonstrate the stability of the registration al-
gorithm under geometric noises and to illustrate the in-
verse consistency property of the obtained T-Map.

The rest of the paper is organized as follows. In sec-
tion 2, we introduce some basic mathematical concepts
relevant to this work. In section 3, we describe our pro-
posed surface registration model in details. The numer-
ical implementation details will be presented in section
4. Experimental results will be summarized in section
5. Conclusion and future works will be discussed in
section 6.

2. Some basic mathematical background

In this section, we describe some relevant mathemat-
ical concepts. For details, we refer the readers to (Gar-
diner and Lakic, 2000).

A Riemann surface M is an oriented manifold of di-
mension two together with a metric tensor g : M →

M2×2(R). The genus of a Riemann surface is the number
of handles on it. For example, a sphere is of genus zero,
whereas a standard torus and a vertebral bone are both
of genus one (see Figure 1(a) and (b)). This work fo-
cuses on Riemann surfaces of genus one. Every genus-
one surface M can be sliced open by cutting it along the
boundary cuts, called the homotopic loops. The open
surface M̂, called the fundamental domain, can be con-
formally embedded (parameterized) into one piece of
domain in R2, called the fundamental polygon. A pa-
rameterization φ : M̂ → R2 is called conformal if the

(a) Torus (b) Vertebral bone

(c) Universal Covering
space of (a)

(d) Universal Covering
space of (b)

Figure 1: (a) shows a standard genus-one torus. The torus is cut open
along the homotopic loops. (c) shows the fundamental polygon of the
standard torus. Figure (b) shows a vertebral bone, which is of genus-
one. It is cut open along the homotopic loops. (d) shows the universal
convering space.

metric after the transformation of φ is preserved up to
a (real positive) scaling factor λ : D → R+, called the
conformal factor:

g = λφ∗(dx2 + dy2), (1)

where φ∗ is the pull-back map. Note that cutting along
each homotopic loops gives rise to two boundary curves
of M̂, each of which represents the same set of vertices
of the original surface M. Thus, each boundary edge of
the fundamental polygon is identified with the opposite
boundary edge. We can denote the boundary edges of
the fundamental domain by {a1, a2, a−1

1 , a−1
2 }, where ai

and a−1
i are opposite edges (i = 1, 2). By glueing in-

finitely pieces of fundamental domains together along
their edges, we obtain the universal covering space of
M, which is R2 for a genus-one surface. (See Figure
1(c) and (d))

This work is related to quasi-conformal(QC) maps.
A QC map f : M → N is an orientation-preserving
homeomorphism between two surfaces M and N with
bounded conformality distortions. The conformality
distortion is measured by the Beltrami differential. A
Beltrami differential is a collection of complex-valued
function µα : Uα ⊂ M → C defined on each coordi-
nate chart (Uα, φα) of M with ||µα||∞ < 1. It satisfies the
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Figure 2: Illustration of how the conformality distortion can be deter-
mined by the Beltrami differential.

Beltrami’s equation:

∂ f̃αβ
∂z̄

= µα
∂ f̃αβ
∂z

, (2)

where f̃αβ := ϕβ◦ f ◦φα|−1
Ũα

, Ũα := φα(Uα) and ϕβ : Vβ →

R2 is a coordinate chart covering f (Uβ) ⊂ N. Here,
∂
∂z̄ := 1

2 ( ∂
∂x − i ∂

∂y ) and ∂
∂z := 1

2 ( ∂
∂x + i ∂

∂y ). (See Figure 3 for
an illustration) The Beltrami differential also satisfies
the consistency condition on regions covered by two or
more coordinate charts. Suppose p ∈ M is covered by
two charts φα : Uα → R2 and φγ : Uγ → R2. Then,
µα(p) and µγ(p) satisfy:

µγ(p)
∂Ψαγ

∂z̄
= µα(p)

∂Ψαγ

∂z
, (3)

where Ψαγ := φγ ◦ φ
−1
α . Intuitively, a quasi-conformal

map deforms an infinitesimal circle on M to an infinites-
imal ellipse on N. Suppose the Beltrami differential at
p ∈ M is given by µα(p). The distortion from a circle to
an ellipse can be measured by the maximal dilation K,
which can be expressed as:

K( f ) =
1 + |µα(p)|
1 − |µα(p)|

. (4)

The maximal stretching and the maximal shrinkage of
the deformed ellipse can be measured by 1 + |µα(p)| and
1 − |µα(p)| respectively. f is conformal if |µα(p)| = 0.
In this case, an infinitesimal circle at p is deformed to
an infinitesimal circle on N. In other words, the Bel-
trami differential measures the degree of conformality
distortion under f (see Figure 2).

In addition, the Jacobian J( f̃αβ)(p) of f̃αβ at p is re-
lated to µ(p) by:

J( f̃αβ)(p) = |
∂ f̃αβ
∂z
|2(1 − |µα(p)|2) (5)

Figure 3: Illustration of surface Quasi-conformal map.

Therefore, f̃αβ is locally injective if ||µα||∞ < 1 on every
coordinate charts.

Ideally, we look for a surface map that is perfectly
conformal. However, a perfect conformal map between
two genus-one surfaces, which aligns corresponding
feature landmarks consistently, may not exist. In this
work, our goal is to search for a landmark-matching
surface map that minimizes the conformality distortion.
Such surface mapping is called the Teichmüller extremal
map or simply the Teichmüller map (T-Map), which will
be explained in details in the next section.

3. Genus-one surface Teichmüller map

In this section, we describe our proposed model to
obtain the landmark-constrained genus-one Teichmüller
map for surface registration. Let M and N be genus-
one surfaces. We label corresponding landmarks {rk ∈

M}mk=1 and {sk ∈ N}mk=1 respectively. Our problem can be
formulated as finding an optimal surface map f : M →
N that minimizes:

EB( f ) = max
α∈I
||µα( f )||∞, (6)

subject to: f (rk) = sk for k = 1, 2, ...,m (landmark con-
straints). Here, I is the index set for all coordinate charts
covering M.

3.1. Overall framework

We first give an overview of the overall framework
to compute the landmark constrained genus-one surface
Teichmüller map. It consists of two main steps.

Step 1. To simplify the computation, we first confor-
mally embed M and N into R2. Thus, all computations
can be processed on R2.
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Step 2. Compute the landmark constrained Te-
ichmüller map of R2 using an iterative scheme, called
the quasi-conformal(QC) iteration.

As a result, the landmark constrained genus-one sur-
face Teichmüller map can be obtained by the composi-
tion map with the parameterizations.

We remark that the computation of T-Map for sim-
ple (simply-connected) surfaces have been considered
in Lui et al. (2014b). For high-genus surfaces, the com-
putation is much more challenging for the complicated
topologies of the surfaces. In this paper, we propose a
novel method to compute the landmark constrained T-
Map between genus-one surfaces. As far as we know,
it is the first work handling this challenging problem. It
is also the first work to introduce Teichmüller extremal
maps to medical imaging for surface registration prob-
lems.

The geometric illustration of the overall framework is
shown in Figure 4. We will now describe each step in
details.

3.2. Conformal flattening
The embedding of the genus-1 surface is computed

using the Ricci flow method introduced by Jin et al.
(2008). The basic idea of Ricci flow is to conformally
deform the metric g = (gi j(t)) according to its induced
Gaussian curvature K(t). Mathematically, we have

dgi j(t)
dt

= −2(K(t) − K̄)gi j(t) (7)

where we set K̄ = 0 for genus-one surfaces. Con-
vergence of this process is guaranteed by Hamilton’s
theorem. g(∞) is the desired uniformization metric.
Let S be a genus-1 surface and p be a base point for
S . Two closed loops based at p are introduced to
slice the genus-1 surface into the fundamental domain.
With the uniformization metric, the fundamental do-
main can be conformally embedded onto a 2D domain
Ω ∈ R2, called the fundamental polygon (See Figure
1(c)). Denote the boundaries and vertices of the polygon
as {a1, a2, a−1

1 , a−1
2 } and {pi}

4
i=1 respectively. The bound-

ary pairs {a1, a−1
1 },{a2, a−1

2 } and vertices {pi}
4
i=1 corre-

spond to the closed loop and the single based point in-
troduced. Note that ai and a−1

i , i = 1, 2 are related by
ϕi(ai) = a−1

i , where ϕi are translations in R2. Therefore,
periodic constraints are enforced in the boundaries of
the fundamental polygon. With this conformal parame-
terization, registration can be done on the fundamental
domains instead of the complex genus-1 surfaces. For
details about the Ricci flow algorithm, we refer the read-
ers to Jin et al. (2008).

3.3. Genus-one surface Teichmüller map

Denote the universal covering maps of M and N by
πM : R2 → M and πN : R2 → N. Our goal is to look for
a quasi-conformal map f : M → N, which minimizes
the supreme norm of the Beltrami differential as well as
satisfying the landmark constraints.

With the conformal flattenings of genus-one surfaces
M and N, the Beltrami differential consists of one
complex-valued function µ : M → C, which is called
the Beltrami coefficient(BC). More precisely, the value
of µ at v ∈ M can be computed as follows. Let U and
V be opening neighbourhoods of v ∈ M and f (v) ∈ N
respectively. Both π−1

M (U) and π−1
N (V) can be expressed

as disjoint unions of connected components in R2. We
take one connected component Ũ ⊂ π−1

M (U) and one
connected component Ṽ ⊂ π−1

N (V). Then, µ(p) can be
computed as:

µ(v) =

(
∂ f̃
∂z̄

) / (
∂ f̃
∂z

)
(8)

where f̃ := πN |
−1
Ṽ
◦ f ◦ πM |Ũ .

Now, let Ω1 and Ω2 be the fundamental polygons
in the universal covering spaces of M and N respec-
tively. Thus, πM |Ω1 : Ω1 → M and πN |Ω2 : Ω2 → N
are diffeomorphisms. We further assume the four ver-
tices P = {pi}

4
i=1 of Ω1 correspond to the four vertices

Q = {qi}
4
i=1 of Ω2. Suppose {p ∈ M} = πM(P) and

{q ∈ N} = πN(Q). Then, p and q must correspond
with each others, which can be chosen as a pair of cor-
responding landmark points on M and N respectively.

To compute the genus-one surface Teichmüller map
between M and N, we look for injective map f̃ : Ω1 →

R2 such that f = πN ◦ f̃ ◦ πM |
−1
Ω1

: M → N is our desired
optimal quasi-conformal surface map solving optimiza-
tion problem (6).

Note that according to the construction, Ω̃2 := f̃ (Ω1)
must be a fundamental polygon in the universal cov-
ering space of N. In other words, we require that ho-
motopic loops on M are mapped to a set of homotopic
loops on N under f . One important feature of our reg-
istration algorithm is that it is independent of the cut-
ting boundaries (homotopic loops). More specifically,
suppose {aM , bM , a−1

M , b
−1
M } and {aN , bN , a−1

N , b−1
N } are the

edges of Ω1 and Ω2 respectively. Let âM = πM(aM),
b̂M = πM(bM), âN = πN(aN) and b̂N = πN(bN). Then,
{âM , b̂M} and {âN , b̂N} are sets of homotopic loops on M
and N respectively. Our algorithm does not require that
f (âM) = âN and f (b̂M) = b̂N . In other words, we al-
low f (âM) and f (b̂M) to move freely on N, subject to
the condition that they form a set of homotopic loops
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Figure 4: Geometric illustration of the overall framework of our pro-
posed registration algorithm.

on N. To achieve this, f̃ : Ω1 → R2 should satisfy the
following periodic boundary conditions:

f̃ (x + vM) = f̃ (x) + vN for x ∈ aM;

f̃ (y + wM) = f̃ (y) + wN for y ∈ bM;
(9)

where vM = p2 − p1, wM = p4 − p1, vN = q2 − q1 and
wN = q4−q1. Please refer to Figure 4 for an illustration.

Furthermore, a surface map that minimizes the
supreme norm of its Beltrami differential is called an
extremal map. Therefore, the optimizer for Problem (6)
(and also for Problem (11)) is an extremal map that sat-
isfies the prescribed landmark constraints. According
to the Teichmüller theory, the extremal map must exist.
With the prescribed landmark constraints, the extremal
map is also unique. Here, the landmark-matching ex-
tremal map can be considered as the optimal quasi-
conformal map between M and N with punctures.

Another class of surface maps, called the Teichmüller
maps (T-Maps), is closely related to the extremal map.
Intuitively, a T-Map is a quasi-conformal map with uni-
form distribution of conformality distortions. Mathe-
matically, a quasi-conformal map g : M → N is said to
be a T-Map associated with an integrable holomorphic
function ϕ : M → C if its associated Beltrami coeffi-
cient is of the form:

µ(g) = k
ϕ̄

|ϕ|
(10)

for some positive constant 0 ≤ k < 1 and ϕ , 0. The
Beltrami coefficient of this form is said to be of Te-
ichmüller type. According to the frame mapping theo-
rem, a non-conformal landmark-matching extremal map

must be a T-Map.
Our surface map optimization problem can now be

formulated as finding f̃ : Ω1 → R2 that minimizes:

E( f̃ ) = ||µ( f̃ )||∞ (11)

subject to the following constraints:

1. Landmark constraint: f̃ (rk) = sk for 1 ≤ k ≤ m.

2. Base point consistency: f̃ (p j) = q j for 1 ≤ j ≤ 4.

3. Periodic boundary conditions:
f̃ (x + vM) = f̃ (x) + vN for x ∈ aM and
f̃ (y + wM) = f̃ (y) + wN for y ∈ bM .

4. Teichmüller type constraint: µ( f̃ ) = k ϕ̄
|ϕ|

where,
0 ≤ k < 1 and ϕ : Ω1 → C is integrable holo-
morphic.

To solve the above minimization problem, we apply
an iterative scheme, called the Quasi-conformal(QC) it-
erations, to compute the desired Teichmüller extremal
map. The convergence of the QC iteration to the T-Map
can be found in (Lui et al., 2014a).

The basic idea of the QC iterations is to find a se-
quence of Beltrami coefficients {νn}

∞
n=1 that approaches

to the unique admissible Beltrami coefficient ν∗ of Te-
ichmüller type. In each iteration, the iterative algorithm
projects the Beltrami differential to the space of all Bel-
trami differentials of constant modulus, and computes
a quasi-conformal map whose Beltrami differential is
closest to the projection in the least square sense.

A crucial step in the iterative scheme is to find a
quasi-conformal map f̃n whose BC is closest to a given
νn. We will obtain f̃n by solving an elliptic PDE. Sup-
pose f̃n = u + iv has BC exactly equals to νn = ρ + iτ.
From the Beltrami equation (2),

µ( f ) =
(ux − vy) + i(vx + uy)
(ux + vy) + i(vx − uy)

(12)

Let µ( f ) = ρ + iτ. We have the following linear combi-
nations between ux, uy, vx and vy:{
−vy = α1ux + α2uy

vx = α2ux + α3uy
;

{
−uy = α1vx + α2vy

ux = α2vx + α3vy
(13)

where α1 =
(ρ−1)2+r2

1−ρ2−r2 ; α2 = 2r
1−ρ2−r2 ; α3 =

1+2ρ+ρ2+r2

1−ρ2−r2 .
By taking divergence on both sides of equations (13),
we obtain

∇ ·

(
A

(
ux

uy

))
= 0; ∇ ·

(
A

(
vx

vy

))
= 0, (14)
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where A =

(
α1 α2
α2 α3

)
. In practice, the prescribed BC

νn may not be associated to a surface quasi-conformal
map subject to the constraints (1), (2) and (3) in Prob-
lem (11). Therefore, we solve equation (14) for f̃n sub-
ject to the constraints (1), (2) and (3) in Problem (11)
in the least square sense. We denote the obtained quasi-
conformal map by f̃n = QC(νn).

Now, the iterative scheme to compute the Teichmüller
map can be described as follows. We start with setting
ν0 = 0 and search for an initial map f̃0 := QC(ν0 = 0)
satisfying constraints (1), (2) and (3). Note that with the
enforced landmark constraints, the Beltrami coefficient
associated to f̃0 may not be equal to ν0 = 0. In other
words, ν0 may not be admissible. QC(νn) simply gives
us a quasi-conformal map f̃0 whose BC resemble to ν0
as much as possible. Let µ0 = µ( f̃0) be the actual BC of
f̃0.

The BC of our desired T-Map must be of the Te-
ichmüller type. To obtain a BC of the Teichmüller type,
we perform a projection P and smoothing L on µ0. The
projection operator P projects µ0 to a BC with constant
norm. It is defined as follows.

P(µ) =


(∫

Ω1
|µ|dΩ1

/ ∫
Ω1

dΩ1

)
µ
|µ|

if µ , 0

0 if µ = 0

The smoothing operator L is chosen to be the stan-
dard Laplace smoothing. It aims to obtain a smooth
BC associated to a smooth quasi-conformal map. Thus,
we obtain a new BC: ν1 := L ◦ P(µ0). An updated
quasi-conformal map f̃1 can then be obtained by f̃1 :=
QC(ν1). Again, ν1 may not be admissible. We compute
the actual BC of f̃1 and denote it by µ1 := µ( f̃1).

We continue the procedure until the iteration con-
verges. More specifically, given f̃n and µn := µ( f̃n) at
the n iteration, we obtain a new BC given by νn+1 =

L◦P(µn). An updated quasi-conformal map can be ob-
tained by: f̃n+1 = QC(νn+1). We then compute its actual
BC and denote it by µn+1 = µ( f̃n+1).

As a result, we obtain a sequence of Beltrami coeffi-
cients νn : Ω1 → C, which converges to an optimal ad-
missible BC ν∗ of Teichmüller type. The optimal BC ν∗

is associated to our desired Teichmüller extremal map,
which can be computed by: f̃ = QC(ν∗). In practice,
we stop the iteration when ||νn+1 − νn|| < ε.

The whole process of computing the genus-one sur-
face Teichmüller map can be summarized in Algorithm
1. For the convergence of Algorithm 1, we refer the
readers to Lui et al. (2014a).

Algorithm 1: QC-iteration
Input: Ω1 and Ω2; landmark constraints {rk}

m
k=1 and

{qk}
m
k=1.

Output: Optimal Beltrami coefficient ν and the
Teichmüller extremal map f

1 Initial: ν0 = 0;
2 repeat
3 Update f = (u, v) by solving (14) with νn+1 and

constraints (1),(2) and (3);
4 Compute µn+1 := L(P(νn)), where L is the

laplace smoothing operator and

P(µ) =

∫
Ω1

|µ|dΩ1

/ ∫
Ω1

dΩ1;

Update f = (u, v) by solving (14) with µn+1 and
constraints (1),(2) and (3);

5 Set νn+1 := µ( f ), where µ( f ) is the Beltrami
coefficients of f

6 until ‖νn+1 − νn‖∞ ≤ ε;

4. Numerical implementation

In this section, numerical implementation of our pro-
posed algorithms is discussed in details. Suppose KM =(
{vM

i }i, {T
M
j } j

)
and KN =

(
{vN

i }i, {T
N
j } j

)
are the meshes

of two genus-1 surfaces M and N respectively, where v∗i
and T ∗i are respectively the vertices and triangular faces
of the meshes.

4.1. Beltrami coefficients (BC)
Note that according to our setting, the T-Map is com-

puted in 2D. Thus the BC is computed in 2D. In discrete
2D case, a deformation f = ( f1, f2) of a triangular face
T = (v1, v2, v3) can be represented by a linear transfor-
mation AT = {ai j}:(

f1(vk)
f2(vk)

)
= AT

(
vk(x)
vk(y)

)
k = 1, 2, 3. (15)

where vk(x) and vk(y) are the x- and y-coordinates of the
vertex vk respectively. Therefore, the partial derivatives
of f can be seen as:

∂ fk
∂x

= ak1;
∂ fk
∂y

= ak2, k = 1, 2 (16)

By equation (12), we define the discrete Beltrami coef-
ficient BC at triangular face T by:

µ(T ) =
(a11 − a22) +

√
−1 (a21 + a12)

(a11 + a22) +
√
−1 (a21 − a12)

(17)
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We also approximate the BC µ(vi) at vertex vi by

µ(vi) =
1
|Ni|

∑
T∈Ni

µ(T ) (18)

where Ni is the collection of neighborhood faces at-
tached to vi. In other words, µ(vi) is the average of the
Beltrami coefficients µ(T ) over a 1-ring neighbourhood
triangles.

4.2. Laplacae smoothing operator L

In step 4 of Algorithm 1, the laplace smoothing op-
erator L is applied on both the norm and the argument
of νn independently, where L is defined as:

L(νn)(T ) = L(T )eiΘ(T ) (19)

where

L(T ) =
∑

Ti∈N(T )

|νn(Ti)|
|N(T )|

, and Θ(T ) =
∑

Ti∈N(T )

arg(νn)
|N(T )|

(20)
When νn is not a constant, the laplace smoothing on |νn|

diffuses the norm of νn and hence decreases the L∞-nom
of νn. The smoothing on the argument of νn is also cru-
cial to guarantee the argument of νn is harmonic, which
in turns guarantee the argument of the optimal Beltrami
coefficients µ∗ is equal to the argument of a holomor-
phic function ϕ (See equation 10).

4.3. Projection operator P

The discrete projection operator P in step 4 of the
algorithm is defined as

P(νn)(T ) :=
(∑

T∈K(T ) |νn(T )|
|K(T )|

)
νn(T )
|νn(T )|

(21)

where K(T ) is the set of all triangular faces of the mesh
K. Notice that P(νn) < ‖νn‖∞ until νn has a constant
norm.

4.4. Discretization of QC

Without considering any constraints in the optimiza-
tion problem (11), the elliptic PDEs (14) can be dis-
cretized into sparse positive definition linear systems E
by using the one-ring neighborhood of the mesh. For
the base points or landmark points vi , we set E(vi, vi) =

1,E(vi, v j) = 0 if v j , vi. The linear system then be-
comes E( f (vi)) = b, where b is a zero vector except at
vi with b(vi) = f (vi).

Since the surfaces we are considering are genus-1, the
deck transformations, i.e. the periodic boundary condi-
tions defined on the boundaries of the fundamental do-
main, is linear and can be represented by a translation κ.
Then for any vertices vi on the boundary of the funda-
mental domain, let

E( f (vi)) =
∑

j∈N(vi)

ei j( f (v j)− f (vi))+
∑

j∈Ñ(vi)

ei j( f (v j)− f (vi))

(22)
where N(vi) and Ñ(vi) are the sets of vertex indices of
the one-ring neighbors of vertex vi which are inside and
outside the fundamental domain respectively. Denote v′j
to be the inside copy of the vertex v j, where v j is outside
the fundamental domain, we then have

E( f (vi)) =
∑

j∈N(vi)

ei j( f (v j) − f (vi)) +∑
j′∈Ñ(v′i )

( f (v′j) − f (v′i))

=
∑

j∈N(vi)

ei j( f (v j) − f (vi)) +∑
j∈Ñ(vi)

(κ( f (v j)) − κ( f (vi)))

In matrix form, the modified elliptic PDEs are:

E( f (vi)) + Q(vi) = b (23)

where Q is the linear operator that transforms outside
neighborhood vertices v j of vi to its inside copy v′j and is
zero elsewhere. By solving the equation, the associated
quasi-conformal map f of µ( f ) satisfying the periodic
boundary conditions can be obtained.

5. Experimental results

To evaluate our proposed algorithm, we apply it to
register genus-one vertebrae bone surfaces using Te-
ichmüller extremal map. In this section, we report the
experimental results.

5.1. Vertebrae bone registration
We test our algorithm to register 10 corresponding

vertebrae bones from 10 subjects. Each vertebrae bone
surface is labelled with prescribed feature points and
curves as landmarks. Figure 5 shows two vertebrae
bones with corresponding feature landmarks labeled on
each of them. There are two landmark curves labelled
on the top and bottom side of the cortical rim and ten
feature points marked on other parts of each vertebral
bone.
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(a) Vertebrae S 1 (b) vertebrae S 2

Figure 5: The figure shows two vertebrae bones S 1 and S 2 with cor-
responding feature landmarks labeled on each of them.

To register between a pair of vertebrae bones S 1 and
S 2, we first embed the surfaces into R2 by the Ricci flow
method (Jin et al., 2008). The two surfaces are confor-
mally mapped to their fundamental polygons. Denote
the fundamental polygons of S 1 and S 2 by Ω1 and Ω2
respectively. Figure 6(a) and (b) show a pair of ver-
tebrae bone surfaces. Figure 6(c) and (d) show their
corresponding fundamental polygons in R2. Using QC
iteration as described in Section 3, the Teichmüller ex-
tremal map f̃ : Ω1 → R2, which satisfies the landmark
constraints, is obtained. Since no hard constraint is en-
forced for f̃ on the boundary edges of Ω1, the bound-
aries of the target domain f̃ (Ω1) can move freely on
the universal covering space, which satisfy the periodic
conditions. Figure 7(a) shows the obtained Teichmüller
extremal map on the universal covering space of S 2. It
shows how the mesh of Ω1 is transformed under f̃ . Note
that f̃ (Ω1) is different from the original fundamental
polygon Ω2 of S 2. Yet, the boundary edges of f̃ (Ω1)
satisfies the periodic boundary conditions, so that f̃ (Ω1)
is still a fundamental polygon of S 2. This is crucial to
ensure the composition map with the conformal param-
eterization is a surface map from S 1 and S 2, with the
cutting boundaries consistently glued together.

Once the Teichmüller extremal map is computed, we
can obtain the registration between the vertebrae S 1 and
S 2 by a composition of functions f := φ−1

2 ◦ f ◦ φ1 =

T : S 1 → S 2. The resultant registration is shown in
Figure 7(b). The mesh is obtained by deforming the
source vertebral bone (Figure 6(a)) to the target surface
(Figure 6(b)). Landmark curves and feature points are
exactly matched after the registration process. Figure
7(b) also shows |µ( f )| of the Teichmüller extremal map-
ping, which is represented by the color map on the ver-
tebral bone surface. An even color distribution on the
surface and a small standard deviation of the BC norm
of 0.001823 indicate that the resultant mapping is actu-

(a) Vertebrae S 1 (b) Vertebrae S 1

(c) Ω1 (d) Ω2

Figure 6: (a) and (b) shows the triangulation meshes of the two verte-
brae bones in Figure 4. (c) and (d) shows their fundamental domains
obtained using the Ricci flow method.

(a) f̃ (Ω1) (b) Registration result f

Figure 7: (a) shows the obtained Teichmüller map on the universal
covering space of S 2. (b) shows the obtained surface registration re-
sult obtained from the composition map.

ally of Teichmüller type.
Figure 9(a) shows the plot of energy E( f̃n) versus it-

erations. The energy decreases as iteration increases.
Our registration model iteratively compute the optimal
quasi-conformal map that minimizes the conformality
distortion.

By the properties of Teichmüller map, the registration
obtained is guaranteed to be folding-free. To demon-
strate this property quantitatively, we compute the Ja-
cobian of the mapping at each faces (See Figure 9(b)).
Note that the smallest values of the Jacobian over all
faces is 0.3, which is non-zero. Since the Jacobian is
non-zero everywhere, we can conclude that the obtained
registration is folding-free.

An important feature of our registration model is
that it computes surface mappings, which match cor-
responding feature landmarks consistently. We evaluate
this property as follows. We first compute Teichmüller
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(a) Vertebrae S A (b) Vertebrae S B (c) Coord. Dist.
of S A

(d) Coord. Dist.
of S B

(e) µ(g◦ f ) of S A (f) µ(g ◦ f ) of S B

Figure 8: Illustration of the inverse consistency property of the proposed algorithm. The surface registrations f : S 1 → S 2 and g : S 2 → S 1 are
both computed. (a) shows how an initial grid (in white color) is deformed by g ◦ f to another grid (in red color). The two grids almost overlap with
each others (b) shows another example for a different pair of vertebrae bones. (c) and (d) show the histogram of coordinate distances for example
(a) and (b) respectively. (e) and (f) show the histograms of µ(g ◦ f ) for example (a) and (b) respectively.

extremal mappings between a set of vertebrae bones.
We then construct a new surface by computing the av-
erage coordinates for each vertices. Figure 10 shows
the new surface S average. If landmarks are consistently
aligned under the Teichmüller extremal maps, the fea-
tures should be well-preserved on S average. As shown in
the figure, the feature points and curves on S average are
well-preserved. This illustrates that landmarks are con-
sistently matched under the proposed registration algo-
rithm.

We have test the algorithm on 5 pairs of vertebrae
bone surfaces. Table 1 shows the statistics of the results.
The maximum landmark mismatching error emax, the
mean landmark mismatching error emean, the mean of
BC, the standard deviation of the BC and the computa-
tion time are reported. Our algorithm takes less than 20
second to compute the surface registration. The mean
of BC shows the minimal conformality distortion of the
surface registration, given the prescribed landmark con-
straints. The standard deviation of the BC distribution
is small, meaning that the conformality distortion is uni-
form over every vertices. It demonstrates the obtained
surface registrations are indeed Teichmüller extremal
maps.

5.2. Inverse consistency

Given the corresponding landmark constraints, a Te-
ichmüller extremal map f : S 1 → S 2 is unique. Let µ f

be the Beltrami coefficient of f . The Beltrami coeffi-
cient of f −1 is given by:

µ f −1 ◦ f = −

(
fz
| fz|

)2

µ f (24)

Hence, |µ f −1 ◦ f | = |µ f | is a constant. In fact, f −1 is also
a T-Map with the given landmark constraints. Since a
T-Map is unique, f −1 can be obtained by computing a
T-Map g : S 2 → S 1 from S 2 to S 1 with given land-
mark constraints. g ◦ f is then an identity map of S 1.
In other words, the forward and backward registrations
are inversely consistent. Therefore, our registration al-
gorithm is independent on the choice of the source and
target surfaces. We have designed experiments to test
the inverse consistency property. Given a pair of verte-
brae bone surfaces S 1 and S 2, we first compute the T-
Map f : S 1 → S 2 by choosing S 1 and S 2 as the source
and target surfaces respectively. We then choose S 2 as
the source surface and S 1 as the target surface to obtain
another T-Map g : S 2 → S 1. g ◦ f : S 1 → S 1 should be
close to (ideally, equal to) an identity map. Figure 8(a)
shows how an initial grid (in white color) is deformed
by g ◦ f to another grid (in red color). Note that the
two grids almost overlap with each others, illustrating
that g ◦ f is close to identity. Figure 8(b) shows another
example for a different pair of vertebrae bones, which
again demonstrates the inverse consistency property of
our registration algorithm. We have also computed the
histograms of ||g◦ f (p)−p|| for the two experiments (See
Figure 8(c) and (d)). Note that in all three experiments,
||g◦ f (v)−v|| accumulates at 0. It means that g◦ f (v) = v
for most vertices v of S 1. As the mapping g◦ f is close to
identity, the corresponding Beltrami coefficients µ(g◦ f )
is also close to 0. The histogram of the BC norm for the
two examples are reported in Figure 8(e) and (f) respec-
tively, which validate this observation.
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(a) Noisy vertebrae S 1 (b) Noisy vertebrae S 2 (c) Registration result (d) µ without
noise

(e) µ with
noise

Figure 11: Stability under geometric noises. (a) and (b) show a pair of vertebrae bones, which are both corrupted by geometric noises. The surface
registration between them using our proposed algorithm is shown in (c). Both the surface and its triangulation mesh are shown. (d) shows the the
histogram of the BC norm of the surface T-Map between the original surfaces without the corruption of geometric noises. (e) shows the BC norm
of the surface T-Map between the noisy vertebrae bones.

5.3. Stability under geometric noises

Our proposed registration model is also stable under
geometric noises. Figure 11(a) and (b) show a pair of
vertebrae bones, which are both corrupted by geomet-
ric noises. A landmark-matching Teichmüller extremal
map can be obtained, despite of the presence of geo-
metric noises. The registered result is shown in Figure
11(c). The histogram of the BC norm is shown in Fig-
ure 11(e). The BC norm accumulates at 0.21, mean-
ing that the obtained surface map is indeed a T-Map.
We have also computed the surface T-Map between the
original surfaces without the corruption of geometric
noises. The histogram of the BC norm is shown in Fig-
ure 11(d). Note that the histogram in (d) closely re-
sembles to that in (e). This illustrates that our proposed
algorithm to compute surface T-Map is stable under ge-
ometric noises.

5.4. Stability under landmark selection errors

The selection of feature landmarks can be prone to
errors. Our registration algorithm is stable under land-
mark selection errors. Figure 12(a) and (b) show a pair
of vertebrae bones with corresponding landmarks (in
blue color) labeled on each of them. We manually dis-
tort the landmark positions to get a new set of corre-
sponding landmarks (in red color). We compute two
surface T-Maps with respect to the two different sets
of corresponding landmarks. Denote the two surface
T-Maps by f1 : S 1 → S 2 and f2 : S 1 → S 2. The
histogram of the coordinate distance | f1(v) − f2(v)| be-
tween f1 and f2 over every vertices v of S 1 is shown in
Figure 13(a). Note that the coordinate distance accumu-
lates at a very small value, meaning that our proposed

registration model is stable under landmark selection er-
rors. The hisograms of the BC norm of the registrations
for original and distorted landmark constraints are also
reported in Figure 13(b) and (c) respectively. Note that
the histogram in (b) has a similar distribution to the his-
togram in (c).

5.5. Invariant under cutting boundaries

To validate the invariance of our proposed algorithm
under the choice of cutting boundaries, we manually la-
beled three arbitrary simple closed loops (blue, red and
green loops in Figure 14)(a) with the same base point
and run the proposed algorithm. Let fb, fr and fg be the
surface T-Maps obtained with the blue, red and green
cutting boundaries respectively. Figure 14(b),(c) and (d)
show the histograms of the optimal Teichmüller type
BCs |µ( fg)|, |µ( fr)| and |µ( fb)| of fg, fr and fb respec-
tively. Experimental results show that all three regis-
tration results are consistent. Also, it is observed that
‖|µ( fb)|−|µ( fr)|‖∞ = 0.0021, ‖|µ( fr)|−|µ( fg)|‖∞ = 0.0044
and ‖|µ( fb)| − |µ( fg)|‖∞ = 0.0038, which are all very
small. This indicates that our proposed algorithm is in-
deed invariant to the choice of cutting boundaries.

5.6. Comparison with other methods

We have also compared our implementation with
rigid ICP and non-rigid ICP. The result is summarized
in Table 1. For the ease of comparison, we first nor-
malize every vertebral bone to fit into a unit cube. In
terms of the mean and maximum landmark matching
errors (emean, emax), our proposed method outperforms
the two point-based registration methods. The Haus-
dorff distance dH between the registration result and the
target also shows that our proposed method has a better
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Rigid ICP NonRigid ICP Proposed
emax emean ‖µ‖∞ emax emean ‖µ‖∞ emax emean ‖µ‖∞

SD(µ) dH Time SD(µ) dH Time SD(µ) dH Time

f1
0.1467 0.0389 1.08e−13 0.0798 0.0402 0.9841 0 0 0.4193

5.33e−15 12.44 4.46s 0.1710 4.55 223.07s 0.0147 0.82 10.91s

f2
0.1404 0.0425 1.44e−12 0.1275 0.0546 0.9887 0 0 0.2055

2.61e−14 13.32 3.34s 0.1591 3.7719 191.37s 0.0018 1.81 14.46s

f3
0.2460 0.0739 1.53e−11 0.2649 0.0581 0.9632 0 0 0.3312

1.17e−13 13.3224 2.27s 0.1224 4.4804 205.12s 0.0227 4.41 13.62s

f4
0.1005 0.0819 6.75e−12 0.0981 0.0526 0.9679 0 0 0.2235

7.06e−14 11.2640 1.12s 0.1188 5.9625 200.06s 0.0084 2.9464 17.09s

f5
0.1260 0.576 6.10e−13 0.1317 0.0611 0.9648 0 0 0.3480

1.66e−14 16.6272 2.33s 0.1727 5.7175 284.22s 0.0104 3.2470 19.94s

Table 1: Summary of the registration results using different registration methods

overlay percentage to the target object. With the sacri-
fice of the registration accuracy, almost no conformal-
ity distortion is introduced by the rigid ICP, while the
non-rigid ICP produces a large distortion of 0.9887. In
terms of the landmark matching criterion, our proposed
algorthim provides an exact landmark matching result
for the vertebrae bone registration, while both ICP and
non-rigid ICP induce mismatching error of the feature
correspondences.

6. Conclusion

The paper presents a novel algorithm to compute
landmark constrained genus-one surface Teichmüller
map (T-Map). The proposed algorithm can be applied to
landmark-based surface registration for genus-one sur-
faces. The basic idea of the algorithm is to embed the
genus-one surface into its universal covering space in
R2 and compute the T-Map between the fundamental
domains using an iterative scheme called the QC itera-
tion. The obtained landmark constrained T-Map is the
unique mapping between genus-1 surfaces that mini-
mizes the maximal conformality distortion while match-
ing the prescribed feature landmarks. Existence and
uniqueness of the landmark constrained T-Map are theo-
retically guaranteed. We have tested the proposed algo-
rithm to register genus-one vertebral bone surfaces. Ex-
perimental results demonstrate the effectiveness of our
proposed algorithm to obtain accurate surface registra-
tions of the vertebral bones. In the future, we will ap-
ply the proposed algorithm to register a large dataset of
vertebrae bones for disease analysis. We will also ex-
tend the proposed algorithm to compute landmark con-
strained surface T-Map for surfaces of genus greater
than 1.
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