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Hooke’s Optimization for 3D Triangular Mesh

Hei Long Chan , Ho Yeung Hung and Lok Ming Lui

A fresh framework for mesh optimization, the Filtered Hooke’s Op-
timization, is proposed. With the notion of the elasticity theory,
the Hooke’s Optimization is developed by modifying the Hooke’s
law, in which an elastic force is simulated on the edges of a mesh so
that adjacent vertices are either attracted to each other or repelled
from each other, so as to regularize the mesh in terms of triangu-
lation. A normal torque force is acted on vertices to guaranteed
smoothness of the surface. In addition, a filtering scheme, called
the Newtonian Filtering, is proposed as a supplementary tool for
the proposed Hooke’s Optimization to preserve the geometry of
the mesh. Numerical simulations on meshes with different geome-
try indicate an impressive performance of our proposed framework
to significantly improves the mesh triangulation without notewor-
thy distortions of the mesh geometry.

1. Introduction

Thanks to many efficient algorithms for its construction, 3D triangular mesh

has become a widely used tool in different areas including computer visions,

animations, video games, medical image analysis, etc. Nevertheless, due to

either inappropriate vertex sampling or limit of the scanning hardware, the

mesh may be of bad quality, consisting of many sharp triangles or unnatural

spacing of vertices, for instance. However, not only for display purpose,

mesh quality is also an important factor for precise numerical simulation

and accurate analysis. Therefore, it is of interest to have an effective way to

enhance the quality of the mesh, which is the goal of mesh optimization.

Theoretically, there are two directions to optimize a mesh. One is to

perform down-sampling on the mesh to remove unnecessary vertices while

preserving the geometry of the mesh, so that the data size can be decreased

without much loss in quality. And the other one concentrates at repositioning

the vertices of the mesh so that the quality of the mesh can be enhanced

without much increase in data size. In this paper, we follow the latter route

and develop a robust algorithm for mesh quality improvement.
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Literature has provided a broad variety of models for enhancing mesh
quality. However, not much of them has investigated the use of physics, the
elasticity theory in particular, to solve the problem. In this work, the mesh
optimization model is formulated using the Hooke’s law from the elasticity
theory. An elastic force based on the Hooke’s law is defined on each edge
of the mesh. Corresponding to an user-prescribed optimal edge length, the
force attracts two adjacent vertices if the current edge length is too long,
and repels the two vertices if the current edge length is too short.

On one hand, the elasticity theory gives a wise and effective optimization
model. But on the other hand, direct implementation of the theory may
trigger undesirable situations such as flipping of triangles, due to numerical
error from discretization of the evolution process. Existing models based
on the elasticity theory avoid those situations mainly by carefully adjusting
the time step factor for the evolution process. However, modification to the
evolution formula itself is not commonly considered.

Therefore, it is the contribution of our work to re-formulate the mesh
optimization model by a modified version of the Hooke’s law, which favors
numerical implementation and no longer ruins the geometry of the surface.
Moreover, through one another modification to simulate a torque force on
each vertex, smoothness of the surface is also well-preserved. Finally, a filter-
ing scheme called the Newtonian Filtering is developed based on the high-
dimensional Newton’s method to further preserve the local geometry of the
optimized mesh. Combining the Hooke’s Optimization and the Newtonian
Filtering gives rise to our proposed model, the Filtered Hooke’s Optimiza-
tion, which significantly enhance the mesh quality while both smoothness
and local geometry of the surface are greatly preserved. To this end, nu-
merical experiments make evidence that our algorithm is very effective to
improve the mesh quality.

Our model has at least two applications. Firstly, if the optimal edge
length is prescribed as a global constant to all edges, our algorithm can
sharply regularize the mesh such that all triangles converge to be equilateral.
This supports further surface analysis and numerical simulation on the mesh.
Secondly, the optimal edge length can vary among each edge, and hence our
algorithm provides high flexibility on editing the mesh, provided that the
prescribed edge length is an admissible one. This can be an useful tool for
animation and medical image simulation.

The paper is organized as follows: In section 2, previous work on mesh
optimization will be reviewed. Our model will be explained in detail in sec-
tion 3 and the numerical implementation issue will be discussed in section
4. Experiment results will be demonstrated in section 5. Finally, a short
conclusion will be presented in section 5.
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2. Previous Work

Different approaches have been employed to optimize a mesh. Literally, there
are two main streams in mesh optimization. One stream aims at minimizing
the sample size (i.e. the number of vertices) while preserving the important
features including global and local geometry of the mesh, so that the stor-
age requirement of the mesh file is minimized and data processing on the
mesh can be conducted more efficiently. Moreover, through re-triangulating
the mesh using remaining vertices only, triangulation quality may be im-
proved as some vertices contributing to bad triangles may be removed. In
[1], an algorithm is proposed to minimize an energy function which mod-
els the competing desires of conciseness of representation and fidelity to
the data. Through their algorithm, meshes can be simplified to have only
about 10% vertices remaining without affecting the global geometry of the
meshes. And, in [2], iterative process of vertex repositioning is governed by
a graph cut algorithm examining global combinations of local candidates.
Moreover, in [3], the mesh optimization problem is formulated as a varia-
tional geometric partitioning problem. Using their approach, distortion error
of the approximated mesh from the initial mesh is driven down through re-
peated clustering of faces into best-fitting regions. On the other hand, in
[4], a geodesic-distance based model is developed to generate quality sur-
face meshes which closely approximate the input. Number of vertices can be
significantly reduced if there are many redundant vertices in the mesh.

While the first stream of mesh optimization assumes the existence of
unnecessary vertices and tries to eliminate them by different means, the
fundamental of our work is that the mesh is already simplified enough to
preserve fine local geometry. Hence, we do not consider the need to reduce
the number of vertices from the mesh.

Another stream of mesh optimization seeks for enhancing mesh qual-
ity, which may refer to different measurement according to context, with
the given vertices. Those approaches are much closer to the foundation of
our work. In [5], ”dual mesh” is taken in use and vertex positions are op-
timized by minimizing a quadratic energy measuring the deviation of the
mesh normals from the implicit surface normals computed at the vertices
of the modified dual mesh. Curvature distortion is minimized in the op-
timization process. Also, in [6], a feature preserving smoothing model is
developed which is guided by the uniformly weighted Laplacian and the dis-
crete mean curvature normal. In their approach, edge vertices and corner
vertices are taken as feature constraints that need to be fixed throughout the
optimization process which is based on the Laplacian smoothing. And, in
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[7], a non-iterative scheme based on the Laplacian smoothing is presented to
smooth and improve the mesh while preserving certain prescribed features.
Some existing works take the condition number shape measure, a measure
derived from the Jacobian matrix of certain triangle mapping, as a quantity
for mesh quality. In [8], mesh quality is enhanced in the sense of the con-
dition number shape measure by repositioning vertices so that they are left
on the original mesh faces and close to their original locations. On the other
hand, mesh quality can be measured according to the shape of the triangles.
In [9], mesh quality is enhanced in terms of the ratio of radius of inscribed
and circumscribed circles. An optimizing scheme based on optimal delau-
nay triangulation is built to minimize the interpolation error in weighted L1

norm. Moreover, in [10], the quality of vertex repositioning is measured by
local volume distortion. In their algorithm, sharp features are automatically
detected, and then a smoothing scheme based on the null-space smoothing
is performed to optimize the mesh while minimizing the volume distortion.
In [11, 12], adaptive remeshing algorithms are proposed to adjust the size
of elements (i.e. faces) to resolve the relevant scales by minimizing energies
raised from physics.

In this work, mesh quality is measured in terms of edge length. After
prescribing an optimal edge length, our algorithm iteratively repositions
the vertices so that edge lengths converge to the prescribed ones, while
curvature distortions and surface geometry variations are minimized within
the process.

3. Proposed Model

Given an oriented mesh M0 = (V0, E, F ) and a prescribed optimal edge
length L, our task is to build an iterative model to obtain a series of modified
meshes Mt = (Vt, E, F ), so that the edge length lei,i∗ of each edge ei,i

∗ ∈ E
satisfies lei,i∗ → L.

3.1. Hooke’s Optimization - Modification of the Hooke’s Law

The Hooke’s law from the elasticity theory of physics hints the solution to
accomplish the task. Below is the statement of the Hooke’s law.

Theorem 1 (The Hooke’s law). Given a spring S with stiffness coefficient
kS > 0. Suppose S has its one end attached to some fixed object, the restoring
force F exerted by the spring on its free end for a displacement X satisfies

(1) F = −kSX.
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The direction of the force is opposite to the displacement X. That means
when the spring is stretched, the force tends to extend it back and vice
versa. The force is zero if and only if the displacement X is zero, that
is, the spring restores its equilibrium state. The Hooke’s law provides an
intuitive formulation of our algorithm to take each edge as a spring, and the
equilibrium state of each spring is taken as the user-prescribed optimal edge
length L.

As a direct implementation of the Hooke’s law, for each pair of adjacent
vertices vi = vi(t), vi

∗
= vi

∗
(t), the force on vi due to vi

∗
is defined by:

(2) F i,i
∗

string :=
(vi

∗ − vi)
||vi∗ − vi||

× (||vi∗ − vi|| − L),

and therefore, the combined force F istring on vi by all its adjacent vertices
is:

(3) F istring :=
∑

{1≤i∗≤|V |:ei,i∗∈Et}

F i,i
∗

string,

The term ||vi∗−vi||−L in equation (2) corresponds to the displacement term
X in the Hooke’s law. The stiffness coefficient kS is taken to be constant 1,

and the fraction (vi
∗−vi)

||vi∗−vi|| is simply the direction of the force.

As similar idea was proposed in [11, 12] to reposition the vertex by
minimizing the spring energy

∑
E(lei,i∗ − L)2, however, in practice, even if

||vi∗ − vi|| is too small, it may still happens that the total force F istring push

vi towards vi
∗

due to the forces given by other adjacent vertices of vi. As a
result, flipping may occur which is undesirable. Traditional solutions turn to
a robust control on the time step to avoid the situation. In this work, instead,
we solve the problem by modifying the Hooke’s law as in the following:

(4) F i,i
∗

string :=


(vi

∗ − vi)
||vi∗ − vi||

× (||vi∗ − vi|| − L) if ||vi∗ − vi|| ≥ L

(vi
∗ − vi)L

||vi∗ − vi||2
× (||vi∗ − vi|| − L) if ||vi∗ − vi|| < L

,

and the forces F i,i
∗

string are summed up as in the equation (3). By modifying

the stiffness coefficient from constant 1 to L
||vi∗−vi|| when ||vi∗ − vi|| < L, the

force F i,i
∗

string has its magnitude inversely proportional to ||vi∗−vi||−L when

||vi∗ − vi|| is small. Therefore, flipping barely happens and hence the above
modification greatly improves the consistency of our algorithm.
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3.2. Hooke’s Optimization - Smoothness Regularization

The second feature of the proposed Hooke’s Optimization is a smoothness
regularization on the mesh. By acting only the force (3), lei,i∗ converges to
L but smoothness of the surface may be lost within the iteration. Therefore,
some additional force is needed to preserve the smoothness of the surface.
One solution turns to the normal torque force acting on the faces of the
mesh, which is described in the following.

For each face f j of Mt, denote by Ej the set of the three edges composing
f j . And for any two adjacent faces f j , f j

∗
, let θj,j∗ ∈ [0, π) be the angle

between the two unit inward normal vectors njface and nj
∗

face on the two
faces respectively:

(5) < njface, n
j∗

face >= cos(θj,j∗).

Let the common edge between these two faces be ei,i
∗

= Ej ∩ Ej∗ . The
force on the unit normal vector nj due to the unit normal vector nj

∗
is

defined to be:

(6) nj,j
∗

=


(nj

∗

face − n
j
face)

sin(θj,j∗)
× θj,j∗

cos(θj,j∗) + 1
× 1

dj,j∗
if θj,j∗ ∈ (0, π)

0 if θj,j∗ = 0

,

where dj,j∗ is the distance between the centers of the two faces f j , f j
∗
,

defined through the midpoint mi,i∗ := vi+vi
∗

2 of the common edge ei,i
∗
:

(7) dj,j∗ :=

∥∥∥∥∥vf
j
1 + vf

j
2 + vf

j
3

3
−mi,i∗

∥∥∥∥∥+

∥∥∥∥∥vf
j∗
1 + vf

j∗
2 + vf

j∗
3

3
−mi,i∗

∥∥∥∥∥ .
Hence, the force on the normal vector njface by all the normal vectors of

adjacent faces is given by:

(8) nj :=
∑

{1≤j∗≤|F |:Ej∩Ej∗ 6=∅}

nj,j
∗
.

For a given j ∈ [1, |F |], the force nj on the unit normal vector njface
would produce a torque T j = njface × n

j that act to rotate the face f j as

a whole. For a given vertex vi on the face f j , the force acted on vi due to
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torque T j is given by:

F i,jtorque := T j ×

(
vi − vf

j
1 + vf

j
2 + vf

j
3

3

)

=
(
njface × n

j
)
×

(
vi − vf

j
1 + vf

j
2 + vf

j
3

3

).(9)

and so the total force acted on a given vertex vi ∈ V due to torque action

is given by:

(10) F itorque :=
∑

{1≤j≤|F |:i∈Ij}

F i,jtorque,

where Ij := {f j1 , f
j
2 , f

j
3}.

3.3. The Newtonian Filtering

Through the Hooke’s Optimization process, vertices are repositioned so that

edge lengths are optimized while smoothness of the surface is guaranteed.

However, one issue remained to be solved is that, as the vertices are reposi-

tioned, it is not guaranteed that they still lie on the surface that the original

mesh M0 is approximating. As a result, (local) geometry may be ruined.

In order to keep the resultant meshes Mt closely resembling the original

surface, a filtering scheme is needed such that after each iteration step, the

vertices are projected back on M0.

To do this, we make use of the thin plate spline function [13]. A function

ψ : R3 → R is called a thin plate spline function if part of its zero level set

ψ−1(0) = {x ∈ R3 : ψ(x) = 0} approximately represents a surface.

Let nivertex be the unit inward normal vector at vi. The thin plate spline

function ψ needs to satisfy

(11) ψ(yi) = di, for all 1 ≤ i ≤ 2|V |,

and locally minimizes the harmonic energy

(12)

∫
R3

|∆ψ|2dx =

∫
R3

|ψxx + ψyy + ψzz|2dx,
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where yi and di are defined as

(13)

yi =

{
vi if 1 ≤ i ≤ |V |
vi + ρ · nivertex if |V | < i ≤ 2|V |

,

di =

{
0 if 1 ≤ i ≤ |V |
1 if |V | < i ≤ 2|V |

,

and ρ is a user-prescribed parameter, which is chosen according to the shape
of the input M0.

To locally minimize the harmonic energy, ψ has to satisfy both of the
following conditions:

(14)


∫
R3

|∆ψ|2dx <∞∫
R3

|∆ψ|2dx ≤
∫
R3

|∆(ψ + δψ)|2dx
,

for any δψ ∈ C∞0 (R3) with δψ(yi) = 0 for all 1 ≤ i ≤ 2|V |.
Using integration by parts, it could be shown that, a necessary (but not

sufficient) condition for ψ to satisfy conditions (14) is that ψ satisfies the
biharmonic equation:

(15) ∆2ψ = ∆(∆ψ) = 0.

Once the thin plate spline function ψ is constructed explicitly, the high
dimensional Newton’s method can be applied. Given a point vi = vi(t) in
the point set Vt, let vi,0 := vi be the initial point for the Newton’s method.
For any vi,k ∈ R3 for k ≥ 0, the high dimensional Newton’s method writes:

(16) vi,k+1 = vi,k − ψ(vi,k)

‖∇ψ(vi,k)‖2
∇ψ(vi,k).

and its converges once the norm difference
∥∥vi,k+1 − vi,k

∥∥ < ε for some user-
prescribed error tolerance ε is reached at step k.

The whole process from constructing the thin plate spline function ψ
to solving for the zero level set of ψ using the high dimensional New-
ton’s method is called the Newtonian Filtering. Since the norm difference∥∥vi(t)− vi(t+ 1)

∥∥ is small in each step of the Hooke’s optimization, so it is
reasonable to neglect the convergence criterion of the Newton’s method and
assume that the Newton’s method always converge for every vertices of Mt

for all t.
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3.4. The Filtered Hooke’s Optimization

Applying the Newtonian Filtering, vertices are repositioned again to retrieve
the local geometry of the surface. However, edge lengths are varied by it and
so they may diverge from the prescribed optimal edge length L. Hence, the
Hooke’s Optimization is needed once again to retrieve the optimal again and
after that the Newtonian Filtering is applied again to retrieve the geometry
of the surface, and so on and so worth. Indeed, the spirit of the proposed
Filtered Hooke’s Optimization is the alternative composition of the Hooke’s
Optimization and the Newtonian Filtering.

Given M0, L, and a prescribed tolerance dtolerance to control the con-
vergence of the algorithm, let D = maxE |lei,i∗ |, the Filtered Hooke’s Op-
timization alternatively applies the Hooke’s Optimization to Mt to get an
edge-length-optimized mesh Mt+1 and applies the Newtonian Filtering to
Mt+1 to get a geometry-retrieved mesh M∗t+1, until D < dtolerance at some
time t. Once converged, the resultant mesh M∗ is a mesh with edge length
being optimized while local geometry and smoothness of the surface is pre-
served. To this end, the Filtered Hooke’s Optimization has fulfilled all the
required criterions to solve the mesh optimization problem.

4. Implementation

In this section, the evolution equation and the corresponding numerical im-
plementation of the algorithm is to be discussed in detail.

4.1. Evolution Equation of the Hooke’s Optimization

An adaptive forward time scheme is adopted to numerically simulate our
algorithm. The evolution of the vertex set Vt = {vi(t) : 1 ≤ i ≤ |V |} is
governed by the following set of equations:

(17)


dvi(t)

dt
= ui(t)

dui(t)

dt
= −τui(t) +

λF istring(t) + µF itorque(t)

m

with the initial conditions:

(18)

{
vi(0) = vi for 1 ≤ i ≤ |V |
ui(0) = ~0 for 1 ≤ i ≤ |V |
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where τ is a friction coefficient, λ is the string tension coefficient, µ is the
torque coefficient and m = 1/|V | simulates the mass for each vertex.

4.2. Numerical Implementation of the Evolution Equation

Let vin, u
i
n, F i,nstring and F i,ntorque be the numerical solutions of vi(t), ui(t), F istring(t)

and F itorque(t) at the n-th time step t = tn respectively. Define

ledgen := min
{∥∥vin − vi∗n ∥∥ : ei,i

∗ ∈ En
}
,(19)

lvelocityn := max
{∥∥uin∥∥ : 1 ≤ i ≤ |V |

}
,(20)

lforcen := max
{∥∥∥λF i,nstring + µF i,ntorque

∥∥∥ : 1 ≤ i ≤ |V |
}
.(21)

The evolutions of vin and uin are governed by the system:

(22)


vin+ 1

2

= vin + uin ·
1− e−τ ·dtn

τ
+
λF i,nstring + µF i,ntorque

m
· dtn

2

2

uin+1 = e−τ ·dtn · uin +
λF i,nstring + µF i,ntorque

m
· dtn

,

with the initial condition

(23) vi0 = vi(0), ui0 = 0 for 1 ≤ i ≤ |V |.

Here, the force terms F i,nstring and F i,ntorque are computed using {vin : 1 ≤ i ≤
|V |} and {f j : 1 ≤ j ≤ |F |} as in equation (3) and (10) respectively.

4.3. Time step of the Hooke’s Optimization

Starting with t0 = 0, the time step tn increases with tn+1 = tn + dtn.
The time step dtn is computed using a two step scheme motivated by the
backtracking line search scheme [14]. Firstly, a base time step ωn is computed
as the largest ωn > 0 that satisfies the quadratic inequality

(24)
lforcen

2m
· ωn2 + lvelocityn · ωn ≤ ledgen ,

then dtn is given by scaling ωn through an adaptive time step factor εn:

(25) dtn = ωn · εn.
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This εn is used to ensure that the deformation of Mt between two consecutive
times t = tn and t = tn+1 is small. An adaptive iterative scheme is used to
find an appropriate εk. With the convention ε−1 := 1

2 , the evolution of εn is
given by

(26) εn = εn−1 · 2zn ,

where the index zn is chosen to be the largest zn ∈ Z with zn ≤ 1 such that
all the following constraints are fulfilled:

• δangle < nj,nface · n
j,n+ 1

2

face ≤ 1 (angle distortion)

• κj,n 6= 0, κj,n+ 1

2
6= 0 and

∣∣∣1− κj,n+1
2

κj,n

∣∣∣ ≤ δexpansion (area expansion)

•
∥∥∥vin+ 1

2

− vin
∥∥∥ < ηn (vertex displacement)

• δbound < κj,n+1 (area lower bound)

with nj,nface and κj,n being the unit inward normal vector and the area of the

j-th face f j in the mesh Mtn respectively. The four threshold parameters,
δangle, δexpansion, ηn, and δbound are some constants to be prescribed in the
beginning of the iteration.

4.4. Numerical Construction of the Thin Plate Spline Function

After one Hooke’s Optimization iteration, a mesh Mtn+1
is obtained such

that edge lengths of Mtn+1
are close to L, but the vertices vitn+1

may not
lie on the original surface. Hence, the Newtonian Filtering is employed to
project the vertices back on the original surface.

The Newtonian Filtering starts with the construction of the thin plate
spline function. Let φy : R3 → R be the radial basis functions defined by

(27) φy(x) :=

{
‖x− y‖2 log (‖x− y‖) if x 6= y

0 if x = y
,

then φy satisfies both of the following conditions:

(28)

{
∆φy(x) = 6 log (‖x− y‖) + 5 for x 6= y

∆2φy(x) = 6
‖x−y‖2 for x 6= y

.

Let pb,c : R3 → R be the affine function defined as:

(29) pb,c(x) := b · x+ c,
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then ψ can be written as a linear combination of φyi ’s and p:

(30) ψ(x) =

2|V |∑
i=1

ai · φyi(x) + pb,c(x).

The coefficients ai, b = [b1, b2, b3] and c are obtained by solving the (N +

4)× (N + 4) linear system:

(31)



r1,1 r1,2 · · · r1,N y11 y12 y13 1
r2,1 r2,2 · · · r2,N y21 y22 y23 1
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

rN,1 rN,2 · · · rN,N yN1 yN2 yN3 1
y11 y21 · · · yN1 0 0 0 0
y12 y22 · · · yN2 0 0 0 0
y13 y23 · · · yN3 0 0 0 0
1 1 · · · 1 0 0 0 0





a1
a2
·
·
·
aN
b1
b2
b3
c


=



d1
d2
·
·
·
dN
0
0
0
0


,

where N = 2|V | and ri,j is defined by

(32) ri,j :=

{∥∥yi − yj∥∥2 log
(∥∥yi − yj∥∥) if yi 6= yj

0 if yi = yj
.

The first N equations of the linear system are used to ensure that

(33) ψ(yi) = di for 1 ≤ i ≤ N,

and the last 4 equations are used to ensure that

(34)

∫
R3

|∆ψ|2dx <∞.

Hence, by solving the linear system (31) by LU decomposition, the desired

thin plate spline function can be obtained easily.
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4.5. Numerical Implementation of the Newtonian Filtering

Given the thin plate spline function ψ as in (30), ∇ψ(vi,kn+1) can be evaluated

as

(35) ∇ψ(vi,kn+1) =

N∑
j=1

ai · ∇φyj (vi,kn+1) + b.

Hence, the high dimensional Newton’s method writes:

(36)

vi,k+1
n+1 = vi,kn+1 −

∑N
j=1 ai · φyj (v

i,k
n+1) + b∥∥∥∑N

j=1 ai · ∇φyj (v
i,k
n+1) + b

∥∥∥2
 N∑
j=1

ai · ∇φyj (vi,kn+1) + b

 .

Here, an error tolerance parameter ε is prescribed, so the above iteration

would stop at vi,kn+1 once |ψ(vi,kn+1)| ≤ ε is found.

Define the Newtonian Filtering function ΨM : V → R̄3 by

(37) ΨM (vin+1) :=

{
vi,Kn+1 if {k : |ψ(vi,kn+1)| ≤ ε} 6= ∅
∞ if {k : |ψ(vi,kn+1)| ≤ ε} = ∅

,

where K := min{k : |ψ(vi,kn+1)| ≤ ε}, then ΨM (vin+1) = vi,Kn+1 is the projection

of vin+1 on M0. The parameter ε should be chosen such that

ε · ρ < lτ

where lτ is a prescribed error tolerance parameter which ensures ΨM (vin+1)

to be the zero level set of ψ.

By processing through the Newtonian Filtering, a truncated vertex set

V ∗n+1 and hence the mesh M∗n+1 is obtained which closely resembles the

original surface.
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4.6. The Numerical Algorithm

Algorithm 1: The Filtered Hooke’s Optimization Algorithm

Input: Initial mesh M0, Stop criterion dtolerance, Optimal length
parameter L

Output: Optimized mesh M∗

1 Initialize D = maxE |lei1,i2 − L|, t = 0; repeat
2 Mt+1 = Hooke’s Optimization(Mt, dtolerance)
3 M∗t+1 = Newtonian Filtering(Mt+1)
4 D ← maxEt+1

|lei1,i2 − L|; t← t+ 1

5 until D < dtolerance;

where Hooke’s Optimization and Newtonian Filtering are two algorithms nu-
merically given as in algorithm (2) and algorithm (3) respectively.

Algorithm 2: The Hooke’s Optimization Algorithm

Input: Mesh Mt, stop criterion dtolerance
Output: Mesh Mt+1 = (Vt+1, E, F )

1 Initialize n = 0, t0 = t, m = 1/|Vt|, vi0 = vi(0), ui0 = 0; repeat

2 Compute F i,nstring and F i,ntorque as in (3) and (10) respectively.

3 Compute
ledgen = min

{∥∥∥vin − vi∗n ∥∥∥ : ei,i
∗
∈ En

}
lvelocityn = max

{∥∥uin∥∥ : 1 ≤ i ≤ |V |
}

lforcen = max
{∥∥∥λF i,nstring + µF i,ntorque

∥∥∥ : 1 ≤ i ≤ |V |
} .

where F i,nstring and F i,ntorque are computed as in (3) and (10) respectively.

4 Compute
dtn = ωn · εn,

5 Compute
vin+ 1

2
= vin + uin ·

1− e−τ ·dtn
τ

+
λF i,nstring + µF i,ntorque

m
· dtn

2

2

uin+1 = e−τ ·dtn · uin +
λF i,nstring + µF i,ntorque

m
· dtn

,

6 n← n+ 1

7 until maxEtn
|lei1,i2 − L| < dtolerance;
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Algorithm 3: The Newtonian Filtering Algorithm

Input: Initial mesh Mt, normal vector coefficient ρ, error torelance
parameter lγ

Output: Optimized mesh M∗t = (V ∗t , E, F )
1 Choose ε such that

ε · ρ < lγ

2 Initialize vi,0t = vit, k = 0; repeat
3 Solve the following sysmte by LU decomposition to obtain coefficients

ai, b, c:

r1,1 r1,2 · · · r1,N y11 y12 y13 1
r2,1 r2,2 · · · r2,N y21 y22 y23 1
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

rN,1 rN,2 · · · rN,N yN1 yN2 yN3 1
y11 y21 · · · yN1 0 0 0 0
y12 y22 · · · yN2 0 0 0 0
y13 y23 · · · yN3 0 0 0 0
1 1 · · · 1 0 0 0 0





a1
a2
·
·
·
aN
b1
b2
b3
c


=



d1
d2
·
·
·
dN
0
0
0
0


,

where N = 2|V |, ri,j is defined by

ri,j :=

{∥∥yi − yj∥∥2 log
(∥∥yi − yj∥∥) if yi 6= yj

0 if yi = yj
.

and yi and di are defined as in (13).
4 Compute 

ψ(vi,kt ) =

2|Vt|∑
j=1

ai · φyj (vi,kt ) + pb,c(v
i,k
t )

∇ψ(vi,kt ) =

2|Vt|∑
j=1

ai · ∇φyj (vi,kt ) + b

.

5 Compute

vi,k+1
t = vi,kt −

∑N
j=1 ai · φyj (vi,kt ) + b∥∥∥∑N

j=1 ai · ∇φyj (vi,kt ) + b
∥∥∥2
 N∑
j=1

ai · ∇φyj (vi,kt ) + b

 .

6 k ← k + 1

7 until |ψ(vi,kt )| < ε;
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As for practical use, the parameters are set as γ = 1000, λ = 2, µ = 1,
δangle = 0.9, δexpansion = 0.01, ξ = 0.01 and ρ = 10−3. The stop criterions
dtolerance and lγ controls the accuracy of the algorithms. One can balance
the accuracy over the convergence rate by modifying these two parameters.

5. Experimental Results

In this section, numerical experiments are conducted to validate the effec-
tiveness of our algorithm. In order to quantify the effectiveness of our algo-
rithm, in each experiment, the minimum angle of the original mesh and of
the optimized mesh, and the standard deviation of the edge length of the
original mesh and that of the optimized mesh are computed and compared.
As for an optimization of the mesh, the minimum angle is expected to in-
crease and the standard deviation of the edge length is expected to decrease,
so that the triangulation of the mesh is regularized.

5.1. A Simple Experiment

Firstly, a simple experiment using an artificial surface is examined. Let
z = g(x, y) = e−10((x−0.5)

2+(y−0.5)2), then z is a graph function of x, y. On
the surface z, random points are selected as vertices and are triangulated
afterwards. As a result, a mesh with many bad triangles are obtained. The
Filtered Hooke’s Optimization is applied to it and the result is shown in
figure (1) and in table (1).

Figure 1: [Subject title: G1]. Initial mesh (left), Optimized mesh (middle),
Vertex displacement map (right)

Clearly, the mesh edited by the Filtered Hooke’s Optimization has signif-
icant quality enhancement from the initial mesh. While most of the vertices
have large displacement as indicated, the shape of the hippocampus model



17

is well preserved. The conclusion is also evident from the result in table (1).
This shows that our algorithm can grealy improve the quality of a mesh
without destroying its geometry.

5.2. A Density Experiment

In this experiment, the sensitivity of our algorithm to the density of the
vertices is investigated. Consider the surface z = g(x, y) = 2(x − 0.5)2 +
2(y − 0.5)3 in the domain [0, 1]2, three meshes representing the surface z is
constructed in difference density. Random sampling of vertices are taken on
the surface z to generate the meshes. Unnatural spacing of vertices hence
appears on the meshes. The Filtered Hooke’s Optimization is applied to
them independently and the results are recorded in figure (2) and in table
(1).

Figure 2: [Subject title: M1(top), M2(mid), M3(bot)]. Initial meshes (left),
Optimized meshes (middle column), Vertex displacement maps (right)
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It can be seen from figure (2) that our algorithm enhances the qualities

of the three meshes by around the same levels. This indicates that the effec-

tiveness of our algorithm is density independent. No matter a coarse mesh

or a dense mesh is given, our algorithm can stably enhances the quality of

the mesh.

Mesh G1 M1 M2 M3
No. of vertices 961 121 441 961

Greatest vertex displacement 0.1652 0.2318 0.1226 0.1143
Original least angle (rad.) 0.0018 0.0546 0.0270 0.0092

Optimized least angle (rad.) 0.5336 0.4140 0.5664 0.2159
Original edge length SD 0.0347 0.0777 0.4000 0.0280

Optimized edge length SD 0.0076 0.0226 0.0094 0.0071

Table 1: Numerical analysis of the performance of the Filtered Hooke’s
Optimization algorithm on artificial data (rad.=radian, SD = standard
deviation)

From table (1), in all of the experiments, our algorithm greatly increases

the least angle on the meshes, while significantly decreases the standard

deviation of the edge length of the meshes. Hence, the numerical result

approves, once again, that our algorithm impressively regularize a given

mesh.

5.3. Real Data Experiments

The effect of our model on real data is also investigated. Different objects

including hippocampus of a patient, a face, a pear, and a heart-shaped mesh,

are taken as input. However, due to different issues, the meshes are not well

qualified in terms of vertex spacing. Sharp triangles appears on the meshes

and they also contain triangles of highly fluctuating areas. Therefore, a qual-

ity enhancement is needed without affecting the geometry of the meshes, so

that further numerical simulation or analysis can be performed on the op-

timized meshes. The Filtered Hooke’s Optimization algorithm is applied to

them and the result of our algorithm on the scanned meshes is recorded in

figure (3) and in table (2).
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(a) Hippocampus experiment

(b) Face experiment

(c) Pear experiment

(d) Heart experiment

Figure 3: Initial mesh (left), Optimized mesh (middle), Vertex displacement
map (right)
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From figure(3), it is obvious that the optimized meshes do not contain

any unnatural spacings or sharp triangles. While great displacement of ver-

tices are recorded as indicated in the figure, the geometry of the surfaces

is highly preserved. Once again, it is evident that our model is practically

effective.

Mesh Hippocampus Face Pear Heart
No. of vertices 664 275 302 502

Greatest vertex displacement 4.4952 2.1469 3.8903 1.6358
Original least angle (rad.) 0.0031 0.1012 0.1507 0.1451

Optimized least angle (rad.) 0.6334 0.2615 0.6011 0.2519
Original edge length SD 0.6815 0.4403 1.2486 0.4247

Optimized edge length SD 0.2103 0.2656 0.2931 0.2061

Table 2: Numerical analysis of the performance of the Filtered Hooke’s Op-
timization algorithm on real data (rad.=radian, SD = standard deviation)

As indicated in table (2), our algorithm greatly improves the triangula-

tion of the meshes in terms of least angles and optimal edge length. As the

least angles increase significantly, the optimized meshes no longer contain

sharp triangles. And as the edge lengths has less fluctuation, the optimized

meshes are highly regularized than the original one. To this end, the effec-

tiveness of our algorithm in practical use is well approved.

5.4. Geometry Preservation of our algorithm

Once approving that our model does improves the quality of meshes, an im-

portant follow-up question is that, does our algorithm change the geometry

of the given mesh? The goal of this experiment is to answer the question.

This time, unit spherical meshes are taken as input. The Filtered Hooke’s

Optimization is applied to the meshes and curvature distortions are mea-

sured. The result is reported in figure (4) and table (3).
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Figure 4: [Subject title: S1(top), S2(bot)] Initial meshes (left), Optimized
meshes (right)

Mesh S1 S2
No. of vertices 222 1146

Greatest vertex displacement 0.3229 0.2805
Original least angle (rad.) 0.1265 0.0147

Optimized least angle (rad.) 0.5423 0.5340
Original edge length SD 0.1129 0.0501

Optimized edge length SD 0.0509 0.0154
Original least mean curvature 0.9652 0.7745

Optimized least mean curvature 0.9471 0.9550
Original greatest mean curvature 1.0195 1.2407

Optimized greatest mean curvature 1.0415 1.0579
Original least Gaussian curvature 0.9316 0.5643

Optimized least Gaussian curvature 0.8966 0.9120
Original greatest Gaussian curvature 1.0394 1.4893

Optimized greatest Gaussian curvature 1.0847 1.1182

Table 3: Numerical analysis of the performance of our algorithm on spherical
meshes(rad.=radian, SD = standard deviation)
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From table (3), while the Filtered Hooke’s Optimization algorithm im-
proves the quality of the spherical meshes, there are only negligible distortion
in curvatures. This shows that our algorithm well preserves the geometry of
the surface while optimizing the mesh quality in terms of triangulation.

6. Conclusion

A new framework for mesh optimization, the Filtered Hooke’s Optimization,
is developed by an alternatively composition of two proposed algorithms.
The first one is the Hooke’s Optimization, which is based on modifications
to the Hooke’s law from the elasticity theory of physics. By modifying the
stiffness coefficient in the Hooke’s law, an iterative scheme is developed such
that an elasticity force is acted on each edge of the given mesh to either
attract or repel adjacent vertices. Smoothness of the mesh is guaranteed by
acting a normal torque force on faces of the mesh. Through the Hooke’s Op-
timization, the input mesh is greatly regularized with edge lengths closely
retrieve the prescribed optimal edge length. The second component of the
Filtered Hooke’s Optimization is the Newtonian Filtering, which is devel-
oped based on thin plate spline function and the high dimensional Newton’s
method, to repair the output mesh from the Hooke’s Optimization to closely
resembles the local geometry of the original surface. Combining the two al-
gorithms, the Filtered Hooke’s Optimization significantly regularize a given
mesh with its smoothness and local geometry being well preserved. Numer-
ical experiments validates that the algorithm greatly improves the quality
of a mesh in terms of triangulation, which is measured by comparing the
least angles and the statistics of vertex spacing of the input and output
mesh. Lastly, numerical simulations also approves the ability of the Filtered
Hooke’s Optimization algorithm to practically preserve the geometry of a
surface.
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