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Teichmüller Mapping (T-Map) and Its Applications to Landmark Matching
Registration∗
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Abstract. Registration, which aims to find an optimal 1-1 correspondence between shapes, is an important
process in different research areas. Landmark-based surface registration has been widely studied
to obtain a mapping between shapes that matches important features. Obtaining a unique and
bijective surface registration that matches features consistently is generally challenging, especially
when a large number of landmark constraints are enforced. This motivates us to search for a
unique landmark matching surface diffeomorphism, which minimizes the local geometric distortion.
For this purpose, we propose a special class of diffeomorphisms called the Teichmüller mappings
(T-Maps). Under suitable conditions on the landmark constraints, a unique T-Map between two
surfaces can be obtained, which minimizes the maximal conformality distortion. The conformality
distortion measures how far the mapping deviates from a conformal mapping, and hence it measures
the local geometric distortion. In this paper, we propose an efficient iterative algorithm, called the
quasi-conformal (QC) iteration, to compute the T-Map. The basic idea is to represent the set of dif-
feomorphisms using Beltrami coefficients (BCs) and look for an optimal BC associated to the desired
T-Map. The associated diffeomorphism can be efficiently reconstructed from the optimal BC using
the linear Beltrami solver (LBS). Using BCs to represent diffeomorphisms guarantees the diffeomor-
phic property of the registration, even with very large deformation. Using our proposed method,
the T-Map can be accurately and efficiently computed. The obtained registration is guaranteed to
be bijective. The proposed algorithm can also be extended to compute T-Map with soft landmark
constraints. We applied the proposed algorithm to real applications, such as brain landmark match-
ing registration, constrained texture mapping, and human face registration. Experimental results
shows that our method is both effective and efficient in computing a nonoverlap landmark matching
registration with the least amount of conformality distortion.

Key words. Teichmüller mapping, Beltrami coefficient, conformality distortion, linear Beltrami solver, land-
mark matching registration
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1. Introduction. Registration refers to the process of finding an optimal one-to-one (1-1)
correspondence between images or surfaces. It has been extensively applied to different areas
such as medical imaging, computer graphics, and computer vision. For example, in medical
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imaging, registration is always needed for statistical shape analysis, morphometry, and pro-
cessing of signals on brain surfaces (e.g., denoising or filtering), while in computer graphics,
surface registration is needed for texture mapping, which aligns each vertex to a position of
the texture image, to improve the visualization of the surface mesh. Developing an effective
algorithm for registration is therefore very important.

Landmark-based registration has been widely studied to obtain a smooth 1-1 correspon-
dence between different domains that matches important features. This kind of registration,
with good feature alignment, is particularly crucial in medical imaging, computer vision, and
computer graphics. For example, in medical imaging, anatomical features in brain cortical
surfaces can be systematically delineated, such as sulci (the fissures in the brain surface).
Landmark matching brain registration is often required to obtain a meaningful 1-1 corre-
spondence between brain surfaces, so that further analysis can be carried out (e.g., building
surface average of many subjects). However, obtaining a unique and bijective registration
that matches features consistently is generally challenging, especially when a large number
of landmark constraints are enforced. Motivated by this, we are interested in searching for
a unique and bijective landmark matching diffeomorphism, associated with given landmark
constraints, which minimizes the local geometric distortion.

In this paper, we propose a special class of diffeomorphisms called the Teichmüller map-
pings (T-Maps), which have uniform conformality distortion over the whole domain (see Figure
4). Under suitable conditions on the landmark constraints, there exists a unique T-Map be-
tween two surfaces, which minimizes the maximal conformality distortion. The conformality
distortion measures how far the mapping deviates from a conformal mapping, and hence it
measures the local geometric distortion. To compute this T-Map, we propose an efficient and
effective iterative algorithm, which is called the quasi-conformal (QC) iteration. The basic
idea is to represent the set of diffeomorphisms using Beltrami coefficients (BCs) and look
for an optimal BC associated with the desired T-Map. The associated T-Map can then be
efficiently computed from the optimal BC using the linear Beltrami solver (LBS).

Using the T-Map for landmark matching registration is advantageous for the following
reasons:

1. Optimized conformality distortion: Given a set of landmark constraints, our
algorithm is able to determine an optimal 1-1 correspondence between shapes automatically,
which minimizes the conformality distortion. In the case of open surfaces with boundaries, the
proposed algorithm can also automatically determine the optimal boundary correspondence
that minimizes the maximal conformality distortion. Hence, a Dirichlet boundary condition
is not required (which is usually needed for other algorithms such as harmonic registration).

2. Bijectivity: Another major advantage of using T-Maps for landmark matching reg-
istrations is that the bijectity (1-1, onto) of the registrations can be guaranteed. Obtaining a
bijective landmark matching registration is generally difficult, especially when a large number
of landmark constraints are enforced. Using our proposed method, a bijective T-Map can be
computed, even with large deformation or a large number of landmarks (see Figure 15).

3. Uniqueness: In addition, the mapping is uniquely determined. In other words, every
prescribed landmark constraints is associated with a unique T-Map.

4. Extension to soft landmark constraints: The proposed algorithm can also be
extended to compute T-Maps with soft landmark constraints. This becomes necessary when
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landmark features cannot be accurately located, and hence it is better to compute registration
with landmarks approximately (but not exactly) matched (see Figure 16).

5. Independence of mesh structure: The proposed QC iterations rely on the LBS.
The LBS computes the associated piecewise linear map between meshes with a given BC
defined on each face. The solver is independent of the mesh structure. Hence, our algorithm
can compute a bijective landmark matching registration between meshes even with irregular
mesh structure (see Figure 8).

6. Fast computation: The QC iterations involve solving a sparse symmetric positive
definite linear system in each iteration. The linear system can be solved quickly, and the iter-
ations converge quickly. Using our proposed method, the T-Map can be efficiently computed,
even with dense meshes.

To test the effectiveness of our method, we applied the proposed algorithm to real ap-
plications, such as brain registration, constrained texture mapping, and human face regis-
tration. Experimental results show that our method is both effective and efficient in
computing a nonoverlap landmark matching registration with the least amount of confor-
mality distortion.

In short, the contributions of this paper are threefold. First, we propose an efficient al-
gorithm for obtaining the unique T-Map between shapes with landmark constraints enforced.
The mapping is guaranteed to be bijective and minimizes the maximal conformality distortion.
Second, we propose an algorithm to compute the T-Map with soft landmark constraints. Land-
marks are not exactly matched, but less conformality distortion will be introduced. Third,
we apply the proposed algorithms to real applications, namely, constrained texture mapping,
medical image registration, and human face registration.

2. Previous work. Surface registration has been extensive studied and various algorithms
have been proposed by different research groups. In this section, we will extract some previous
work most closely related to our paper.

• Landmark-free surface registration: Landmark-free registration has been
proposed to obtain 1-1 correspondences between shapes without feature landmarks.
Different algorithms have been proposed to obtain registrations based on the shape
information (such as curvatures) defined on the surfaces. Lyttelton et al. [33] com-
puted surface parameterizations with surface curvature matching. Fischl et al. [4]
proposed an algorithm for brain registration that better aligns cortical folding pat-
terns, by minimizing the mean squared difference between the convexity of the surface
and the average convexity across a set of subjects. Lord et al. [23] proposed matching
surfaces by minimizing the deviation of the registration from isometry. Yeo et al. [44]
proposed the spherical demons method, which adopted the diffeomorphic demons al-
gorithm [39], to drive surfaces into correspondence based on the mean curvature and
average convexity.
Conformal surface registration, which minimizes angular distortions, has also been
widely used to obtain a smooth 1-1 correspondence between surfaces [13, 11, 12, 41,
15, 16, 43, 48]. An advantage of conformal registrations is that they preserve local
geometry well. However, they cannot map landmark features, such as sulcal landmarks
on brain surfaces, consistently.
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Sometimes, deformations between objects might not be conformal. Instead, a certain
amount of angular distortion could be introduced. To tackle this situation, quasi-
conformal mappings have been applied to obtain smooth 1-1 correspondences with
bounded conformality distortion [32, 30, 31, 47, 25, 42]. The obtained registration can
match the geometric quantities (such as curvature), while minimizing the maximal
dilation of the mapping.

• Landmark-based surface registration: Most of the above registration algorithms
cannot match feature landmarks, such as sulcal landmarks on the human brain, con-
sistently. To alleviate this issue, landmark matching registration algorithms are pro-
posed by various research groups. Bookstein [3] proposed obtaining a registration
that matches landmarks as much as possible using a thin plate spline (TPS) regular-
ization (or biharmonic regularization). Wang and coworkers [40, 26, 27, 28] proposed
computing the optimized conformal parameterizations of brain surfaces by minimizing
a compounded energy [40, 28]. This registration can obtain an optimized harmonic
map that better aligns the features; however, landmarks cannot be exactly matched.
Besides, bijectivity cannot be ensured when a large number of landmark constraints
are enforced. Tosun, Rettman, and Prince [38] proposed combining iterative closest
point registration, parametric relaxation, and inverse stereographic projection to align
cortical sulci across brain surfaces. These diffeomorphisms can better match landmark
features, although, not perfectly. Later, Lin et al. [22] proposed a unified variational
approach for registration of gene expression data to neuroanatomical mouse atlas in
two dimensions that matches feature landmarks. Again, landmarks cannot be exactly
matched. Note that inexact landmark matching registrations are sometimes benefi-
cial. In the case when landmark points/curves are not entirely accurate, this method
is more tolerant of errors in labeling landmarks and gives better parameterization.
In the situation when exact landmark matching is required, smooth vector fields have
been applied to obtain surface registration. Lui et al. [26, 27] proposed the use of
vector fields to represent surface maps and reconstruct them through integral flow
equations. They obtained shape-based landmark matching harmonic maps by looking
for the best vector fields minimizing a shape energy. The use of vector fields to compute
the registration makes the optimization easier, although it cannot describe all surface
maps. An advantage of this method is that exact landmark matching can be guar-
anteed. Time-dependent vector fields can also be used [17, 9, 10, 7, 8]. For example,
Glaunés, Vaillant, and Miller [9] proposed generating large deformation diffeomor-
phisms of a sphere, with given displacements of a finite set of template landmarks.
The time-dependent vector fields facilitate the optimization procedure, although the
computational cost of the algorithm is comparatively more expensive.
Quasi-conformal mapping that matches landmarks consistently has also been proposed
[32, 46]. In [32], the authors proposed computing the brain landmark matching reg-
istration, which minimizes the L2 norm of the BCs. Zeng and Gu [46] also proposed
computing quasi-conformal mappings for feature matching face registration. The BC
associated with a landmark point matching parameterization is approximated. How-
ever, either exact landmark matching or the bijectivity of the mapping cannot be
guaranteed, especially when very large deformations occur.
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3. Mathematical background. In this section, we describe some basic mathematical con-
cepts related to our algorithms. For details, we refer the reader to [6, 18, 36].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann
surfaces M and N , a map f : M → N is conformal if it preserves the surface metric up
to a multiplicative factor called the conformal factor. An immediate consequence is that
every conformal map preserves angles. With the angle-preserving property, a conformal map
effectively preserves the local geometry of the surface structure.

A generalization of conformal maps is the quasi-conformal maps, which are orientation-
preserving homeomorphisms between Riemann surfaces with bounded conformality distortion,
in the sense that their first order approximations take infinitesimal circles to infinitesimal
ellipses of bounded eccentricity [6]. Mathematically, f : C → C is quasi-conformal provided
that it satisfies the Beltrami equation,

(3.1)
∂f

∂z
= μ(z)

∂f

∂z
,

for some complex-valued function μ satisfying ||μ||∞ < 1. μ is called the Beltrami coefficient
(BC), which is a measure of nonconformality. It measures how far the map at each point
deviates from a conformal map. In particular, the map f is conformal at p when μ(p) = 0.
In other words, f is angle-preserving at p when μ(p) = 0. Infinitesimally, around a point p, f
may be expressed with respect to its local parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + μ(p)z).
(3.2)

Obviously, f is not conformal if and only if μ(p) �= 0. Inside the local parameter domain,
f may be considered as a map composed of a translation to f(p) together with a stretch map
S(z) = z+μ(p)z, which is postcomposed by a multiplication of fz(p), which is conformal. All of
the conformal distortion of S(z) is caused by μ(p). S(z) is the map that causes f to map a small
circle to a small ellipse. From μ(p), we can determine the angles of the directions of maximal
magnification and shrinking and the amount of them as well. Specifically, the angle of maximal
magnification is arg(μ(p))/2 with magnifying factor 1+ |μ(p)|; the angle of maximal shrinking
is the orthogonal angle (arg(μ(p)) − π)/2 with shrinking factor 1 − |μ(p)|. Thus, the BC μ
gives us all the information about the properties of the map (see Figure 1(D)).

The maximal dilation of f is given by

(3.3) K(f) =
1 + ||μ||∞
1− ||μ||∞ .

Let f = u+
√−1v. From the Beltrami equation (3.1),

(3.4) μ(f) =
(ux − vy) +

√−1 (vx + uy)

(ux + vy) +
√−1(vx − uy)

.
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Figure 1. (A) shows a human face with circle packing texture. Under the conformal parameterization, in-
finitesimal circles are mapped to circles as shown in (B). Under quasi-conformal parameterization, infinitesimal
circles are mapped to ellipses as shown in (C). (D) illustrates how the BC measures the conformality distortion
of a quasi-conformal map.

Let μ(f) = ρ+
√−1 τ . We can write vx and vy as linear combinations of ux and uy,

−vy = α1ux + α2uy,

vx = α2ux + α3uy,
(3.5)

where α1 =
(ρ−1)2+τ2

1−ρ2−τ2
, α2 = − 2τ

1−ρ2−τ2
, α3 =

1+2ρ+ρ2+τ2

1−ρ2−τ2
.

Similarly,

−uy = α1vx + α2vy,

ux = α2vx + α3vy.
(3.6)

Since ∇ · (−vy
vx

)
= 0, we obtain

(3.7) ∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0,

where A =
(
α1 α2
α2 α3

)
. It can be proven that A is symmetric positive definite.

A certain boundary condition is required for the well-posedness of (3.7). According to the
quasi-conformal Teichmüller theory, a quasi-conformal map can be uniquely determined up
to a Mobius transformation. In other words, three-point correspondence is required to fix the
ambiguity of the Mobius transformation, in order to have a unique solution of (3.7).

In this paper, a discrete version of (3.7) for a piecewise linear mapping between meshes
will be developed to compute the quasi-conformal mapping (see section 5.1).

Quasi-conformal mapping between two Riemann surfaces S1 and S2 can also be defined.

Instead of the BC, the Beltrami differential is used. A Beltrami differential μ(z)dzdz on a
Riemann surface S is an assignment to each chart (Uα, φα) of an L∞ complex-valued function
μα, defined on local parameter zα such that

(3.8) μα(zα)
dzα
dzα

= μβ(zβ)
dzβ
dzβ

on the domain which is also covered by another chart (Uβ , φβ). Here,
dzβ
dzα

= d
dzα

φαβ and

φαβ = φβ ◦ φ−1
α (see Figure 2).
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Figure 2. Illustration of how Beltrami differential is defined on general Riemann surfaces.

Figure 3. Illustration of quasi-conformal mapping between Riemann surfaces.

An orientation-preserving diffeomorphism f : S1 → S2 is called quasi-conformal associated

with μ(z)dzdz if for any chart (Uα, φα) on S1 and any chart (Vβ, ψβ) on S2, the mapping

fαβ := ψβ ◦ f ◦ f−1
α is quasi-conformal associated with μα(zα)

dzα
dzα

(see Figure 3).
In the case when S1 and S2 are simply connected, conformal mapping between S1 and S2

always exists. However, conformal mapping may not exist between surfaces with complicated
topology. For example, there is generally no conformal mapping between multiply connected
open surfaces (e.g., two annuli with different radii of inner circles). One would therefore be
interested in finding an optimal quasi-conformal mapping that minimizes the conformality
distortion. More specifically, it is desirable to obtain an extremal quasi-conformal mapping,
which is extremal in the sense of minimizing the || · ||∞ over all Beltrami differentials corre-
sponding to quasi-conformal mappings between S1 and S2. Extremal mapping always exists
but need not be unique. Mathematically, an extremal quasi-conformal mapping can be defined
as follows.
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Figure 4. Difference between a general quasi-conformal map and a Teichmüller map. (A) shows the original
textured mesh. It is mapped to another disk by a general quasi-conformal map. Note that the distribution of
the norm of BC is spread out. (C) shows the Teichmüller map, whose BC norm is concentrated near 0.4.

Definition 3.1. Let f : S1 → S2 be a quasi-conformal mapping between S1 and S2. f is
said to be an extremal mapping if for any quasi-conformal mapping h : S1 → S2 isotopic to f
relative to the boundary,

(3.9) K(f) ≤ K(h).

It is uniquely extremal if the inequality (3.9) is strict when h �= f .
Another kind of mapping, called the Teichmüller mapping (T-Map), is closely related to

the extremal mapping. T-Map is defined as follows.
Definition 3.2. Let f : S1 → S2 be a quasi-conformal mapping. f is said to be a T-Map

associated to the quadratic differential q = ϕdz2, where ϕ : S1 → C is a holomorphic function,
if its associated Beltrami differential is of the form

(3.10) μ(f) = k
ϕ

|ϕ|

for some constant k < 1 and quadratic differential q �= 0 with ||q||1 =
∫
S1

|ϕ| <∞.
It means a T-Map is a quasi-conformal mapping whose BC has a constant norm. Thus it

has a uniform conformality distortion over the whole domain (see Figure 4).
Extremal mapping might not be unique. However, if there is a T-Map in a homotopic

class, then it is unique. Strebel’s theorem explains the relationship between the T-Map and
extremal mapping.

Definition 3.3 (boundary dilation). Suppose S1 and S2 are open Riemann surfaces with the
same topology. The boundary dilation K1[f ] of f is defined as

(3.11) K1[f ] = inf
C
{K(h|S1\C) : h ∈ F, C ⊆ S1, C is compact},

where F is the family of quasi-conformal homeomorphisms of S1 onto S2 which are homotopic
to f modulo the boundary.

Theorem 3.4 (Strebel’s theorem; see [37, p. 319]). Let f be an extremal quasi-conformal
mapping with K(f) > 1. If K1[f ] < K(f), then f is a T-Map associated with an integrable
holomorphic quadratic differential on S1. Hence, f is also an unique extremal mapping.
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In other words, an extremal mapping between S1 and S2 with a suitable boundary con-
dition is a T-Map. For simply connected open surfaces, the required boundary conditions
are some properties on the derivatives of the boundary correspondence. More specifically, the
first derivative of the boundary correspondence should be nonzero everywhere and the second
derivative should be bounded.

Theorem 3.5 (see [35, p. 110]). Let h : ∂D → ∂D be an orientation-preserving diffeomor-
phism of ∂D. Suppose further that h′(eiθ) �= 0 and h′′(eiθ) is bounded. Then there is a T-Map
f that is the unique extremal extension of h to D. That is, f : D → D is an extremal mapping
with f |∂D = h.

Thus, if the boundary correspondence satisfies certain conditions on its derivatives, the
extremal map of the unit disk must be a T-Map.

Now, in the case when interior landmark constraints are further enforced, the existence
of a unique T-Map can be guaranteed if the boundary and landmark correspondence satisfy
suitable conditions. The unique T-Map is extremal, which minimizes the maximal confor-
mality distortion. The following theorem can be derived immediately from Strebel’s theorem
(Theorem 3.4).

Theorem 3.6 (landmark matching T-Map). Let S1 and S2 be open Riemann surfaces with
the same topology. Let {pi}ni=1 ∈ S1 and {qi}ni=1 ∈ S2 be the corresponding interior landmark
constraints. Let f : (S1, {pi}ni=1) → (S2, {qi}ni=1) be the extremal quasi-conformal mapping,
such that pi corresponds to qi for all 1 ≤ i ≤ n. If K1[f ] < K(f), then f is a T-Map associated
with an integrable holomorphic quadratic differential on (S1, {pi}ni=1). Hence, f is a unique
extremal mapping.

In particular, a unique T-Map f : D → D between unit disks with interior landmark con-
straints enforced exists if the boundary map f |∂D satisfies suitable conditions. The following
theorem can be obtained directly from Theorem 3.5.

Theorem 3.7 (landmark matching T-Map of D). Let h : ∂D → ∂D be an orientation-
preserving diffeomorphism of ∂D. Suppose further that h′(eiθ) �= 0 and h′′(eiθ) is bounded.
Let {pi}ni=1 ∈ D and {qi}ni=1 ∈ D be the corresponding interior landmark constraints. Then
there is a T-Map f : (D, {pi}ni=1) → (D, {qi}ni=1) matching the interior landmarks, which is the
unique extremal extension of h to D. That is, f : (D, {pi}ni=1) → (D, {qi}ni=1) is an extremal
T-Map with f |∂D = h matching the interior landmarks.

Theorems 3.6 and 3.7 play the fundamental role of obtaining a unique T-Map between
surfaces that matches feature landmarks consistently. We can therefore obtain a unique land-
mark matching registration by searching for an optimal BC whose maximal dilatation is the
minimum, while its norm is constant everywhere.

It turns out that in most situations, an extremal quasi-conformal mapping is a T-Map
(even for domains with nontrivial topologies). In some rare situations when an extremal
mapping is not exactly a T-Map, one can still get a T-Map whose dilation is arbitrarily close
to the extremal dilation.

Theorem 3.8 (see [37, p. 320]). Let F be a class of quasi-conformal mappings between the
open Riemann surfaces S1 and S2, which are homotopic modulo the boundary. Let K0 be the
smallest maximal dilation of the mappings in F. Then there are T-Maps in F, associated with
a meromorphic quadratic differential with at most one simple pole, whose dilation is arbitrarily
close to K0.

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

400 L. M. LUI, K. C. LAM, S.-T. YAU, AND X. GU

4. Variational formulation. In this section, we give a variational formulation for obtaining
the T-Map with the least amount of conformality distortion. We propose using the BC to
represent the mapping, instead of the commonly used representations by deformation fields
or coordinate functions. The diffeomorphic property of the mapping can then be effectively
controlled. Our goal is to formulate the problem into a variational framework to obtain an
optimal BC, μ(f), associated with the desired T-Map f .

SupposeD1 andD2 are two domains in the complex plane with the same topology. D1 and
D2 can be either simply connected or multiply connected. Suppose the boundary condition
of the desired T-Map f : D1 → D2 is known. Denote it by f |∂D1 : ∂D1 → ∂D2 = g.
Mathematically, the T-Map can be described as

(4.1)
∂f

∂z
= k

ϕ

|ϕ|
∂f

∂z
and f |∂D1 = g on ∂D1

for some constant k and integrable holomorphic function ϕ : D1 → C (ϕ �= 0).
Recall that a T-Map is extremal in the sense that it minimizes the || · ||∞ over all Beltrami

differentials corresponding to quasi-conformal mappings in the Teichmüller equivalence class.
In other words, for any h : D1 → D2 satisfying h|∂D1 = g, we have

(4.2) ||μ(f)||∞ ≤ ||μ(h)||∞,

where μ(f) and μ(h) are the BCs of f and h, respectively. Hence, our original problem (4.1)
can be formulated into a variational problem as follows:

f = argminf :D1→D2
E1(f)

:= argminf :D1→D2
{||μ(f)||∞}(4.3)

subject to
• f |∂D1 = g (boundary condition),
• μ(f) = k ϕ

|ϕ| for some constant 0 ≤ k < 1 and holomorphic function ϕ : D1 → C.

Theoretically, a diffeomorphism f is associated with a unique BC μ(f) with ||μ(f)||∞ < 1.
The BC μ(f) measures the conformality distortion of the map f . It can be considered as a
unique representation of f . The energy functional E1 aims to minimize the maximal confor-
mality distortion of the mapping.

However, minimizing E1(f) with respect to the space of all diffeomorphisms between D1

and D2 is difficult. More specifically, the variational problem (4.3) can be expressed as the
following complicated form:

f = argminf{||μ(f)||∞}

= argminf

∥∥∥∥∂f/∂z∂f/∂z

∥∥∥∥
∞

(4.4)

subject to f |∂D1 = g and μ(f) = k ϕ
|ϕ| for some constant 0 ≤ k < 1 and holomorphic function

ϕ : D1 → C.
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In order to minimize the above constrained minimization problem effectively, we propose
to reformulate the energy functional with respect to space of all BCs:

(ν, f) = argminν:D1→CE2(ν)

:= argminν:D1→C{||ν||∞}(4.5)

subject to
• ν = μ(f) and ||ν||∞ < 1,
• ν = k ϕ

|ϕ| for some constant 0 ≤ k < 1 and holomorphic function ϕ : D1 → C,

• f |∂D1 = g (boundary condition).
In other words, the minimization problem (4.3) is reformulated into an optimization prob-

lem over the space of all BCs, which are complex-valued functions defined on D1. Minimizing
the energy functional with respect to BCs is advantageous since the diffeomorphic property
of the mapping can be easily controlled [32]. Every diffeomorphism is associated to a smooth
BC μ(f). μ(f) measures the bijectivity (1-1 and onto) of f . In fact, μ(f) is related to the
Jacobian J(f) of f by the following formula:

(4.6) |J(f)|2 =
∣∣∣∣∂f∂z

∣∣∣∣
2

(1− |μ(f)|2).

Therefore, the map f is bijective if |μ(f)| is everywhere less than 1. When solving the
minimization problem (4.5), the bijectivity of the mapping in each iteration can be ensured
by enforcing ||ν||∞ < 1. Our goal is to look for an optimal BC, ν, such that its associated
quasi-conformal map is our desired T-Map.

Besides, theoretically, the second condition in the variational formulation (4.5) is unnec-
essary. More specifically, minimizing the supreme norm of ν subject to the first and third
constraints will automatically give the second condition, according to Theorem 3.6 and 3.7.
However, in practice, minimizing the optimization problem (which involves the L∞ norm)
subject to the first and third constraints using standard methods, such as linear programming
(LP) approaches, is challenging. In this paper, we propose that the QC iteration search for
a path that approaches an admissible BC, ν∗, of Teichmüller type from an initial BC. The
optimal BC, ν∗, solves the optimization problem (4.5). The second constraint is added in our
variational formulation because it gives one of the useful criteria to drive the initial BC to the
admissible BC, ν∗, of Teichmüller type. More details will be discussed in section 5.2.

The boundary condition in the variational problem (4.5) can be relaxed. The Dirichlet
condition defined on the whole boundary is not required. Also, interior landmark constraints
can be enforced. Our goal is to solve the variational problem with these landmark constraints,
which determines the optimal 1-1 correspondence (including the boundary correspondence)
automatically. In other words, the boundary condition in the problem (4.5) can be reformu-
lated as

(4.7) f(ai) = bi; f(pj) = qj for i = 1, . . . , n, j = 1, . . . ,m,

where ai and bi are corresponding landmark points or curves defined on ∂D1 and ∂D2, re-
spectively, and pj and qj are corresponding interior landmark points or curves in D1 and D2,D
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respectively. By optimizing the energy functional (4.5), the landmark matching T-Map can
be obtained, which matches landmark features consistently while minimizing the maximal
conformality distortion.

Note also that the above formulation is designed for obtaining the T-Map of two-dimensional
(2D) connected domains. However, it can easily be extended to simply connected or mul-
tiply connected open surfaces. Let S1 and S2 be two connected open surfaces with the
same topology. We can conformally parameterize S1 and S2 by φ1 : S1 → D1 ⊂ C and
φ2 : S2 → D2 ⊂ C, respectively. Then the T-Map f : S1 → S2 between S1 and S2 induces the
T-Map f̃ := φ2 ◦f ◦φ−1

1 : D1 → D2. All of the above formulation applies to f̃ . In other words,
the computation of the T-Map between connected surfaces embedded in R

3 can be reduced
to the computation of the T-Map between the conformal domains in C.

In the subsequent section, we propose an algorithm, called the quasi-conformal (QC)
iteration, to solve the above minimization problems (4.5).

5. Main algorithm. In this section, we describe an iterative scheme, called the quasi-
conformal (QC) iteration, for solving the variational problem (4.5). The QC iteration is based
on the LBS. The LBS will first be explained in detail. QC iteration will then be described.

Practically speaking, 2D domains or surfaces in R
3 are usually represented discretely

by triangular meshes. Suppose K1 and K2 are two surface meshes with the same topology
representing S1 and S2. We define the set of vertices on K1 and K2 by V 1 = {v1i }ni=1 and
V 2 = {v2i }ni=1, respectively. Similarly, we define the set of triangular faces on K1 and K2 by
F 1 = {T 1

j }mj=1 and F 2 = {T 2
j }mj=1. Our goal is to look for a piecewise linear homeomorphism

between K1 and K2 that approximates the T-Map between S1 and S2.

5.1. Linear Beltrami solver. Our goal is to look for an optimal BC associated to the
desired T-Map. Every quasi-conformal mapping is associated to a unique BC. Given a BC, it is
important to have an algorithm to reconstruct the associated quasi-conformal diffeomorphism.

Suppose f : K1 → K2 is an orientation-preserving piecewise linear homeomorphism be-
tween K1 and K2. We can assume K1 and K2 are both embedded in R

2. In the case
when K1 and K2 are surface meshes in R

3, we first parameterize them conformally by
φ1 : K1 → D1 ⊆ R

2 and φ2 : K2 → D2 ⊆ R
2. The composition of f with the conformal

parameterizations, f̃ := φ2 ◦f ◦φ−1
1 , is then an orientation-preserving piecewise linear homeo-

morphism between D1 and D2 embedded in R
2. In this paper, we assume the topology of the

surface mesh is either a connected open surface or a genus-0 closed surface. In other words,
the conformal domain Di (i = 1, 2) can either be a 2D rectangle, unit disk, punctual disk, or
unit sphere.

To compute the quasi-conformal mapping, the key idea is to discretize (3.7) with two
linear systems.

Given a map f = (u +
√−1v) : K1 → K2, we can easily compute its associated BC

μf , which is a complex-valued function defined on each triangular face of K1. To compute
μf , we simply need to approximate the partial derivatives on every face T . We denote them
by Dxf(T ) = Dxu +

√−1Dxv and Dyf(T ) = Dyu +
√−1Dyv, respectively. Note that f is

piecewise linear. The restriction of f on each triangular face T can be written as

(5.1) f |T (x, y) =
(
aTx+ bT y + rT
cTx+ dT y + sT

)
.
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Hence, Dxu(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT , and Dyv(T ) = dT . Now, the gradient
∇Tf := (Dxf(T ),Dyf(T ))

t on each face T can be computed by solving the linear system

(5.2)

(
�v1 − �v0
�v2 − �v0

)
∇T f̃i =

⎛
⎝ f̃i(
v1)−f̃i(
v0)

|
v1−
v0|
f̃i(
v2)−f̃i(
v0)

|
v2−
v0|

⎞
⎠ ,

where [�v0, �v1] and [�v0, �v2] are two edges on T . By solving (5.2), aT , bT , cT , and dT can be
obtained. The BC μf (T ) of the triangular face T can then be computed from the BC (3.1) by

(5.3) μf (T ) =
(aT − dT ) +

√−1(cT + bT )

(aT + dT ) +
√−1(cT − bT )

.

Equations (3.5) and (3.6) are both satisfied on every triangular face. Let μf (T ) = ρT +√−1 τT . The following discrete versions of (3.5) and (3.6) can be obtained:

−dT = α1(T )aT + α2(T )bT ,

cT = α2(T )aT + α3(T )bT
(5.4)

and

−bT = α1(T )cT + α2(T )dT ,

aT = α2(T )cT + α3(T )dT ,
(5.5)

where α1(T ) =
(ρT−1)2+τ2T
1−ρ2T−τ2T

, α2(T ) = − 2τT
1−ρ2T−τ2T

, α3(T ) =
1+2ρT+ρ2T+τ2T

1−ρ2T−τ2T
.

In order to discretize (3.7), we need to introduce the discrete divergence. The discrete
divergence can be defined as follows. Let T = [vi, vj , vk] and wI = f(vI), where I = i, j, or
k. Suppose vI = gI +

√−1 hI and wI = sI +
√−1 tI (I = i, j, k). Using (5.2), aT , bT , cT , and

dT can be written as

aT = AT
i si +AT

j sj +AT
k sk, bT = BT

i si +BT
j sj +BT

k sk,

cT = AT
i ti +AT

j tj +AT
k tk, dT = BT

i ti +BT
j tj +BT

k tk,
(5.6)

where

AT
i = (hj − hk)/Area(T ), A

T
j = (hk − hi)/Area(T ), A

T
k = (hi − hj)/Area(T ),

BT
i = (gk − gj)/Area(T ), B

T
j = (gi − gk)/Area(T ), B

T
k = (gj − gi)/Area(T ).

(5.7)

Suppose �V = (V1, V2) is a discrete vector field defined on every triangular faces. For each
vertex vi, let Ni be the collection of neighborhood faces attached to vi. We define the discrete
divergence Div of �V as follows:

(5.8) Div(�V )(vi) =
∑
T∈Ni

AT
i V1(T ) +BT

i V2(T ).
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By careful checking, one can prove that

(5.9)
∑
T∈Ni

AT
i bT =

∑
T∈Ni

BT
i aT ,

∑
T∈Ni

AT
i dT =

∑
T∈Ni

BT
i cT .

This gives

(5.10) Div

( −Dyu
Dxu

)
= 0 and Div

( −Dyv
Dxv

)
= 0.

As a result, (3.7) can be discretized as

(5.11) Div

(
A

(
Dxu
Dyu

))
= 0 and Div

(
A

(
Dxv
Dyv

))
= 0,

where A =
(
α1 α2
α2 α3

)
. This is equivalent to

(5.12)
∑
T∈Ni

AT
i [α1(T )aT + α2(T )bT ] +BT

i [α2(T )aT + α3(T )bT ] = 0,

(5.13)
∑
T∈Ni

AT
i [α1(T )cT + α2(T )dT ] +BT

i [α2(T )cT + α3(T )dT ] = 0

for all vertices vi ∈ D. Note that aT and bT can be written as a linear combination of the
x-coordinates of the desired quasi-conformal map f . Hence, (5.12) gives us the linear systems
to solve for the x-coordinate function of f . Similarly, cT and dT can also be written as a linear
combination of the y-coordinates of the desired quasi-conformal map f . Therefore, (5.13)
gives us the linear systems to solve for the y-coordinate function of f .

Besides, f has to satisfy certain constraints on the boundary. One common situation is to
give the Dirichlet condition on the whole boundary. That is, for any vb ∈ ∂K1,

(5.14) f(vb) = wb ∈ ∂K2.

Note that the Dirichlet condition is not required to be enforced on the whole boundary.
The proposed algorithm also allows a free boundary condition. In the case that K1 and K2

are rectangles, the desired quasi-conformal map should satisfy

f(0) = 0; f(1) = 1 f(i) = i f(1 + i) = 1 + i,

Re(f) = 0 on arc [0, i], Re(f) = 1 on arc [1, 1 + i],

Imag(f) = 0 on arc [0, 1], Imag(f) = 1 on arc [i, 1 + i].

(5.15)

When Ki (i = 1, 2) is a unit disk, we can parameterize it onto a domain Di, which is a
triangle with boundary vertices pi0, p

i
1, and p

i
2. p

i
0 is on the y-axis, whereas pi1 and pi2 are on

the x-axis. This can be done by removing a triangular face at the point 1 and map Ki to the
upper half plane using a Mobius transformation ψ(z) =

√−11+z
1−z (see Figure 5). In this case,
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..

Figure 5. Illustration of how quasi-conformal mapping between surface meshes can be transformed into a
quasi-conformal mapping between big triangles in R

2. (A) shows a quasi-conformal mapping between unit disks
(or simply connected open meshes of disk topology). The two meshes are conformally mapped to a big triangle
after cutting a triangular face near 1. Through composition, the quasi-conformal mapping can be transformed
into a quasi-conformal mapping between the big triangles in R

2. (B) shows the case of a homeomorphism
between genus-0 closed surface meshes. The two meshes are conformally parameterized onto a big triangle
in R

2, after cutting away a triangular face on each mesh. Again, through composition, the quasi-conformal
mapping can be transformed into a quasi-conformal mapping between the big triangles in R

2.

the desired quasi-conformal map f should satisfy

(5.16) f(p10) = p20; f(p
1
1) = p21 and Imag(f) = 0 on arc [p10, p

1
1].

When Ki (i = 1, 2) is a genus-0 closed surface mesh, we can again parameterize it onto a
domain Di, which is a triangle with boundary vertices pi0, p

i
1, and p

i
2. This can be done by

removing a triangular face on the surface and mapping Ki to the 2D plane using stereographic
projection (see Figure 5). In this case, the desired quasi-conformal map f̃ should satisfy

(5.17) f(p10) = p20; f(p
1
1) = p21 and f(p12) = p22.

Suppose interior landmark correspondences {pi}ni=1 ↔ {qi}ni=1 are also enforced; one
should add this constraint to the linear system. Mathematically, it is described as f(pi) = qi
(i = 1, 2, . . . , n).

Equations (5.12) and (5.13), together with the above boundary conditions, give a nonsin-
gular linear system to solve for f . In fact, solving (5.12) and (5.13) is equivalent to finding
the minimizers of

E1
LBS(u) =

∑
T∈Faces

(Dxu(T ),Dyu(T ))

(
α1(T ) α2(T )
α2(T ) α3(T )

)(
Dxu(T )
Dyu(T )

)
,

E2
LBS(v) =

∑
T∈Faces

(Dxv(T ),Dyv(T ))

(
α1(T ) α2(T )
α2(T ) α3(T )

)(
Dxv(T )
Dyv(T )

)
.

(5.18)

The matrix
( α1(T ) α2(T )
α2(T ) α3(T )

)
is symmetric positive definite for each face T . E1

LBS(u) and

E2
LBS(v) are strictly convex subject to the boundary and landmark constraints, which are

linear.
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Therefore, the equivalent linear systems (5.12) and (5.13) are symmetric positive definite.
They can be solved effectively by the conjugate gradient method. We call this algorithm the
linear Beltrami solver (LBS). Given a BC ν, we denote the obtained quasi-conformal map
from LBS by LBS(ν). If landmark constraints are enforced, we denote it by LBSLM (ν).

We note that given an arbitrary BC ν and arbitrary landmark correspondences, a quasi-
conformal mapping associated to ν might not exist. However, the LBS looks for the best
quasi-conformal mapping whose BC closely resembles ν.

5.1.1. Discrete formulation of the variational problem (4.5). With the above discretiza-
tion of Beltrami’s equation, we can now give a discrete formulation of the variational problem
(4.5). Suppose �f := �u + i�v : V 1 → V 2 is the discrete quasi-conformal map with the discrete
BC �μ : F 1 → C. The LBS solves the following linear systems:

(5.19) A1(�μ)�u = b1(�μ), A2(�μ)�v = b2(�μ),

where A1(�μ) and A2(�μ) are matrices depending on �μ; b1(�μ) and b2(�μ) are column vectors,
which also depend on �μ.

The variational problem (4.5) can now be discretized as follows. In the discrete setting,
we search for a pair of vectors, �ν∗ : F 1 → C and �f∗ := �u∗ + i�v∗ : V 1 → V 2, which solves

(5.20) (�ν∗, �f∗) = argmin
ν:F 1→C{||�ν||∞}

subject to the constraints that
• A1(�ν

∗)�u∗ = b1(�ν
∗), A2(�ν

∗)�v∗ = b2(�ν
∗), and ||�ν∗||∞ < 1;

• �ν∗ = k 
ϕ
|
ϕ| for 0 ≤ k < 1 and �ϕ is holomorphic.

Solving this variational problem with conventional approaches, such as LP methods, is
challenging. In the next subsection, we describe an iterative method, called the QC iteration,
to solve the problem.

5.2. Quasi-conformal (QC) iterations. With the LBS, one can easily obtain the best
quasi-conformal mapping associated with a given BC. In order to obtain the T-Map f , our
goal is to iteratively search for the unique admissible BC of Teichmüller type associated to f .
With the optimal BC, the desired T-Map f can be easily reconstructed using the LBS.

Recall that our problem of computing the T-Map can be formulated into an optimization
problem

(5.21) (ν, f) = argminν:D1→C{||ν||∞}

subject to (1) ν = μ(f) with ||ν||∞ < 1, (2) ν = k ϕ
|ϕ| for some constant k and holomorphic

function ϕ : D1 → C, and (3) f satisfying certain boundary conditions and/or landmark
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constraints. Note that the boundary condition in (3) can be either a Dirichlet condition
defined on the whole boundary or a free boundary condition with only a few points on the
boundary fixed.

Solving the above variational problem using conventional optimization techniques, such
as LP approaches, is challenging. In this subsection, we introduce the QC iteration to solve
the above optimization problem.

The QC iteration starts with an initial map f0 : D1 → D2 satisfying the given boundary
condition and landmark constraints. The initial map is chosen to be the quasi-conformal
mapping obtained from the LBS associated to the initial BC μ0 = 0. In other words,

(5.22) f0 = LBSLM (μ0 := 0).

Note that with the enforced landmark constraints, the BC associated to f0 might not be
equal to μ0 = 0. The LBS simply looks for the best quasi-conformal mapping whose BC
resembles μ0 as much as possible. Let ν0 be the actual BC associated to f0. This gives us a
pair (f0, ν0), for which ν0 = μ(f0).

With the initial BC ν0, our goal is to find a path in the space of all BCs, which approaches
from ν0 to the unique admissible BC ν∗ of Teichmüller type. The optimal BC, ν∗, minimizes
the variational problem (4.5). To find such a path, we consider two crucial properties of a
T-Map to drive an initial BC to an admissible BC of Teichmüller type, given by the variational
formulation (4.5). The two properties are

• ν = k ϕ
|ϕ| , where 0 ≤ k < 1 and ϕ : S1 → C is a holomorphic function; and

• ν = argminμ:S1→C{||ν||∞}, where the μ’s are admissible BCs associated with surface
diffeomorphisms satisfying the given boundary and landmark constraints.

Given the initial BC, ν0, we first apply the Laplace smoothing L on both the norm |ν0|
and the argument arg(ν0) of ν0 to obtain a new BC, μ̃1. The Laplace smoothing L is applied
on the norm and the argument of ν0 independently. In other words,

(5.23) L(ν0)(T ) = L0(T )e
iθ0(T ),

where

(5.24) L0(T ) =
∑

Ti∈Nbhd(T )

|ν0|
|Nbhd(T )| and θ0(T ) =

∑
Ti∈Nbhd(T )

arg(ν0)

|Nbhd(T )| ,

where T is a triangular face of K1, Nbhd(T ) is the set of neighborhood faces of T , and
|Nbhd(T )| is the number of neighborhood faces in the set Nbhd(T ).

When ν0 is not a constant, the Laplace smoothing on |ν0| diffuses the norm of ν0 and
hence decreases the L∞ norm of ν0. Thus, ||μ̃1||∞ < ||ν0||∞. When |ν0| is a constant, we have
||μ̃1||∞ = ||ν0||∞. It is necessary since we require the iteration to stop when the BC, ν0, is of
Teichmüller type (and hence with a constant norm).

Next, another crucial requirement is that upon convergence, the argument of the associated
BC, ν∗, of the optimal map, f∗, should be equal to the argument of a holomorphic function ϕ.
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In other words, arg(ν∗) = ϕ
|ϕ| . Having this property implies that the argument of ν∗ should

be harmonic. The reason is as follows. Suppose ϕ = |ϕ|eiθ and ν∗ = |ν∗|eiθ. Then, logϕ =
log |ϕ| + iθ. Since logϕ is holomorphic in one branch, θ should be harmonic, and hence
Δθ = 0. Motivated by this observation, in our iteration we also apply the Laplace smoothing
on arg(ν0).

At the optimal state, Δθ∗ = 0, and hence θ∗ is harmonic. We can therefore find the
harmonic conjugate of −θ∗; denote it by ζ. We get a holomorphic function ζ − iθ∗. Consider
ϕ = eζ−iθ∗ , which is holomorphic. We get that the optimal BC μ∗ = keiθ

∗
= k ϕ

|ϕ| . Hence, μ∗

is of Teichmüller type.
Besides, a BC of Teichmüller type must have a constant norm. We apply the averaging

operator A on μ̃1 to project μ̃0 to a BC with constant norm. We first change the modulus
(or the norm) of μ̃0 to a positive constant k. In other words, we consider μ1 = k arg(μ̃1). Of
course, one crucial question to ask is what positive constant k should be chosen. Since the
T-Map minimizes the L∞ norm of the BC, one natural choice is to let k = ||μ̃1||∞ − ε (where
ε is a small positive constant). Again, an important requirement is that the iteration should
stop when the BC is of Teichmüller type (and hence with a constant norm). Therefore, a
better choice for k should be

(5.25) k :=

∫
S1

|μ̃1|dS1
Area(S1)

.

In other words, k is the mean of the norm of μ̃1 over the whole domain. When μ̃1 does not
have a constant norm, k < ||μ̃1||∞. When μ̃1 has a constant norm, the norm of μ̃1 will be
kept unchanged. In summary, the averaging operator A is defined as follows:

(5.26) μ1(T ) = A(μ̃1)(T ) :=

(∑
T ∈ all faces of K1

|μ̃1|(T )
No. of faces of K1

)
μ̃1(T )

|μ̃1(T )| .

With the Laplace smoothing and averaging on ν0, we obtain a new BC, μ1 := A(L(νn)).
An updated quasi-conformal map, f1, can then be obtained by the LBS: f1 = LBSLM (μ1).
And an updated BC, ν1 := μ(f1), can be computed. Thus, we get a new pair (f1, ν1).

Therefore, given an initial BC, ν0 (which is the BC of an initial map f0), we adjust ν0 to
μ1 := A(L(ν0)). μ1 is a BC with constant norm and its argument is closer to being harmonic.
We then look for a new quasi-conformal map f1, whose BC is close to μ1, using LBS. We
obtain a new BC ν1 := μ(f1), which is closer to the Teichmüller type. We keep the iteration
going until the algorithm converges to the desired T-Map. More specifically, given the pair
(fn, νn) obtained at the n iteration, we can obtain a new pair (fn+1, νn+1) as follows:

μn+1 := A(L(νn)),

fn+1 := LBSLM (μn+1),

νn+1 := μ(fn+1).

(5.27)

Consequently, we get a sequence of pairs (fn, νn), which converges to the optimal BC
associated to the T-Map. In practice, we stop the iteration when ||νn+1 − νn|| < ε.
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We summarize the QC iteration as follows.
Algorithm 5.1 (QC iteration for open surfaces).

Input : Triangular meshes: K1 and K2; the desired landmark constraints and/or boundary
condition.
Output : Optimal BC ν and the T-Map f .

1. Obtain the initial mapping f0 = LBSLM (μ0 := 0). Set ν0 = μ(f0);
2. Given νn, compute μn+1 := A(L(νn)); Compute fn+1 := LBSLM (μn+1) and set
νn+1 := μ(fn+1);

3. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.
The QC iteration can also be applied to the case when Di (i = 1, 2) is a unit sphere. In

other words, given a set of landmark constraints between the unit sphere, our goal is to look
for the T-Map f : D1 → D2. However, special attention has to be paid in this case.

Denote the landmark correspondence by {pi}ni=1 ↔ {qi}ni=1. We can assume that the
north pole is fixed. If not, it can also be achieved by a Mobius transformation. The LBS can
be applied to unit spheres, by stereographically projecting Di onto a big triangles in R

2 (see
Figure 5). However, a numerical error near the north pole is inevitable. We therefore propose
an alternating scheme to fix this problem.

For the initial map, we add the vertices near the north pole {nj}mj=1 (z > 0.99) as land-
marks and fix all {nj}mj=1. We then compute the T-Map f0 using Algorithm 5.1. Numerical
error will be introduced near the north pole. To fix it, in our next step, we consider the
vertices {sj}mj=1 near the south pole (z < −0.99) as landmarks. The correspondence is given
by sj ↔ f1(sj). Rotate the south pole of Di to the north pole by a Mobius transformation.
We can again compute the T-Map f2 using Algorithm 5.1.

We continue this process until the iteration converges. More specifically, at the n iter-
ation where n is an even integer, we add vertices {sj}mj=1 around the south pole as land-
marks. Set the correspondence as sj ↔ fn(sj). Rotate the south pole of Di to the north
pole by a Mobius transformation, and obtain the T-Map fn+1 using Algorithm 5.1. When
n is an odd integer, we add vertices {nj}mj=1 around the north pole as landmarks. Set
the correspondence as nj ↔ fn(nj) and obtain the T-Map fn+1 using Algorithm 5.1. Set
νn+1 = μ(fn).

This alternating process between the north pole and the south pole continues until ||νn+1−
νn|| < ε.

The detailed algorithm can be summarized as follows.
Algorithm 5.2 (QC iteration for genus-0 closed surfaces).

Input : Triangular meshes: K1 and K2; the desired landmark constraints and/or boundary
condition.
Output : Optimal BC ν and the T-Map f .

1. Add vertices around the north pole as landmarks and fix their positions. Obtain the
initial T-Map f0 using Algorithm 5.1. Set ν0 = μ(f0);

2. Given fn and νn. When n is even, add vertices {sj}mj=1 around the south pole as
landmarks. Set the correspondence as sj ↔ fn(sj). Rotate the south pole of Di to the
north pole. When n is odd, add vertices {sj}mj=1 around the south pole as landmarks.
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Set the correspondence as sj ↔ fn(sj). Obtain the T-Map fn+1 using Algorithm 5.1.
Set νn+1 = μ(fn);

3. If ||νn+1 − νn|| ≥ ε, continue. Otherwise, stop the iteration.
When Di (i = 1, 2) is a unit disk, the LBS would also introduce a numerical error near 1.

To fix it, the same alternating algorithm between 1 and −1 can be applied.
The QC iterations can also be extended to compute T-Map with soft landmark constraints.

It will become useful when landmark features cannot be accurately located, and hence it is
better to compute registration with landmarks approximately (but not exactly) matched.
Denote the landmark correspondence by {pi}ni=1 ↔ {qi}ni=1. Instead of enforcing a hard
landmark constraint, soft constraints can be introduced by requiring ||pi − qi|| < δ for all
i = 1, 2, . . . , n. This can be done easily by first computing a rough guess of a landmark
matching T-Map g using Algorithm 5.1 or 5.2. The BC, μg, of g can be computed. Starting
with μg, Algorithm 5.1 or 5.2 can be applied to compute a T-Map without enforcing the interior
landmark constraints. A T-Map with soft landmark constraints can then be obtained. The
detailed algorithm can be described as follows.

Algorithm 5.3 (QC iteration for soft landmark constraints).
Input : Triangular meshes: K1 and K2; desired landmark constraints and/or boundary con-
dition; landmark constraint tolerance δ.
Output : Optimal Beltrami coefficient ν and the T-Map f .

1. Obtain an initial guess of landmark matching T-Map g0 using Algorithm 5.1 or 5.2.
Set the stopping criteria to be ||νn+1 − νn|| < 100ε.

2. Given gn and μn = BC of gn. Starting from μn, compute the T-Map gn+1 using Al-
gorithm 5.1 or 5.2, without setting the interior landmark constraints. Set the stopping
criteria to be ||νn+1 − νn|| < ε. Let μn+1 = BC of gn+1.

3. If ||pi − qi|| ≥ δ for some i = 1, 2, . . . , n, continue. Otherwise, stop the iteration.
Numerical results have demonstrated the effectiveness of the proposed iterative scheme to

compute the T-Map. The convergence of the QC iteration to the T-Map on general Riemann
surfaces with arbitrary topologies can also be theoretically proven [24]. In [24], we discuss the
theoretical proof of the convergence in detail. We have the following key results. Basically,
LBS(μ) computes the generalized harmonic map under the auxiliary metric, |dz+μdz|2, given
by the BC, μ. From the QC iteration, we obtain a sequence of BCs, {μn := A(L(νn))}∞n=1,
where νn = μ(fn). In [24], we show that μn converges to an admissible BC, μ∗. Also,
μ∗ = ν∗ := μ(f∗), where f∗ is the optimal quasi-conformal map obtained and ν∗ is its
associated BC. An important question is whether the algorithm converges to the unique
admissible BC, ν∗, of Teichmüller type, which is associated to our desired T-Map, f∗. This
can be guaranteed due to the following observations.

Theorem 5.1 (convergence of the QC iteration). The QC iteration gives a convergent se-
quence of pairs (fn, νn), where νn is the BC of fn, whose limit point is (f∗, ν∗). Here, ν∗

is the unique admissible BC of Teichmüller type associated with the extremal Teichmüller
map.

Proof. Suppose (fn, νn) is obtained at the nth iteration. fn = LBSLM (μn), where μn =
A(L(νn−1)). Note that the BC of fn is generally not equal to μn. In fact, fn is the harmonic
map between S1 and S2 under the auxiliary metric, g(μn) = |dz+μndz|2. An energy functional
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Figure 6. Example of the T-Map of the disk with fixed Dirichlet boundary condition. (A) shows the boundary
condition. (B) shows the obtained T-Map, visualized using the texture mapping. (C) shows the histogram of
the BC norm. (D) shows the sup-norm of the BC in each QC iteration.

EBC can then be defined on the space of all BCs, B(S1), by letting EBC(μ) be the harmonic
energy of the generalized harmonic map under the auxiliary metric g(μ). In [24], we prove
that EBC(μ) ≥ A2 (= surface area of S2) and equality holds if and only if μ is admissible. It is
also proven that μn converges to a minimizer of EBC , μ

∗. Since EBC attains its minimum at
μ∗ when μ∗ is admissible, it implies that the QC iteration converges to a pair (f∗, ν∗), where
ν∗ = μ(f∗) = μ∗.

Next, we show that ν∗ is of Teichmüller type. At each step of the QC iteration, a Laplace
smoothing L and averaging A are applied on νn. At the optimal state, A(L(ν∗)) = ν∗.
This implies that Δ((arg)(ν∗)) = 0 and |ν∗| = k, where k is a positive constant. Since
arg(ν∗) is harmonic, there exists a harmonic conjugate ζ of arg(ν∗) such that ζ − iarg(ν∗)
is holomorphic. Let ϕ = eζ−iarg(ν∗). ϕ is holomorphic and ν∗ = k ϕ

|ϕ| . Hence, ν∗ is an
admissible BC of Teichmüller type. By Theorem 3.6, given the prescribed landmark and
boundary constraints, there exists only one admissible BC of Teichmüller type. We conclude
that ν∗ is the unique BC associated to the unique extremal Teichmüller map.

6. Numerical experiments. In this section, we evaluate our proposed algorithm numeri-
cally by synthetic examples.

6.1. T-Map of simply connected domains. In our first numerical experiment, we test
our method to compute the T-Map of the unit disk with a given Dirichlet boundary condition.
A Dirichlet condition on the whole boundary is given as shown in Figure 6(A). The obtained
T-Map is shown in (B), which is visualized using the texture mapping. Note that the original
texture is deformed under the T-Map. However, the dilations of the ellipses deformed from the
infinitesimal circles are the same. It means that the norm of the BC is constant everywhere.
The histogram of the norm of the BC is also shown in (C), which again demonstrates that
the norm of the BC is equal to a constant k = 0.15016. The standard deviation of the
BC norm is 0.0034373. Under the QC iteration, we iteratively obtain a sequence of pair
{fn, νn = μ(fn)}∞n=0. (D) shows the supreme norm of BC, ||νn||∞, in each QC iteration. It
decreases as iteration increases, indicating that the algorithm converges to an optimized T-
Map minimizing the maximal conformality distortion. Also, the algorithm converges quickly
in less than 20 iterations.
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Figure 7. Another example of the T-Map of the disk with fixed Dirichlet boundary condition. (A) shows
the obtained T-Map, visualized using the texture mapping. (B) shows the histogram of the norm of the BC.
(C) shows the sup-norm of the BC in each QC iteration.

Figure 8. Computation of T-Map on an irregular mesh. The QC iteration is independent of the mesh
structure. The boundary condition is given and the associated T-Map is constructed, as shown in (A). (B) shows
the histogram of the norm of the BC.

Besides, the Dirichlet boundary condition can be of arbitrary shape. Figure 7 shows a
T-Map between the unit disk and the amoeba shape with given boundary conditions. The
norm of BC is also constant everywhere, as demonstrated in (B), indicating that the obtained
mapping is indeed a T-Map. (C) shows the sup-norm of BC in each QC iteration.

Our proposed QC iteration is also independent of the mesh structure. Figure 8(A) shows
a mesh with an irregular mesh structure. The boundary condition is given and the associated
T-Map is constructed. (B) shows the histogram of the norm of the BC, which is accumulated
at 0.28. It demonstrates that the obtained map is indeed a T-Map. This result shows that
our proposed method is effective for computing a bijective T-Map between meshes, even with
irregular mesh structure.

Our algorithm can also be applied to the situation when only a few landmark constraints
are enforced on the boundary (instead of the Dirichlet condition defined on the whole bound-
ary). In Figure 9, we test our algorithm to compute the T-Map of the unit disk with only eight
landmark point constraints on the boundary. (A) shows the T-Map. Again, the dilations of
the ellipses deformed from the small circles are the same, meaning that the norm of the BC
is constant everywhere. (B) shows the histogram of the BC norm. The norm k of the BC is
equal to 0.201. (C) shows the sup-norm of the BC in each QC iteration. Again, it converges
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Figure 9. T-Map of the disk with only eight landmark point constraints on the boundary. (A) shows the
T-Map. (B) shows the histogram of the BC norm. (C) shows the sup-norm of the BC in each QC iteration.
(D) shows the automatically obtained optimal boundary correspondence. (E) shows the histogram of the BC
norm under the T-Map with arc-length parameterized boundary condition. (F) shows the histogram of the BC
norm under harmonic map with arc-length parameterized boundary condition.

quickly in less than 60 iterations. Our algorithm automatically detects the optimal boundary
correspondence. (D) shows the obtained optimal boundary correspondence. (E) shows the
histogram of the BC norm under the T-Map with arc-length parameterized boundary condi-
tion (of which the prescribed constraints on the boundary are satisfied). Although a T-Map
can still be obtained, the norm of the BC is equal to 0.23, which is higher than the case
when only eight landmark point constraints are enforced. Hence, the obtained T-Map is not
extremal. (F) shows the histogram of the BC norm under the harmonic map with arc-length
correspondence on the boundary. Note that the distribution of the conformality distortion is
highly nonuniform.

6.2. T-Map of multiply connected domains. Our method can also be applied to multiply
connected domains. In Figure 10, we test our method to compute the T-Map of an annulus
with Dirichlet boundary condition. (A) shows the obtained T-Map. (B) shows the histogram
of the norm of BC, which illustrates that the obtained map is indeed a T-Map. Besides,
the BC of a T-Map is of the form μ = k ϕ

|ϕ| , where ϕ is holomorphic. The imaginary part of

log(μ), which is equal to the argument of μ, must be harmonic. (C) shows the Laplacian of the
argument of the BC. It is accumulated at 0, meaning that the argument of the BC is indeed
harmonic. (D) shows the supreme norm of the BC in each iteration. Again, it decreases as
iteration increases and converges quickly in just six iterations.
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Figure 10. T-Map of the annulus with fixed Dirichlet boundary condition. (A) shows the obtained T-Map,
visualized using the texture mapping. (B) shows the histogram of the BC norm. (C) shows the histogram of the
Laplacian of the argument of the BC. (D) shows the sup-norm of the BC in each QC iteration.

Figure 11. T-Map of the multiply connected domain containing three holes with fixed Dirichlet boundary
condition. (A) shows the obtained T-Map. (B) shows the histogram of the norm of the BC. (C) shows the
sup-norm of the BC in each QC iteration.

In Figure 11, we compute the T-Map between multiply connected domains having three
holes with a given boundary condition. (A) shows the obtained T-Map. The histogram of the
BC norm and the supreme norm of BC in each iteration are shown in (B) and (C), respectively.
Note that the algorithm converges quickly in 10 iterations. Figure 12 demonstrates the result
of the T-Map between more complicated multiply connected domains having six holes. The
obtained T-Map is shown in (A). (B) and (C) show the histogram of the BC norm and the
supreme norm of the BC in each iteration, respectively. Again, the algorithm converges quickly
in 30 iterations.

6.3. T-Map with interior landmark constraints. Our algorithm can compute the T-Map
with interior landmark constraints enforced. Figure 13 shows the T-Map between the unit
disk with 24 interior landmark constraints and few point constraints on the boundary enforced.
(A) shows the 24 landmark constraints and 4 point constraints on the boundary. (B) shows
the obtained T-Map, visualized using the texture mapping. (C) shows the sup-norm of the
BC in each QC iteration, which converges within 30 iterations. (D) shows the histogram of

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

T-MAP AND ITS APPLICATIONS 415

Figure 12. T-Map of the multiply connected domain containing six holes with fixed Dirichlet boundary
condition. (A) shows the obtained T-Map. (B) shows the histogram of the norm of the BC. (C) shows the
sup-norm of the BC in each QC iteration.

Figure 13. T-Map between the disks with 24 interior landmark constraints and 4 point constraints on the
boundary enforced. (A) shows the 24 landmark constraints and 4 point constraints on the boundary. (B) shows
the T-Map. (C) shows the sup-norm of the BC in each QC iterations. (D) shows the histogram of the norm
of the BC. (E) shows the histogram of the BC norm under the T-Map with arc-length parameterized boundary
condition.

the norm of the BC. The norm of the BC is uniformly equal to 0.2. (E) shows the histogram
of the BC norm of a T-Map with the arc-length boundary correspondence enforced (of which
the prescribed four point constraints on the boundary are satisfied). As expected, the norm
of the BC is larger (= 0.28), which means the T-Map is not an extremal one.
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Figure 14. T-Map between the disks with three interior landmark curve constraints enforced. (A) shows
the T-Map with three landmark curve constraints enforced. (B) shows the histogram of the norm of the BC.
(C) shows the sup-norm of the BC in each QC iteration.

Figure 15. T-Map between the unit disks with 20 interior landmark constraints enforced (without boundary
constraints). (A) shows the 20 landmark constraints. (B) shows the T-Map. (C) shows the histogram of the
norm of the BC.

Besides, interior landmark curve constraints can be enforced. In Figure 14, we test our al-
gorithm to compute the T-Map of the unit disk with three interior landmark curve constraints
enforced. (A) shows the obtained T-Map. (B) shows the histogram of the norm of the BC.
The norm of the BC is accumulated at 0.53. (C) shows the sup-norm of the BC in each QC
iteration. The sup-norm of the BC is decreasing, indicating that the algorithm converges to
an optimized T-Map, minimizing the maximal conformality distortion.

We also test our algorithm for the case when only interior landmark constraints are en-
forced (without boundary condition). Figure 15 shows the computed T-Map with 20 interior
landmark point constraints enforced. (A) shows the constraints of the feature points. (B)
shows the obtained T-Map. (C) shows the histogram of the norm of the BC. Although no
boundary constraint is enforced, our algorithm is able to automatically determine an optimal
boundary correspondence of the T-Map minimizing the geometric distortion.

Besides hard landmark constraints, our algorithm can also be applied to compute a T-Map
with soft landmark constraints. Figure 16 shows an example of the T-Map of the unit disk with
soft landmark constraints. (A) shows the T-Map with hard landmark constraints enforced.
The histogram of the norm of the BC is plotted, which is accumulated at 0.41. Landmarks are
perfectly matched. (B) shows the obtained T-Map with soft landmark constraints. Landmarks
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Figure 16. T-Map with soft landmark constraints. (A) shows the obtained T-Map with hard landmark
constraints. The histogram of the norm of BC is plotted, which is accumulated at 0.4193. (B) shows the
obtained T-Map with soft landmark constraints. Landmarks cannot be exactly matched, but less conformality
is introduced, as shown in the histogram of the norm of the BC.

Figure 17. T-Map between the spheres. (A) shows landmark constraints on the sphere. (B) shows the
T-Map. (C) shows the histogram of the norm of the BC.

cannot be exactly matched, but less conformality distortion is introduced. As shown in the
histogram of the BC, the norm of the BC is accumulated at 0.35. It is less than that of the
case when hard landmark constraints are enforced.

Our algorithm can be applied as well to computing the T-Map between the unit sphere
with interior landmark constraints enforced. Figure 17(A) shows 20 landmark constraints on
the sphere. (B) shows the obtained T-Map. (C) shows the histogram of the norm of the BC.
The norm of the BC is concentrated near 0.21, meaning that the mapping is indeed a T-Map.
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Table 1
Computational time for QC iterations.

Vertex number Time ||µ||∞
Analytic example 8936 1.297 s 0.4122

4 points on boundary + 3 landmark curves 8257 4.46 s 0.4154
Disk (Dirichlet boundary) 8257 5.420 s 0.2295

8 points on boundary 8257 6.645 s 0.2120
4 points on boundary + 20 landmarks 8257 8.467 s 0.2843

Arbitrary shape 8257 10.056 s 0.3475
Disk free boundary + 20 landmarks 8257 18.579 s 0.1855

3 holes disk 17746 15.030 s 0.4088
6 holes disk 22979 17.680 s 0.4433

Sphere 10242 34.679 s 0.3086

Figure 18. Comparison of the landmark matching T-Map with the harmonic map, thin plate spline (TPS),
and LDDMM. (A) shows seven landmark point constraints. (B) shows the obtained landmark matching T-Map.
(C) shows the landmark matching harmonic map. (D) shows the mapping obtained from TPS. (E) shows the
mapping obtained from LDDMM.

6.4. Computational time. To test the efficiency of the QC iterations, we record the
computational time of the proposed QC iterations. All our experiments were done on a laptop
with an Intel Core i7 2.70 GHz CPU and 8 GB RAM. In Table 1, we list the computational
time of the QC iterations for the experiments we have done. Note that for a reasonably
dense mesh (∼ 8K vertices), the computational time is generally less than 10 seconds. For
more complicated domains with denser meshes, the computational time is longer but the
whole computation can still be done within 35 seconds. We note that the implementation
of the QC iterations has not been optimized. It is currently implemented using MATLAB.
The implementation of the algorithm can be further improved. Also, the algorithm can be
parallelized. Using GPU, it is believed that the computational time can be dramatically
sped up.

6.5. Comparison with existing methods. To test the effectiveness of our proposed method,
we compare our algorithm with other existing methods. In Figure 18, we compare the land-
mark matching T-Map with three other existing methods, namely, (1) the harmonic map
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[40], (2) thin plate spline (TPS) [3], and (3) LDDMM [17, 9, 10, 7, 8]. Seven landmark
correspondences are enforced, as shown in (A). (B) shows the obtained landmark matching
T-Map. It is bijective, and landmarks are perfectly matched. (C) shows the landmark match-
ing harmonic map. Landmarks are exactly matched, but overlaps (flips) occur. (D) shows the
mapping obtained from TPS. Landmarks are not exactly matched and overlaps occur. (E)
shows the mapping obtained from LDDMM. A smooth bijective mapping can be obtained.
Also, landmarks can be better matched (although not perfectly).

Tables 2 and 3 give the quantitative comparison between different methods. Table 2 gives
the comparisons under different sizes of deformation. The computational time and number of
overlapping faces are captured. Harmonic map and TPS are the fastest algorithms. However,
both methods cannot obtain a bijective mapping that matches landmark exactly. LDDMM
can compute a smooth bijective mapping that closely matches landmarks, under different sizes
of deformation. However, the computational cost is comparatively more expensive (382 sec-
onds for tiny deformation and 409 seconds for large deformation). Using our algorithm, we can
obtain a bijective T-Map that matches landmarks perfectly. The computational time is also
reasonably fast, taking about 2.89 seconds for tiny deformation and 4.61 for large deformation.
Zero overlapping faces are observed under all sizes of deformation, meaning that the T-Maps
obtained are indeed bijective. Table 3 gives the comparisons under different numbers of land-
marks. Again, harmonic map and TPS are the fastest algorithms, but both methods cannot
obtain a bijective mapping. For example, harmonic map gives 18 overlapping faces if three
interior landmark constraints are enforced and 74 overlapping faces if 20 interior landmarks
are used. LDDMM can compute a smooth bijective mapping that closely matches landmarks,
under different numbers of landmark constraints. Again, the computational cost is compara-
tively more expensive. For example, it takes 377 seconds with 20 landmark constraints. Using
our algorithm, we can obtain a bijective T-Map that matches landmarks perfectly, under dif-
ferent numbers of landmark constraints. The computational time is reasonably fast, which
takes about 3.4 seconds with 7 landmarks and 4.15 seconds with 20 landmarks.

Table 2
Comparison with other methods with different sizes of deformation.

(Time / Overlap) Tiny Moderate Large

T-Map 2.892 s / 0 4.412 s / 0 4.610 s / 0
T-Map 2.892 s / 0 4.412 s / 0 4.610 s / 0

Harmonic map 1.633 s / 13 1.665 s / 42 1.652 s / 110
TPS 0.308 s / 20 0.339 s / 27 0.253 s / 27

LDDMM 382.316 s / 0 396.240 s / 0 409.902 s / 0

Table 3
Comparison with other methods under different numbers of interior landmarks.

(Time / Overlap) 3 7 20

T-Map 5.623 s / 0 3.405 s / 0 4.152 s / 0
Harmonic map 1.626 s / 18 1.637 s / 42 1.610 s / 74

TPS 0.299 s / 17 0.299 s / 27 0.278 s / 21
LDDMM 504.727 s / 0 353.963 s / 0 377.400 s / 0
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Figure 19. (A) shows two brain surfaces with three corresponding landmarks. (B) shows the T-Map with
three landmark constraints enforced. (C) shows the histogram of the norm of the BC.

7. Applications. In this section, we apply our proposed algorithms for computing land-
mark matching T-Maps to practical problems. More specifically, we will consider the problems
of computing brain landmark matching registrations, constrained texture mappings, and hu-
man face registrations.

7.1. Brain landmark matching registration. Landmark-based surface registrations are
commonly applied for finding meaningful 1-1 correspondences between human brain cortical
surfaces [40, 38, 26, 27, 28]. On cortical surfaces, sulcal landmarks can be labeled either
manually by neuroscientists or automatically based on various geometric quantities [29]. The
sulcal landmarks are important anatomical features. It is therefore desirable to obtain a regis-
tration between the cortical surfaces with least geometric distortion, which matches the sulcal
landmarks as much as possible. Our algorithms for computing landmark matching T-Maps
can be applied. In Figure 19, we apply our algorithm to compute the T-Map between two
different brain surfaces with three corresponding landmarks labeled. (A) shows the corre-
sponding sulcal landmarks, indicated by different colors. (B) shows the obtained T-Map with
three landmark constraints enforced, visualized by the circle packing textures. The sulcal
landmarks are exactly matched under the mapping. (C) shows the histogram of the norm of
the associated BC. The norm is a constant showing that the obtained registration is indeed a
T-Map. We also test the method to register cortical surfaces with more sulcal landmarks. In
Figure 20, we compute the T-Map between two brain surfaces with six corresponding sulcal
landmarks labeled. The obtained registration and the norm of its associated BC are shown
in (B) and (C), respectively. The landmarks are exactly matched. Again, the norm of the
BC is a constant, showing that the obtained registration is a T-Map which minimizes the
conformality distortion.
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Figure 20. (A) shows two brain surfaces with six corresponding landmarks. (B) shows the T-Map with six
landmark constraints enforced. (C) shows the histogram of the norm of the BC.

7.2. Constrained texture mapping. Texture mapping is one of the major photorealistic
techniques in computer graphics for generating realistic and visually rich three-dimensional
(3D) surfaces [5, 14]. It is usually done by putting each surface mesh in correspondence with
a 2D image [45, 13, 20, 19, 34, 21, 2, 1]. Such a correspondence between the surface mesh
and the image is called the texture mapping. The use of constrained texture mappings is
popular, in which the texture mappings are guided by landmark features labeled interactively
by users. Ideally, the texture mapping should have minimum distortion, while matching the
landmark points exactly. We apply our algorithms to compute the landmark matching T-Map
between the surface mesh and the image and use it as the texture mapping. In Figure 21, we
map a cat image onto the human face surface. (A) shows the corresponding landmark points
labeled manually on the human face and the texture image. The landmark matching T-Map
is computed and is used as texture mapping to project the cat image onto the human face.
The textured surface is shown in (B). (C) shows the norm of the associated BC of the texture
mapping. The norm is approximately a constant. It means the texture mapping computed is
indeed a T-Map, which minimizes the conformality distortion.

In Figure 22, we further test our algorithm on a multiply connected human face. (A)
and (B) show the texture (tiger) image and a multiply connected human face. Corresponding
landmark points are labeled manually on the texture image and the surface mesh. In (C),
the surface mesh is mapped to a multiply connected domain in two dimensions by a T-Map
matching the landmark points exactly. (D) shows the textured surface. (E) shows the norm
of the associated BC of the texture mapping. The norm is approximately a constant, which
means the texture mapping computed is indeed a T-Map.

7.3. Human face registration. In face recognition, finding accurate spatial correspon-
dences between human faces is a crucial process in comparing and recognizing faces effectively
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Figure 21. (A) shows a human face and a texture image of a cat. Corresponding landmark points are
labeled on the surface and the texture image. We compute the T-Map that matches the landmark points. The
T-Map is used as constrained texture mapping to project the texture image onto the surface, as shown in (B).
(C) shows the histogram of the norm of the BC.

Figure 22. (A) a texture image of a tiger. (B) shows a multiply connected human face. Corresponding
landmark points are labeled on the surface and the texture image. In (C), the surface mesh is mapped to a
multiply connected domain in two dimensions by a T-Map matching the landmark points exactly. The T-Map
is used as constrained texture mapping to project the texture image onto the surface, as shown in (D). (E) shows
the histogram of the norm of the BC.

[43, 46]. Corresponding features can be extracted on human faces based on curvatures, such
as high curvature points near nose tips and lips. Accurate face registration can then be ob-
tained by computing a mapping that matches the corresponding features. Landmark matching
T-Map, which minimizes the geometric distortion, can then be used. In Figure 23, we apply
our algorithm to compute the registration between male and female human faces. The hu-
man faces are both simply connected open surfaces. Corresponding feature points are labeled
on both faces. The associated T-Map is obtained, which is visualized by texture mapping.
The corresponding features are exactly matched. (C) shows the histogram of the norm of
the BC, which is almost a constant. This demonstrates that the obtained registration is
a T-Map.

Our algorithm can also be applied to obtain registration between multiply connected
human faces. Figure 24 shows two multiply connected human faces. Corresponding feature
landmarks are labeled. T-Map matching the features exactly is computed, as shown in (B).
It is again visualized by texture mapping. (C) shows the histogram of the norm of the BC.
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Figure 23. T-Map of the simply connected domain with landmark point constraints. (A) shows the two faces
with landmark point constraints. (B) shows the T-Map of the two faces. The resultant mapping is illustrated
by texture mapping. (C) shows the histogram of the norm of the BC.

Figure 24. T-Map of the multiply connected domain with landmark point constraints. (A) shows the
two faces with landmark point constraints. (B) shows the T-Map of the two faces. The resultant mapping is
illustrated by texture mapping. (C) shows the histogram of the norm of the BC.

Again, it is almost a constant, which demonstrates that the obtained registration is a T-Map
minimizing the conformality distortion.

8. Conclusion. We address the problem of computing Teichmüller mappings (T-Maps)
between surfaces, which minimizes the maximal conformality distortion. The proposed algo-
rithms can be applied to obtain a landmark matching registration between surface meshes.
Given a set of corresponding landmark points or curves defined on both surfaces, a unique
landmark matching T-Map can be obtained, which minimizes the conformality distortion.
In this paper, we propose an efficient iterative algorithm, called the quasi-conformal (QC)
iteration, to compute the T-Map. The key idea is to represent the set of diffeomorphisms by
Beltrami coefficients (BCs). We then look for an optimal BC associated to the desired T-Map.
The associated T-Map can be efficiently reconstructed from the optimal BC using the linear
Beltrami solver (LBS). Using our proposed method, the T-Map between reasonably dense
meshes can be accurately and efficiently computed. The obtained registration is guaranteed
to be bijective. Besides, T-Map with soft landmark constraints can also be computed using
our proposed algorithm. It becomes useful when landmark features cannot be accurately
located, and hence it is better to compute registration with landmarks approximately (but
not exactly) matched. We applied the proposed algorithm to real applications, such as brain
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landmark matching registration, constrained texture mapping, and human face registration.
Experimental results shows that our method is effective in computing a nonoverlap landmark
matching registration with the least amount of conformality distortion.
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