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CONVERGENCE OF AN ITERATIVE ALGORITHM FOR

TEICHMÜLLER MAPS VIA HARMONIC

ENERGY OPTIMIZATION

LOK MING LUI, XIANFENG GU, AND SHING-TUNG YAU

Abstract. Finding surface mappings with least distortion arises from many
applications in various fields. Extremal Teichmüller maps are surface map-
pings with least conformality distortion. The existence and uniqueness of
the extremal Teichmüller map between Riemann surfaces of finite type are
theoretically guaranteed (see Fletcher and Markovic, Quasiconformal maps
and Teichmüller theory, Oxford Graduate Texts in Math., vol. 11, Oxford
University Press, Oxford, 2007). Recently, a simple iterative algorithm for
computing the Teichmüller maps between connected Riemann surfaces with
given boundary value was proposed by Lui, Lam, Yau, and Gu in Teichmüller
extremal mapping and its applications to landmark matching registration,
arXiv:1211.2569. Numerical results were reported in the paper to show the ef-
fectiveness of the algorithm. The method was successfully applied to landmark-
matching registration. The purpose of this paper is to prove the iterative
algorithm proposed in loc. cit., indeed converges.

1. Introduction

Finding meaningful surface mappings with least distortion has fundamental im-
portance. Applications can be found in different areas such as registration, shape
analysis and grid generation. Conformal mapping has been widely used to establish
a good one-to-one correspondence between different surfaces, since it preserves the
local geometry well [2–18]. The Riemann mapping theorem guarantees the exis-
tence of conformal mappings between simply-connected surfaces. However, this fact
is not valid for general Riemann surfaces. Given two Riemann surfaces with dif-
ferent conformal modules, there is generally no conformal mapping between them.
In this case, it is usually desirable to obtain a mapping that minimizes the confor-
mality distortion. Every diffeomorphic surface mapping is associated with a unique
Beltrami differential, which is a complex-valued function, μf , defined on the source
surface. The Beltrami differential, μf , measures the deviation of the mapping from
a conformal map. Given two Riemann surfaces S1 and S2, there exists a unique
and bijective map f : S1 → S2, called the Teichmüller map, minimizing the L∞

norm of the Beltrami differential [1]. Therefore, the extremal Teichmüller map can
be considered as the ‘most conformal’ map between Riemann surfaces of the same
topology, which is a natural extension of conformal mappings.
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1.1. Extremal problem. Mathematically, the extremal problem for obtaining a
surface mapping with least conformality distortion can be formulated as follows.
Suppose (S1, σ|dz|2) and (S2, ρ|dw|2) are two Riemann surfaces of finite type, where
z and w are their conformal parameters respectively. Every diffeomorphism between
S1 and S2 is associated with a unique Beltrami differential. A Beltrami differential
μ(z)dz̄dz on the Riemann surface S1 is an assignment to each chart (Uα, φα) of an L∞

complex-valued function μα, defined on the local parameter zα. Then, f : S1 → S2

is said to be a quasi-conformal mapping associated with the Beltrami differential

μ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ, ψβ) on S2, the mapping

fαβ := ψβ ◦ f ◦ φ−1
α is quasi-conformal associated with μα(zα)

dzα
dzα

.
Our goal is to look for an extremal quasi-conformal mapping, which is extremal

in the sense of minimizing the || · ||∞ over all Beltrami differentials corresponding to
quasi-conformal mappings between S1 and S2. The idea of extremality is to make
the supreme norm of the Beltrami differential as small as possible such that f is as
‘nearly conformal’ as possible.

The extremal problem can therefore be formulated as finding f : S1 → S2 that
solves:

(1.1) f = argming∈A{||μg||∞},

where A = {g : S1 → S2 : g is a diffeomorphism}.
The above optimization problem (1.1) has a unique global minimizer provided

that S1 and S2 are Riemann surfaces of finite type. Also, the unique minimizer
f : S1 → S2 is a Teichmüller map, that is, its associated Beltrami differential μf is
of the following form:

(1.2) μf = k
ϕ̄

|ϕ| ,

where 0 ≤ k < 1 is a non-negative real constant and ϕ is an integrable holomorphic
function defined on S1 (ϕ �= 0). Beltrami differential of this form is said to be of
Teichmüller type.

1.2. An iterative algorithm for Teichmüller maps. To solve the extremal
problem (1.1) to obtain the Teichmüller map between connected surfaces, an it-
erative algorithm was proposed in [20], called the quasi-conformal (QC) iteration.
The ultimate goal is to obtain the extremal map between connected (either simply-
connected or multiply-connected) surfaces with given boundary value, which min-
imizes the conformality distortion. The basic idea of the iterative algorithm is to
project the Beltrami differential to the space of all Beltrami differentials of constant
modulus, and compute a quasi-conformal map whose Beltrami differential is closest
to the projection in the least square sense. More specifically, the QC iteration for
solving (1.1) can be described as follows:

(1.3)

⎧⎪⎨⎪⎩
fn+1 = LBS(μn+1),

μ̃n+1 = μn + αμ(fn+1, μn),

μn+1 = L(P(μ̃n+1)),

where fn is the quasi-conformal map obtained at the nth iteration, νn is the Beltrami
differential of fn and μn is a Beltrami differential of constant modulus.
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LBS(μ) is the operator to obtain a quasi-conformal mapping whose Beltrami
differential is closest to μ in the least square sense. In other words,

(1.4) LBS(μ) = argminf∈A{
∫
S1

|∂f
∂z̄

− μ
∂f

∂z
|2dS1}.

μ(fn+1, νn) denotes the Beltrami differential of fn+1 under the auxiliary metric
with respect to νn, namely, |dz + νndz̄|2 (|dz|2 is the original metric on S1). More
precisely, μ(fn+1, νn) can be explicitly computed as follows:

(1.5) μ(fn+1, νn) =

(
∂fn+1

∂z̄
+ νn

∂fn+1

∂z

)
/

(
∂fn+1

∂z
− νn

∂fn+1

∂z̄

)
.

P(μ̃n+1) is the operator used to project μ̃n+1 to the space of Beltrami differentials
with constant modulus; it is defined as

(1.6) P(μ̃n+1) = μn + εwn,

where wn : S1 → C and ε : S1 → R
+ is a suitable real function on S1 such that

|μn + εwn| is a constant.
In practice, the projection operator can be simplified as

(1.7) P(μ̃n+1) =

(∫
S1

|μ̃n+1|dS1∫
S1

dS1

)
μ̃n+1

|μ̃n+1|

L is the Laplacian smoothing operator to smooth out θ̃n+1 := arg(P(μ̃n+1))
through

(1.8)
dθ̃n+1

dt
= Δθ̃n+1,

where θ̃n+1 is smoothed out for a given time period t > 0.
Both L(P(νn)), LBS(μn+1) and μ(fn+1, νn) can be easily computed. In partic-

ular, the discretization of LBS(μn+1) on a triangulation mesh can be reduced to a
least square problem of a linear system.

When μ(fn+1, μn) is small, α can be chosen to be 1. Then, μn+αμ(fn+1, μn) ≈
μ(fn+1, 0), where μ(fn+1, 0) is the Beltrami differential of fn+1 under the original
metric. The QC iteration can be further modified as

(1.9)

⎧⎪⎨⎪⎩
fn+1 = LBS(μn),

μ̃n+1 = μ(fn+1, 0),

μn+1 = L(P(μ̃n+1)).

The QC iteration (1.3) is very efficient. Also, numerical results reported in
[20] demonstrate that the proposed iteration can compute the Teichmüller map
accurately, even on highly irregular meshes. The algorithm was successfully applied
to landmark-based registration for applications in medical imaging and computer
graphics.

This paper is to provide a complete analysis of the above iterative algorithm
(1.3). In particular, we prove the convergence of (1.3) that fn and μn respectively
converges to the extremal map f∗ and its associated Beltrami differential μ∗, which
solves the optimization problem (1.1).

We remark that although the iterative algorithm is designed for obtaining an
extremal map between connected surfaces with given boundary values, the conver-
gence proof applies to general Riemann surfaces of finite type (such as high-genus
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Figure 1. Illustration of how the Beltrami coefficient determines
the conformality distortion.

closed surfaces). In other words, the QC iteration can be applied to computing
extremal maps between general Riemann surfaces. For the ease of presentation,
we will restrict our discussion to the situation when both S1 and S2 are either
simply-connected or multiply-connected open surfaces.

1.3. Organization. This paper is organized as follows. In Section 2, we describe
some mathematical background, which is relevant to this work. In Section 3, we
reformulate the extremal problem defined by (1.1) as the optimization problem of
the harmonic energy, which helps us to understand the iterative algorithm (1.3)
better. In Section 4, we prove the convergence of the QC iteration to our desired
extremal Teichmüller map. A concluding remark will be given in Section 6.

2. Mathematical background

2.1. Quasi-conformal mappings and Beltrami equation. In this section, we
describe some basic mathematical concepts relevant to our algorithms. For details,
we refer the readers to [19, 21].

A surface S with a conformal structure is called a Riemann surface. Given
two Riemann surfaces S1 and S2, a map f : S1 → S2 is conformal if it preserves
the surface metric up to a multiplicative factor called the conformal factor. A
generalization of conformal maps is the quasi-conformal maps, which are orientation
preserving homeomorphisms between Riemann surfaces with bounded conformality
distortion, in the sense that their first order approximations takes small circles to
small ellipses of bounded eccentricity [19]. Mathematically, f : C → C is quasi-
conformal provided that it satisfies the Beltrami equation

(2.1)
∂f

∂z
= μ(z)

∂f

∂z

for some complex-valued function μ satisfying ||μ||∞ < 1. μ is called the Beltrami
coefficient, which is a measure of non-conformality. μ measures how far the map is
deviated from a conformal map. μ ≡ 0 if and only if f is conformal. Infinitesimally,
around a point p, f may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + μ(p)z).
(2.2)

Obviously, f is not conformal if and only if μ(p) �= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + μ(p)z, which is postcomposed by a multiplication
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Figure 2. Illustration of the definition of quasi-conformal map
between Riemann surfaces.

of fz(p). All the conformal distortion of S(z) is caused by μ(p). S(z) is the
map that causes f to map a small circle to a small ellipse. From μ(p), we can
determine the directions of maximal magnification and shrinking and the amount
of their distortions as well. Specifically, the angle of maximal magnification is
arg(μ(p))/2 with magnifying factor 1 + |μ(p)|. The angle of maximal shrinking is
the orthogonal angle (arg(μ(p))− π)/2 with shrinking factor 1− |μ(p)|. Thus, the
Beltrami coefficient μ gives us all the information about the properties of the map
(see Figure 1).

The maximal dilation of f is given by

(2.3) K(f) =
1 + ||μ||∞
1− ||μ||∞

.

Quasiconformal mapping between two Riemann surfaces S1 and S2 can also be
defined. Instead of the Beltrami coefficient, the Beltrami differential has to be used.
A Beltrami differential μ(z)dz̄dz on the Riemann surface S1 is an assignment to each
chart (Uα, φα) of an L∞ complex-valued function μα, defined on local parameter
zα such that

(2.4) μα(zα)
dzα
dzα

= μβ(zβ)
dzβ
dzβ

,

on the domain which is also covered by another chart (Uβ , φβ), where
dzβ
dzα

= d
dzα

φαβ

and φαβ = φβ ◦ φ−1
α .

An orientation preserving diffeomorphism f : S1 → S2 is called quasi-conformal

associated with μ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ, ψβ) on

S2, the mapping fαβ := ψβ ◦ f ◦φ−1
α is quasi-conformal associated with μα(zα)

dzα
dzα

.
See Figure 2 for an illustration.

2.2. Extremal maps and Teichmüller maps. A special class of quasi-conformal
maps is called the extremalmaps, which minimize the conformality distortion. More
specifically, an extremal quasi-conformal map between S1 and S2 is extremal in the
sense of minimizing the || · ||∞ over all Beltrami differentials corresponding to quasi-
conformal mappings between the two surfaces. An extremal map always exists but
need not be unique. Mathematically, an extremal quasi-conformal mapping can be
defined as follows:
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Definition 2.1. Suppose S1 and S2 are connected Riemann surfaces with bound-
aries. Let f : S1 → S2 be a quasi-conformal mapping between S1 and S2. f is said
to be an extremal map if for any quasi-conformal mapping h : S1 → S2 isotopic to
f relative to the boundary,

(2.5) K(f) ≤ K(h).

It is uniquely extremal if the inequality (2.5) is strict whenever f �= h.

Closely related to the extremal map is the Teichmüller map. It is defined as
follows.

Definition 2.2. Let f : S1 → S2 be a quasi-conformal mapping. f is said to be a
Teichmüller map associated to the integrable holomorphic function ϕ : S1 → C if
its associated Beltrami differential is of the form

(2.6) μ(f) = k
ϕ

|ϕ|
for some constant k < 1 and holomorphic function ϕ �= 0 with ||ϕ||1 =

∫
S1

|ϕ| < ∞.

In other words, a Teichmüller map is a quasi-conformal mapping with uniform
conformality distortion over the whole domain.

An extremal map might not be unique. However, a Teichmüller map associated
with a holomorphic function is the unique extremal map in its homotopic class. In
particular, a Teichmuller map between two connected open surfaces with suitable
given boundary values is the unique extremal map. Strebel’s theorem explains the
relationship bewtween the Teichmüller map and an extremal map.

Definition 2.3 (Boundary dilation). The boundary dilation K1[f ] of f is defined
as

(2.7) K1[f ] = inf
C
{K(h|S1\C) : h ∈ F, C ⊆ S1, C is compact}.

where F is the family of quasi-conformal mappings of S1 onto S2 which are homo-
topic to f modulo the boundary.

Theorem 2.4 (Strebel’s theorem; see [22], page 319). Let f be an extremal quasi-
conformal map with K(f) > 1. If K1[f ] < K(f), then f is a Teichmüller map
associated with an integrable holomorphic function on S1. Hence, f is also a unique
extremal map.

In other words, an extremal map between S1 and S2 with suitable boundary
condition is a Teichmüller map. In particular, the Teichmüller map and extremal
map of the unit disk are closely related.

Theorem 2.5 (See [23], page 110). Let g : ∂D → ∂D be an orientation-preserving
homeomorphism of ∂D. Suppose further that h′(eiθ) �= 0 and h′′(eiθ) is bounded.
Then there is a Teichmüller map f that is the unique extremal extension of g to D.
That is, f : D → D is an extremal mapping with f |∂D = g.

Thus, if the boundary correspondence satisfies certain conditions on its deriva-
tives, the extremal map of the unit disk must be a Teichmüller map.

Now, in the case when interior landmark constraints are further enforced, the
existence of unique Teichmüller map can be guaranteed if the boundary and land-
mark correspondence satisfy suitable conditions. The unique Teichmüller map is
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extremal, which minimizes the maximal conformality distortion. The following
theorem can be derived immediately from Strebel’s Theorem (Theorem 2.4):

Theorem 2.6. Let {pi}ni=1 ∈ S1 and {qi}ni=1 ∈ S2 be the corresponding interior
landmark constraints. Let f : S1 \{pi}ni=1 → S2 \{qi}ni=1 be the extremal map, such
that pi corresponds to qi for all 1 ≤ i ≤ n. If K1[f ] < K(f), then f is a Teichmüller
map associated with an integrable holomorphic function on S1 \ {pi}ni=1. Hence, f
is a unique extremal map.

In particular, a unique Teichmüller map f : D → D between unit disks with
interior landmark constraints enforced exists, if the boundary map f |∂D satisfies
suitable conditions. The following theorem can be obtained directly from Theorem
2.5:

Theorem 2.7. Let g : ∂D → ∂D be an orientation-preserving homeomorphism of
∂D. Suppose further that h′(eiθ) �= 0 and h′′(eiθ) is bounded. Let {pi}ni=1 ∈ D and
{qi}ni=1 ∈ D be the corresponding interior landmark constraints. Then there is a
Teichmüller map f : D \ {pi}ni=1 → D \ {qi}ni=1 matching the interior landmarks,
which is the unique extremal extension of g to D. That is, f : D \ {pi}ni=1 →
D \ {qi}ni=1 is an extremal Teichmüller map with f |∂D = g matching the interior
landmarks.

2.3. Harmonic maps. Our iterative algorithm to compute Teichmüller maps is
closely related to harmonic maps. Let (S1, σ|dz|2) and (S2, ρ|dw|2) be two Riemann
surfaces of finite type, where z and w refer to the local conformal coordinate on the
surface S1 and S2.

For a Lipschitz map f : (S1, σ|dz|2)→(S2, ρ|dw|2), we define the energyE(f ;σ, ρ)
of the map w to be

(2.8) Eharm(f ;σ, ρ) =

∫
S1

1

2
‖df‖2dv(σ) =

∫
S1

ρ(w(z))

σ(z)
(|wz|2 + |wz̄|2)σ(z)dzdz̄.

Therefore

(2.9) Eharm(f ;σ, ρ) =

∫
S1

ρ(w(z))(|wz|2 + |wz̄|2)dzdz̄.

It depends on the metric structure of the target surface ρ|dw|2 and the conformal
structure σ|dz|2 of the source.

A critical point of this functional is called a harmonic map. We will focus on
the situation where we have fixed the homotopy class f0 : S1 → S2 of maps into
the compact target S2 with non-positive curvature K(w) ≤ 0 everywhere. In that
case, there is a unique harmonic map f(σ, ρ) : (S1, σ) → (S2, ρ) in the homotopy
class of f0. If f is harmonic, then

(2.10) fzz̄ + (log ρ)zfzfz̄ ≡ 0.

The pull back metric on S1 induced by f is given by

(2.11) f∗(ρ(w)|dw|2) = ρ(f(z))(f̄zdz̄ + fz̄dz);

also, the Hopf differential is

(2.12) Φ(f)dz2 := ρ(f(z))fzfz̄dz
2.

It can be shown that f is harmonic if and only if its Hopf differential is a holomorphic
quadratic differential.
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3. Quasi-conformal iteration

Before giving a complete analysis of the convergence of the QC iteration, we
reformulate the extremal problem (1.1) as the optimization problem of the harmonic
energy, in order to better understand the iterative algorithm.

Consider two connected open surfaces S1 and S2 with boundaries, which are of
the same topology. S1 and S2 can either be simply-connected or multiply-connected.
Suppose σ|dz|2 and ρ|dw|2 are the Riemannian metrics on S1 and S2 respectively.
Assume (S2, ρ|dw|2) has non-positive Gaussian curvature K(w) everywhere. Let
f : S1 → S2 be any quasi-conformal mapping between S1 and S2. In the homotopic
class [f ] of f , there exists a unique Teichmüller map, f∗. f∗ is also extremal within
the homotopic class [f ]. More specifically, the homotopic class [f ] can be defined
as

(3.1) [f ] = {g : S1 → S2 : g|∂S1
= f |∂S2

}.
We have, ||μf∗ ||∞ ≤ ||μg||∞ for all g ∈ [f ], where μf∗ and μg are the Beltrami

differentials of f∗ and g respectively.
Consider the space of all admissible Beltrami differentials on S1, which is de-

noted by B(S1, S2). Every Beltrami differential μ ∈ B(S1, S2) induces a conformal
structure g(μ) on S1, namely,

(3.2) g(μ) = |dz + μdz̄|2.
Suppose μ1, μ2 ∈ B(S1, S2), we say that they are conformally equivalent, if there
is a biholomorphic mapping f : (S1, g(μ1)) → (S1, g(μ2)) such that f is homotopic
to the identity map of S1. The equivalence class of μ is represented by [μ]. Each
conformal equivalence class of Beltrami differentials has a unique representative of
Teichmüller form. We denote the space of all Beltrami differentials of constant
modulus by

(3.3) T (S1, S2) := {μ ∈ B(S1, S2) : |μ| is a constant}.
We will focus on the situation where we have fixed a homotopic class [f0]. We

can define an energy functional EBC on B(S1, S2). For any μ ∈ B(S1, S2), there
exists a unique harmonic map f(μ, ρ) : (S1, g(μ)) → (S2, ρ|dw|2) ∈ [f ] , which is
solely determined by μ and ρ|dw|2. The value of EBC(μ) can then be defined as
the harmonic energy of f(μ, ρ). That is,

(3.4) EBC(μ) = Eharm(f(μ, ρ)) =

∫
S1

1

2
||df(μ, ρ)||2.

EBC : B(S1, S2) → R is a smooth function.

Lemma 3.1. The energy functional EBC : T (S1, S2) → R is bounded below by

(3.5) EBC(μ) ≥
∫
S2

ρ(w)dudv

where w = u + iv. The equality holds if and only if (S1, g(μ)) is conformally
equivalent to (S2, ρ|dw|2); and the harmonic map f(μ, ρ) : (S1, g(μ)) → (S2, ρ|dw|2)
is a conformal mapping.

Proof. Let z = x + iy be the local coordinate of (S1, g(μ)). The Jacobian of the
mapping f(μ, ρ) : (S1, g(μ)) → (S2, ρ|dw|2) is given by

(3.6) J(z) = |wz|2 − |wz̄|2.

Licensed to Chinese University of Hong Kong. Prepared on Wed Aug 24 12:31:16 EDT 2016 for download from IP 137.189.204.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CONVERGENCE OF QC ITERATION 2831

Therefore,

(3.7) J(z)dxdy = (|wz|2 − |wz̄|2)dxdy = dudv.

The harmonic energy is given by

Eharm(f(μ, ρ)) = EBC(μ) =

∫
S1

ρ(w)(|wz|2 + |wz̄|2)dxdy

=

∫
S2

ρ(w)
|wz|2 + |wz̄|2
|wz|2 − |wz̄|2

dudv,

(3.8)

where

|wz|2 + |wz̄|2
|wz|2 − |wz̄|2

=
1 + |wz̄

wz
|2

1− |wz̄

wz
|2 =

1 + |μ|2
1− |μ|2

=
1 + k2

1− k2
=

1

2

(
1 + k

1− k
+

1− k

1 + k

)
=

1

2

(
K +

1

K

)
and

(3.9)

(3.10) k = |μ|, 0 ≤ k < 1, K =
1 + k

1− k
, K ≥ 1.

Hence,
(3.11)

EBC(μ) =
1

2

∫
S2

ρ(w)

(
K +

1

K

)
dudv ≥ 1

2

∫
S2

ρ(w)(2)dudv =

∫
S2

ρ(w)dudv.

Equality holds if and only if K ≡ 1, namely, k ≡ 0. This implies f(μ, ρ) is a
conformal mapping. �

Theorem 3.2. The global minimizer of the energy functional EBC : T (S1, S2) →
R is the Beltrami differential associated to the unique Teichmüller map between
(S1, σ|dz|2) and (S2, ρ|dw|2) in the homotopic class [f0] of f0.

Proof. Let μ∗ be the Beltrami differential of the Teichmüller map f̃ . It suffices to
show that f̃ : (S1, g(μ

∗)) → (S2, ρ|dw|2) is a conformal mapping.

To see this, let f̃∗(ρ|dw|2) denote the pull back metric. Then,

(3.12) f̃∗(ρ|dw|2) = e2λ2(f̃(z))|df(z)|2.
Under the pull back metric, the mapping f̃ : (S1, f̃

∗(ρ|dw|2)) → (S2, ρ|dw|2) is
isometric. We have

(3.13)
df̃(z) =

∂f̃(z)

∂z
dz +

∂f̃(z)

∂z̄
dz̄

=
∂f̃(z)

∂z
(dz + μ∗dz̄).

Hence,

(3.14) f̃∗(ρ|dw|2) = e2λ2(f̃(z))|∂f̃(z)
∂z

|2|dz + μ∗dz̄|2.

So, f̃∗(ρ|dw|2) = e2λ2(f̃(z))|∂f̃(z)∂z |2g(μ∗). f∗(ρ|dw|2) is conformal to g(μ∗). We

conclude that f̃ : (S1, g(μ
∗)) → (S2, ρ|dw|2) is conformal. According to Theorem

3.1, the Beltrami differential associated to f̃ is the global minimizer of EBC :
T (S1, S2) → R. �
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In other words, finding the extremal Teichmüller map, f∗, is equivalent to min-
imizing the energy functional EBC . During the QC iteration, the Beltrami dif-
ferential μn ∈ T (S1, S2) is iteratively adjusted and a new map is obtained by
fn = LBS(μn). It turns out LBS(μn) is equivalent to computing the harmonic
map f(μn, ρ). It can be explained in more detail as follows.

Lemma 3.3. Suppose μ ∈ T (S1, S2). The mapping f := LBS(μ) is a harmonic
map between (S1, g(μ)) and (S2, ρ|dw|2).

Proof. Let ζ be the coordinates of S1 with respect to the metric g(μ). Let h be
the harmonic map between (S1, g(μ)) and (S2, ρ|dw|2). Then h is a critical point
of the following harmonic energy:

Eharm(h) =

∫
S1

ρ(h(ζ))(|hζ|2 + |hζ̄ |2)dxdy.

Since f := LBS(μ), according to the definition, f is the critical point of the follow-
ing energy functional:

ELBS(f) =

∫
S1

ρ(f(z))(|fz̄ − μfz|2)dxdy.

We will show that the above two energy functionals have the same set of critical
points.

Note that dζ = dz + μdz̄, then

(3.15) dζ̄ = dz̄ + μ̄dz.

We obtain

(3.16) dz =
1

1− |μ|2 (dζ − μdζ̄), dz̄ =
1

1− |μ|2 (−μ̄dζ + dζ̄).

Hence,

(3.17) dz ∧ dz̄ =
1

1− |μ|2 dζ ∧ dζ̄, hζ̄ =
1

1− |μ|2 (hz̄ − μhz).

Now, the Jacobian Jh of h and the Jacobian Jf of f are given by

(3.18) Jh = |hζ |2 − |hζ̄ |2, Jf = |fz|2 − |fz̄|2.
Hence,

Eharm(h) =

∫
S1

ρ(h(ζ))(2|hζ̄|2 + Jh)idζ ∧ dζ̄

=

∫
S1

ρ(h(ζ))[
2

(1− |μ|2)2 |hz̄ − μhz|2][i(1− |μ|2)]dz ∧ dz̄

=

∫
S1

2

1− |μ|2 ρ(h(z))|hz̄ − μhz|2idz ∧ dz̄ +

∫
S1

ρ(h(ζ))Jhidζ ∧ dζ̄.

(3.19)

Since μ ∈ T (S1, S2), |μ| is a constant. Thus,

(3.20) Eharm(h) =
2

1− |μ|2
∫
S1

ρ(h(z))|hz̄ − μhz|2idz ∧ dz̄ +A,

where A is the surface area of S2. We conclude that Eharm and ELBS has the same
set of critical points. Since f is a critical point of ELBS, f is also a critical point
of Eharm. Hence, f is a harmonic map between (S1, g(μ)) and (S2, ρ|dw|2). �
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CONVERGENCE OF QC ITERATION 2833

The Beltrami differential μn ∈ T (S1, S2) is iteratively adjusted during the QC
iteration. In the next section, we will prove that EBC(μn) monotonically decreases
to the global minimizer of EBC .

4. Proof of convergence

In this section, we prove the convergence of the Quasi-conformal iteration to the
desired Teichmüller map.

Lemma 4.1. Suppose μ ∈ B(S1, S2) is deformed by

μ → μ+ εν ∈ B(S1, S2).

Then, the variation of EBC satisfies

EBC(μ+ εν) ≤ EBC(μ)− 4Re

∫
S1

ε Φ(f(μ, ρ))ν
dzμ ∧ dz̄μ

−2i
+O(ε2),

where zμ is the coordinates of S1 under the metric g(μ).

Proof. Let ζ be the coordinate of S1 under the metric g(μ+ εν). For simplicity, let
z = zμ. Then, we have

(4.1) dz = dζ − ενdζ̄; dz̄ = dζ̄ − εν̄dζ.

The area element with respect to z is given by

(4.2) dz ∧ dz̄ = dζ ∧ dζ̄ − ενdζ̄ ∧ dζ̄ − εν̄dζ ∧ dζ + ε2|ν|2dζ̄dζ.

Hence,

(4.3) dz ∧ dz̄ = dζ ∧ dζ̄ + ε2|ν|2dζ̄dζ.

Similarly,

(4.4) dζ ∧ dζ̄ = dz ∧ dz̄ + ε2|ν|2dz̄dz.

Let w = f(μ, ρ). Then,

dw = wζdζ + wζ̄dζ̄

= wzdz + wz̄dz̄

= wz(dζ − ενdζ̄) + wz̄(dζ̄ − εν̄dζ)

= (wz − εν̄wz̄)dζ + (wz̄ − ενwz)dζ̄.

(4.5)

We get that

(4.6) wζ = wz − εν̄wz̄; wζ̄ = wz̄ − ενwz.

Therefore,

|wζ |2 = wζwζ = (wz − εν̄wz̄)(wz − ενwz̄)

= |wz|2 + ε2|ν|2|wz̄|2 − ενwzwz̄ − εν̄wzwz̄.
(4.7)

Similarly,

|wζ̄ |2 = wζ̄wζ̄ = (wz̄ − ενwz)(wz̄ − εν̄wz)

= |wz̄|2 + ε2|ν|2|wz|2 − ενwz̄wz̄ − εν̄wzwz̄.
(4.8)

Licensed to Chinese University of Hong Kong. Prepared on Wed Aug 24 12:31:16 EDT 2016 for download from IP 137.189.204.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2834 LOK MING LUI, XIANFENG GU, AND SHING-TUNG YAU

As a result, we get

EBC(μ+ εν) ≤ Eharm(w) =

∫
S1

ρ(w(ζ))(|wζ|2 + |wζ̄ |2)
dζ ∧ dζ̄

−2i

=

∫
S1

ρ(w(z))(|wz|2 + |wz̄|2)
dz ∧ dz̄

−2i
− 4Re

∫
S1

ερ(w(z))wzwz̄ν
dz ∧ dz̄

−2i
+O(ε2)

= EBC(μ)− 4Re

∫
S1

ε ρ(w(z))wzwz̄ν
dz ∧ dz̄

−2i
+O(ε2)

= EBC(μ)− 4Re

∫
S1

ε Φ(f(μ, ρ))ν
dzμ ∧ dz̄μ

−2i
+O(ε2).

(4.9)

This completes the proof of the inequality. �

Theorem 4.2. Suppose μ ∈ T (S1, S2). For any α > 0, there exists w ∈ B(S1, S2)
and ε : S1 → R such that
(i) μ+ εw ∈ T (S1, S2);
(ii) |ε(p)w(p)| < α and |w(p)| = |μ(f(μ, ρ)) for all p ∈ S1, where μ(f(μ, ρ)) denotes
the Beltrami differential of f(μ, ρ) under the auxiliary metric with respect to zμ;

(iii)
∫
S1

εwΦ(f(μ, ρ))
dzμ∧dz̄μ

−2i ≥ 0.

Proof. Let k̃ = |μ| and ν = μ(f(μ, ρ)). For simplicity, we denote z := zμ and
f = f(μ, ρ). Pick β ∈ R+ such that

(4.10) β sup
p∈S1

|ν(p)| < α/4.

Consider μ̃ = μ+ βν.
Suppose

Ω1 = {p ∈ S1 : arg(ν) = arg(μ)},
Ω2 = {p ∈ S1 : arg(ν) = − arg(μ)}.(4.11)

Let

(4.12) γ =

∫
Ω1

|ν|ρ(f(z))|fz|2
dzμ ∧ dz̄μ

−2i
−
∫
Ω2

|ν|ρ(f(z))|fz|2
dzμ ∧ dz̄μ

−2i
.

If γ > 0, choose k such that k̃ < k < k̃ + α/4.

If γ < 0, choose k such that k̃ − α/4 < k < k̃.

If γ = 0, choose k = k̃ (including the case when Ω1 = Ω2 = ∅).
Let

(4.13) r = k
μ̃

|μ̃| ; w =
r − μ

|r − μ| |ν| and ε =
|r − μ|
|ν| .

By definition, μ+ εw = r = k μ̃
|μ̃| ∈ T (S1, S2). Hence, (i) is satisfied.

Now,

(4.14) |w(p)| = |ν(p)| = |μ(f(μ, ρ))(p)| for all p ∈ S1.
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CONVERGENCE OF QC ITERATION 2835

Also,

|ε(p)w(p)| = |r − μ|
≤ |r − μ̃|+ |μ̃− μ|
= |r − μ̃|+ |βν|

<
3α

4
+

α

4
= α.

(4.15)

Thus, (ii) is also satisfied.
Finally, it is easy to check that∫

S1\(Ω1∪Ω2)

εwΦ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i

=

∫
S1\(Ω1∪Ω2)

εwρ(f(z))f̄z̄fz
dzμ ∧ dz̄μ

−2i
≥ 0.

(4.16)

Now, if γ > 0,

∫
Ω1

εwΦ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i
+

∫
Ω2

εwΦ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i

=

∫
Ω1

(k − k̃)|ν|ρ(f(z))|fz|2
dzμ ∧ dz̄μ

−2i
−
∫
Ω2

(k − k̃)|ν|ρ(f(z))|fz|2
dzμ ∧ dz̄μ

−2i

=(k − k̃)γ > 0.

(4.17)

If γ < 0, ∫
Ω1

εwΦ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i
+

∫
Ω2

εwΦ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i

= −
∫
Ω1

(k̃ − k)|ν|ρ(f(z))|fz|2
dzμ ∧ dz̄μ

−2i

+

∫
Ω2

(k̃ − k)|ν|ρ(f(z))|fz|2
dzμ ∧ dz̄μ

−2i

= −(k̃ − k)γ > 0.

(4.18)

We conclude that
∫
S1

εwΦ(f(μ, ρ))
dzμ∧dz̄μ

−2i ≥ 0 and hence (iii) is satisfied. �

We can now proceed to prove the convergence of the quasi-conformal iteration.

Theorem 4.3. Suppose S1 and S2 are open Riemann surfaces with boundaries of
the same topology. Given a smooth boundary correspondence h : ∂S1 → ∂S2, the
quasi-conformal (QC) iteration (1.3) converges to the unique extremal map, which
is also a Teichmüller map.

Proof. Suppose the pair (fn, μn) is obtained at the nth iteration. The QC iteration
first computes a new quasi-conformal map by fn+1 = LBS(μn). According to
Lemma 3.3, fn+1 is a harmonic map between (S1, g(μn)) and (S2, ρ|dw|2). A new
Beltrami differential μ̃n+1 can be computed by μ̃n+1 = μn + βμ(fn+1, μn). Here,
μ(fn+1, μn) denotes the Beltrami differential of fn+1 under the auxiliary metric with
respect to μn, namely, |dz + μndz̄|2. μ̃n+1 can then be projected onto T (S1, S2) to
get

(4.19) P(μ̃n+1) = μn + εwn.
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Figure 3. Two simply-connected domains. (A) a unit disk D;
(B) an arbitrary simply-connected domain.

Here, wn : S1 → C and ε : S1 → R is a suitable real function on S1 such that
|μn + εμ(fn+1, μn)| ≡ k, where k is a positive constant.

According to Theorem 4.2, by choosing a suitable k, we can assume that
(4.20)∫

S1

εwnΦ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i
=

∫
S1

ε(P(μ̃n+1)− μn)Φ(f(μ, ρ))
dzμ ∧ dz̄μ

−2i
≥ 0.

The Laplacian operator L is then applied on θ̃n+1 := arg(P(μ̃n+1)) through

(4.21)
dθ̃n+1

dt
= Δθ̃n+1.

We choose a suitable diffusion time period t > 0 to smooth out θ̃n+1 such that
L(P(μ̃n+1)) still preserves (4.20). That is,

(4.22)

∫
S1

εw′
nΦ(f(μ, ρ)

dzμ ∧ dz̄μ
−2i

≥ 0,

where w′
n := L(P(μ̃n+1))− μn.

We get that

(4.23) EBC(μn+1)−EBC(μn) = −4Re

∫
S1

εw′
nΦ(f(μn, ρ))

dzμ ∧ dz̄μ
−2i

+O(ε2) ≤ 0.

Hence, E(μn) is monotonically decreasing. According to Lemma 3.1, E is
bounded from below. Hence, E(μn) converges. Also, the QC iteration is essen-
tially the gradient descend algorithm of EBC and it converges at the critical point
μ∗ = k∗eiθ. At the critcal point, Φ(f(μ∗, ρ)) = 0. In this case, g(μ∗) is conformal
to ρ and hence f(μ∗, ρ) is a quasi-conformal map with Beltrami differential μ∗.
Furthermore, at the critical point, the Laplacian L of the argument of the Beltrami
differential is zero. We conclude that θ is harmonic. Since θ is harmonic, we can
find its harmonic conjugate r such that r − iθ is holomorphic. Define ϕ = er−iθ,
which is also holomorphic. Then, μ∗ = k∗ ϕ

|ϕ| is of Teichmüller type. Since μ∗ is of

Teichmüller type, f(μ∗, ρ) must be a Teichmüller map. Now, given a smooth bound-
ary correspondence h : ∂S1 → ∂S2, there exists a unique Teichmüller map which
is an extremal map. We conclude that f(μ∗, ρ) is the unique extremal Teichmüller
map. �
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Figure 4. Extremal Teichmüller map between two simply-
connected domains as shown in Figure 3(A) and (B), with given
boundary correspondence.

Figure 5. (A) shows the energy E(μn) := EBC(μn)−A(Ω2) per
iterations during the QC iterations of Example 1. (B) shows the
histogram of the norm of the optimal Beltrami coefficient μ∗. (C)
shows the histogram of the Laplacian of arg(μ∗).

5. Numerical experiments

Although the numerical testing is not the main focus of this work, we demon-
strate some numerical results in this section for the completeness of the paper. The
results agree with our theoretical findings.

Example 1. We first test the algorithm to compute the extremal Teichmüller map
between two simply-connected domains Ω1 and Ω2. Ω1 is chosen to be the unit
disk D as shown in Figure 3(A). Ω1 is deformed to an arbitrary simply-connected
shape Ω2 as shown in (B). The boundary correspondence h of Ω1 and Ω2 is given.
We compute the extremal Teichmüller map f : Ω1 → Ω2 such that f |∂Ω1

= h
using the proposed QC iterations. The obtained map is visualized using texture
map as shown in Figure 4. The small circles on the source domain is mapped to
small ellipses on the target domain with the same eccentricity. Figure 5(A) shows
the energy E(μn) := EBC(μn) − A(Ω2) versus each of the iterations in the QC
iterations, where A(Ω2) is the area of Ω2. The energy monotonically decreases to
0, which agrees with Theorem 4.3. (B) shows the histogram of the norm of the
optimal Beltrami differential μ∗. It accumulates at 0.33, which illustrates that the
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Figure 6. Two punctured unit disks. (A) and (B) show two unit
disks, each with 6 punctures.

Figure 7. Extremal Teichmüller map between two punctured unit
disks as shown in Figure 6(A) and (B), with given boundary cor-
respondence.

obtained map is indeed a Teichmüller map. Since μ∗ is of Teichmüller type, its
argument must be harmonic. (C) shows the histogram of the Laplacian of arg(μ∗).
It accumulates at 0, meaning that the argument of μ∗ is indeed harmonic.

Example 2. In our second example, we test our algorithm to compute the extremal
Teichmuller map between two punctured unit disks. Figure 6(A) and (B) show two
unit disks, each with 6 punctures. Denote the source domain by Ω1 := D \ {pi}6i=1,
and denote the target domain by Ω2 := D \ {qi}6i=1. The boundary correspondence
of ∂D is chosen to be the identity map. Using the QC iteration, we compute
the extremal Teichmüller map f : Ω1 → Ω2 such that f |∂D = id and f(pi) = qi
for 1 ≤ i ≤ 6. The obtained map is visualized using a texture map as shown
in Figure 7. The small circles on the source domain is mapped to small ellipses
on the target domain with the same eccentricity. Figure 8(A) shows the energy
E(μn) := EBC(μn) − A(Ω2) versus each of the iterations in the QC iterations,
where A(Ω2) is the area of Ω2. The energy monotonically decreases to 0, which
agrees with our theoretical finding. (B) shows the histogram of the norm of the
Beltrami differential. It accumulates at 0.6, which illustrates that the obtained map
is indeed a Teichmüller map. (C) shows the histogram of the Laplacian of arg(μ∗).
It accumulates at 0, meaning that the argument of μ∗ is indeed harmonic.
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CONVERGENCE OF QC ITERATION 2839

Figure 8. (A) shows the energy E(μn) := EBC(μn) − A(Ω2)
per iterations during the QC iterations of Example 2. (B) shows
the histogram of the norm of the optimal Beltrami coefficient μ∗.
(C) shows the histogram of the Laplacian of arg(μ∗).

Figure 9. Two triply-connected domains, each with 6 punctures.
(A) and (B) show the source domain and target domain respec-
tively.

Example 3. Finally, we test the QC iterations to compute the extremal Te-
ichmüller map between two triply-connected domains Ω1 and Ω2, each with 6 punc-
tures. As shown in Figure 9(A), Ω1 is chosen to be the unit disk with three inner
disks and six points removed (denote it by {pi}6i=1). Ω2 is chosen to be the unit disk
with three inner regions (with arbitrary shapes) and six points removed (denote it
by {qi}6i=1), as shown in (B). Again, the boundary correspondence h : ∂Ω1 → ∂Ω2

is given. Using the QC iterations, we compute the extremal Teichmüller map
f : Ω1 → Ω2 such that f |∂Ω1

= h and f(pi) = qi for 1 ≤ i ≤ 6. The obtained
map is visualized using a texture map as shown in Figure 10. The small circles on
the source domain is mapped to small ellipses on the target domain with the same
eccentricity. Figure 11(A) shows the energy E(μn) := EBC(μn) − A(Ω2) versus
each of the iterations in the QC iterations, where A(Ω2) is the area of Ω2. The
energy monotonically decreases to 0, which agrees with our theoretical finding. (B)
shows the histogram of the norm of the Beltrami differential. It accumulates at
0.42, which illustrates that the obtained map is indeed a Teichmüller map. (C)
shows the histogram of the Laplacian of arg(μ∗). It accumulates at 0, meaning
that the argument of μ∗ is indeed harmonic.
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Figure 10. Extremal Teichmüller map between two triply-
connected domains, each with 6 punctures, as shown in Figure
9(A) and (B), with given boundary correspondence.

Figure 11. (A) shows the energy E(μn) := EBC(μn)−A(Ω2) per
iterations during the QC iterations of Example 3. (B) shows the
histogram of the norm of the optimal Beltrami coefficient μ∗. (C)
shows the histogram of the Laplacian of arg(μ∗).

6. Conclusion

This paper gives the convergence proof of the iterative algorithm proposed in
[20] to compute the extremal Teichmüller map between Riemann surfaces of finite
type. The iterative algorithm, which is named as quasi-conformal (QC) iteration,
can be formulated as the optimization process of the harmonic energy. With this
formulation, the QC iteration can be considered as the gradient descent of the
harmonic energy under the auxiliary metric given by the Beltrami differentials.

In the future, we will further improve the efficiency of the iterative scheme to op-
timize the harmonic energy. The proposed framework will also be further extended
to compute Teichmüller maps between high-genus surfaces (genus ≥ 1).
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