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Abstract A numerical method for computing the extremal Teichmüller map between
multiply-connected domains is presented. Given two multiply-connected domains, there
exists a unique Teichmüller map (T-Map) between them minimizing the conformality distor-
tion. The extremal T-Map can be considered as the ‘most conformal’ map between multiply-
connected domains. In this paper, we propose an iterative algorithm to compute the extremal
T-Map using the Beltrami holomorphic flow (BHF). The BHF procedure iteratively adjusts
the initial map based on a sequence of Beltrami coefficients, which are complex-valued func-
tions defined on the source domain. It produces a sequence of quasi-conformal maps, which
converges to the T-Map minimizing the conformality distortion. We test our method on syn-
thetic data together with real human face data. Results show that our algorithm computes the
extremal T-Map between two multiply-connected domains of the same topology accurately
and efficiently.

Keywords Teichmüller map · Extremal map · Multiply-connected ·
Beltrami holomorphic flow · Beltrami coefficient · Quasiconformal map

1 Introduction

Establishing meaningful mappings between different domains is an important research topic
in many fields. Applications can be found in different areas such as registration, shape analysis
and grid generation. Conformal mapping has been widely used to establish a good one-to-
one correspondence between different domains, since it preserves the local geometry well
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[3,4,8–12,24,27]. According to the Riemann mapping theorem, conformal mappings
between simply-connected domains always exist. However, this fact is not valid for multiply-
connected domains. Given two multiply-connected domains with different conformal mod-
ules, there is generally no conformal mapping between them. In this case, it is usually desir-
able to obtain a mapping that minimizes the conformality distortion. Every diffeomorphic
mapping is associated with a unique Beltrami coefficient(BC), which is a complex-valued
function,μ f , defined on the source domain. The BC,μ f , measures the deviation of the map-
ping from a conformal map. Given two multiply-connected domainsΩ1 andΩ2, there exists
a unique and bijective map f : Ω1 → Ω2, called the extremal Teichmüller map (T-Map),
minimizing the L∞ norm of the BC [5]. Therefore, the extremal T-Map can be considered as
the ‘most conformal’ map between multiply-connected domains, which is a natural extension
of conformal mappings.

In this work, our goal is to numerically compute the extremal T-Map between two multiply-
connected domains Ω1 and Ω2 of the same topology. Mathematically, we want to solve the
following:

f ∗ = argmin f :Ω1→Ω2
{||μ f ||∞} (1)

such that f ∗ is a diffeomorphism between Ω1 and Ω2.
We present in this paper a numerical method to solve the above optimization problem.

The domains of interest can either be planar domains or surfaces embedded in R
3. We

propose an iterative algorithm to obtain the extremal T-Map using the Beltrami holomorphic
flow (BHF). The BHF procedure iteratively adjusts the initial map, based on a sequence of
Beltrami coefficients. It produces a sequence of quasi-conformal maps, which converges to
the desired extremal T-Map. Numerical experiments have been carried out on synthetic data
together with real human face data. Numerical results show that our algorithm computes the
extremal T-Map between multiply-connected domains accurately and efficiently.

The rest of the paper is organized as follows. In Sect. 2, we review some previous works
closely related to this paper. In Sect. 3, we describe some basic mathematical background
necessary for explaining this work. In Sect. 4, we formulate the mathematical problem in
details. Our proposed algorithm to compute the extremal T-Map is discussed in Sect. 5. The
detailed numerical implementation of our proposed model is explained in Sect. 6. In Sect. 7,
we show the numerical results to demonstrate the effectiveness of the proposed method. A
concluding remark and a discussion of future directions are given in Sect. 8.

2 Related Work

Extremal T-Maps are closely related to conformal mappings. Simply-speaking, an extremal
T-Map is the optimal quasi-conformal map that is closest to conformal. The computation of
conformal mappings have been extensively studied [3,4,8–12,24,27]. For example, Hurdal
et al. [12] proposed to compute the conformal parameterizations using circle packing and
applied it to register human brains. Porter [24] proposed to use the interpolating polynomial
method for computing the conformal mappings of simply-connected planar domains. Gu et
al. [8,9,27] proposed to compute the conformal parameterizations of Riemann surfaces for
the purpose of registration using harmonic energy minimization and holomorphic 1-forms.
Later, the authors proposed the curvature flow method to compute conformal parameteri-
zations of high-genus surfaces onto their universal covering spaces [13,30,32]. Hale et al.
[11] proposed to compute conformal maps to multiply-slit domains by using a Schwarz–
Christoffel formulation. DeLillo et al. [3] proposed a numerical method to compute the
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Schwarz–Christoffel transformation for multiply-connected domains. Conformal maps have
been widely used since it preserves the local geometry well.

In real world situations, mappings are usually quasi-conformal (QC), which induce
bounded amount of conformality distortion. The numerical computation of quasi-conformal
maps have been widely studied. Mastin et al. [22] proposed to use finite difference methods
to compute QC mappings on complex plane. These methods are difficult to implement for
arbitrary regions. Later, the authors proposed a finite difference scheme for constructing QC
mappings for arbitrary simply and doubly-connected region of the plane onto a rectangle
[23]. In [1], Daripa proposed a numerical construction of QC mappings in the plane by solv-
ing the Beltrami equation. This method was further extended to compute the QC map of
an arbitrary doubly connected domain with smooth boundaries onto an annulus [2]. All of
these methods deal with simple domains in the complex plane. Recently, surface QC maps
have also been studied. Lui et al. [20] proposed to compute quasi-conformal registration
between hippocampal surfaces which matches geometric quantities (such as curvatures) as
much as possible. A method called the Beltrami holomorphic flow is used to obtain the opti-
mal Beltrami coefficient associated to the registration [17,19,21,29]. Beltrami coefficient has
been applied to represent general surface homeomorphisms, which is comparatively easier
to manipulate than 3D coordinate functions. Using the Beltrami representation, compression
of surface maps has been proposed [19], which can be applied for video compression [17].
Wei et al. [31] also proposed to compute QC mapping for feature matching face registra-
tion. The Beltrami coefficient associated to a landmark points matching parameterization is
approximated. However, either exact landmark matching or the bijectivity of the mapping
cannot be guaranteed, especially when very large deformations occur. In order to compute QC
mapping from the Beltrami coefficients effectively, Quasi-Yamabe method was introduced,
which applied the curvature flow method to compute the QC mapping [33]. The algorithm
can deal with surfaces with general topologies. Later, extremal QC mappings, which min-
imize conformality distortion has been proposed. Zorin et al. [28] proposes a least square
algorithm to compute mapping between connected domains with given Dirichlet condition
defined on the whole boundaries. The extremal mapping is obtained by minimizing a least
square Beltrami energy, which is non-convex. The algorithm can obtain an extremal mapping
when initialization is carefully chosen. However, the convergence to the global minimum and
the bijectivity of the mapping cannot be guaranteed. Recently, Lui et al. [18] proposed to
compute the unique T-Map between simply-connected Riemann surfaces of finite type. The
proposed algorithm was applied for landmark-based surface registration.

3 Overview of Quasi-Conformal Geometry

In this section, we describe some basic mathematical concepts relevant to our algorithms.
For details, we refer the readers to [6,14].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann
surfaces M and N , a map f : M → N is conformal if it preserves the surface metric up
to a multiplicative factor called the conformal factor. A generalization of conformal maps
is the quasi-conformal maps, which are orientation preserving homeomorphisms between
Riemann surfaces with bounded conformality distortion, in the sense that their first order
approximations takes small circles to small ellipses of bounded eccentricity [6]. Mathemat-
ically, f : C → C is quasi-conformal provided that it satisfies the Beltrami equation:

∂ f

∂z
= μ(z)

∂ f

∂z
. (2)
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Fig. 1 a Illustrates how the conformality distortion under a quasi-conformal map can be determined by μ. b
A general quasi-conformal map visualized by texture mapping. It illustrates that conformality distortion is not
necessarily uniform for a general quasi-conformal map. c A Teichmüller map, whose conformality distortion
is uniform everywhere. The histograms in (b), (c) the distributions of the norms of the associated Beltrami
coefficients. Sparsity of the histogram measures the uniformity of the conformality distortion

for some complex-valued function μ satisfying ||μ||∞ < 1. μ is called the Beltrami coef-
ficient, which is a measure of non-conformality. μ f measures how far the map is deviated
from a conformal map. μ ≡ 0 if and only if f is conformal. Infinitesimally, around a point
p, f may be expressed with respect to its local parameter as follows:

f (z) = f (p)+ fz(p)z + fz(p)z

= f (p)+ fz(p)(z + μ(p)z). (3)

Obviously, f is not conformal if and only ifμ(p) �= 0. Inside the local parameter domain,
f may be considered as a map composed of a translation to f (p) together with a stretch map
S(z) = z + μ(p)z, which is postcomposed by a multiplication of fz(p). All the conformal
distortion of S(z) is caused by μ(p). S(z) is the map that causes f to map a small circle
to a small ellipse. From μ(p), we can determine the directions of maximal magnification
and shrinking and the amount of their distortions as well. Specifically, the angle of maximal
magnification is arg(μ(p))/2 with magnifying factor 1 + |μ(p)|; The angle of maximal
shrinking is the orthogonal angle (arg(μ(p))−π)/2 with shrinking factor 1 −|μ(p)|. Thus,
the Beltrami coefficient μ gives us all the information about the properties of the map (see
Fig. 1a).

The maximal dilation of f is given by:

K ( f ) = 1 + ||μ||∞
1 − ||μ||∞ . (4)

Quasiconformal mapping between two Riemann surfaces R1 and R2 can also be defined.
Instead of the Beltrami coefficient, the Beltrami differential has to be used. A Beltrami
differential μ(z) dz̄

dz on the Riemann surface R1 is an assignment to each chart (Uα, φα) of an
L∞ complex-valued function μα , defined on local parameter zα such that

μα(zα)
dzα
dzα

= μβ(zβ)
dzβ
dzβ

, (5)

on the domain which is also covered by another chart (Uβ, φβ), where dzβ
dzα

= d
dzα
φαβ and

φαβ = φβ ◦ φ−1
α .

An orientation preserving diffeomorphism f : R1 → R2 is called quasi-conformal asso-

ciated withμ(z) dz
dz if for any chart (Uα, φα) on R1 and any chart (Vβ, ψβ) on R2, the mapping

fαβ := ψβ ◦ f ◦ φ−1
α is quasi-conformal associated with μα(zα)

dzα
dzα

.
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4 The Mathematical Formulation of the Problem

4.1 The Extremal Problem

Given two multiply-connected domains or surfacesΩ1 andΩ2, both with n + 1 boundaries.
Denote the boundaries of Ω1 and Ω2 by {γ0, γ1, . . . , γn} and {γ ′

0, γ
′
1, . . . , γ

′
n} respectively.

Conformal maps between arbitrary multiply-connected domains generally do not exist. One
might be interested in studying extremal quasi-conformal mappings, which are extremal in
the sense of minimizing the || · ||∞ over all Beltrami differentials corresponding to quasi-
conformal mappings betweenΩ1 andΩ2. The idea of extremality is to make K ( f ) as small
as possible such that f is as ‘nearly conformal’ as possible. Extremal mapping always exists
but needs not to be unique.

Let f : Ω1 → Ω2 be a quasi-conformal mapping between Ω1 and Ω2. Assume that f
satisfies the boundary condition: f (γi ) = γ ′

i for all i . Note that the point-wise correspon-
dences between the boundaries are not required. f is said to be an extremal mapping if for
any quasi-conformal mapping h : Ω1 → Ω2 satisfying the boundary condition,

K ( f ) ≤ K (h) (6)

It is called uniquely extremal if the inequality (6) is strict for h �= f [25,26].
Note that an extremal mapping is not unique for general cases. According to Eq. (4), K ( f )

is minimum if and only if ||μ( f )||∞ is minimized. The extremal problem can therefore be
expressed as finding f ∗ : Ω1 → Ω2 that solves:

f ∗ = argmin f ∈A{||μ f ||∞} (7)

where A = { f : Ω1 → Ω2 : f is a quasi-conformal map, f (γi ) = γ ′
i for 0 ≤ i ≤ n}.

The extremal map is closely related to another type of mapping, called the Teichmüller map
(T-Map). Simply-speaking, a T-Map is a quasi-conformal map with uniform conformality
distortion. Mathematically, a quasi-conformal map g is said to be a T-Map associated with
an integrable holomorphic function ϕ : Ω1 → C if its associated Beltrami coefficient is of
the form:

μ(g) = k
ϕ

|ϕ| (8)

for some constant 0 ≤ k < 1 and integrable holomorphic function ϕ �= 0. The Beltrami
coefficient of this form is said to be of Teichmüller type.

Figure 1b, c shows the difference between a general quasi-conformal map and a T-Map. (b)
shows a general quasi-conformal map visualized by texture mapping. The small circles on the
source domain are mapped to small ellipses on the target domain with different eccentricity
(see the histogram of the norm of its Beltrami coefficient). (c) shows a T-Map visualized by
texture mapping. The small circles on the source domain are mapped to small ellipses on the
target domain with uniform eccentricity everywhere. As we can see from the histogram, the
norm of the Beltrami coefficient accumulates at 0.3.

In general, there are many T-maps between two multiply-connected domains with the
same topology. In particular, given the boundary correspondence h : ∂Ω1 → ∂Ω2 satisfying
h′(eiθ ) �= 0 and |h′′(eiθ )| < ∞, there exists a unique T-Map between Ω1 and Ω2 [25]. An
important observation is that the T-Map is uniquely extremal for its boundary values.

Theorem 1 Let Ω1 and Ω2 be multiply-connected domains with the same topology and
h : ∂Ω1 → ∂Ω2. Suppose f : Ω1 → Ω2 is a Teichmüller map with a quadratic differential
of finite norm, with f |∂Ω1 = h. Then f is uniquely extremal for its boundary values.
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Fig. 2 T-Maps with different maximal dilations. a, b Two circle domains with three holes. b A T-Map,
visualized by texture mapping. Its BC norm is equal to 0.58. c The extremal T-Map, whose BC norm (=0.11)
is minimum over all possible T-Maps

Proof Suppose g is an extremal extension of h. Let the Beltrami coefficient of f beμ f = k ϕ
ϕ

.
Since f and g agrees on their boundaries, the following inequality holds [25]:

∫

Ω1

(|α|2 − |β|2) + (1 − |μ f |)(|α| − Re( β̄α|α| ))
(1 + |μ f |)(1 − |β2|) |ϕ|

≤ Re
∫

Ω1

ᾱ

α

(
|ϕ| − μ f

|μ f |ϕ
)

(1 − β̄α)(α − β)

(1 − |μ f |2)(1 − |β2|) (9)

where α = μ f −1 ◦ f ; β = μg−1 ◦ g. Since μ f = k ϕ
ϕ

, the right-hand side of (9) vanishes.

Hence, α = β. This implies: μ f −1 = μg−1 . Since f −1 and g−1 has the same boundary
values, namely, h−1, we have f −1 = g−1. Thus, f is the unique extremal map satisfying the
boundary values h. ��

Therefore, with different boundary value h : ∂Ω1 → ∂Ω2, different T-Map can be
obtained (see Fig. 2). We denote the collection of all possible Beltrami coefficients of Teich-
müller type associated with quasi-conformal maps between Ω1 and Ω2 by T(Ω1,Ω2). In
other words,

T(Ω1,Ω2) : =
{
ν = k

ϕ̄

|ϕ|
∣∣∣∣0 ≤ k < 1, ϕ integrable holomorphic,

ν = μ( f ) for some f : Ω1 → Ω2

}
. (10)

Our goal is to look for the optimal ν∗ := k∗ ϕ̄∗
|ϕ∗| ∈ T(Ω1,Ω2) whose ||ν∗||∞ (= k∗) is

minimized over T(Ω1,Ω2). It turns out that ν∗ is the unique minimizer. It is also the Beltrami
coefficient associated with the unique extremal map between Ω1 and Ω2 (see Fig. 2). This
is guaranteed by the following theorem.

Theorem 2 LetΩ1 andΩ2 be multiply-connected domains with the same topology but with
different conformal modules. Assume that Ω1 has no conformal self-mapping. Then, there
exists a unique extremal map f : Ω1 → Ω2 satisfying the boundary condition: f (γi ) = γ ′

i
for all i . Also, f is a T-Map associated with an integrable holomorphic quadratic function
on Ω1.

Proof By the compactness argument, there exists an extremal map fext : Ω1 → Ω2 with
fext (γi ) = γ ′

i for all i such that ||μ( fext )||∞ = inf f :Ω1→Ω2{||μ( f )||∞} := k. Let h =
fext |∂Ω1 . We proceed to prove that fext is unique and is a Teichmüller map.

123



J Sci Comput (2014) 60:249–275 255

By Theorem 1, there exists a unique Teichmüller map f : Ω1 → Ω2 such that f |∂Ω1 = h.
f is the unique extremal map for the boundary value h. Hence, fext = f . Hence, all extremal
map between Ω1 and Ω2 must be a Teichmüller map.

Now, suppose g : Ω1 → Ω2 is another extremal map. Since g−1 ◦ f is homotopic
to identity, we conclude that either there exists a set of positive measure on Ω1 for which
|μ(g)(z)| > k orμ(g) = μ( f ) [5]. Since g is extremal, ||μ(g)||∞ = k. Hence,μ(g) = μ( f )
is of Teichmüller type. This implies g−1 ◦ f is conformal and thus f = g. ��

Theorems 1 and 2 play the fundamental roles in this paper for us to develop the iterative
algorithm to compute the extremal T-Map.

4.2 Variational Formulation of the Extremal Problem

In this section, we give a variational formulation of the extremal problem. The T-Map can
then be computed through optimization techniques.

Recall that an extremal T-Map is extremal in the sense of minimizing the || · ||∞ over all
Beltrami differentials. According to Theorem 2, the unique extremal map between multiply-
connected domains is a T-Map. Therefore, our goal is to look for a T-Map minimizing the
conformality distortion. The extremal problem can then be formulated as follows:

f ∗ = argmin f :Ω1→Ω2
E1( f ) = argmin f :Ω1→Ω2

{||μ( f )||∞} (11)

subject to:

– f ∗(γi ) = γ ′
i for i = 0, 1, 2, . . . , n (boundary condition);

– μ( f ∗) = k ϕ
ϕ

for some constant 0 ≤ k < 1 and integrable holomorphic function ϕ :
Ω1 → C (ϕ �= 0).

However, minimizing E1( f ) with respect to the space of quasi-conformal maps between
Ω1 andΩ2 is difficult. In fact, let f = f1 + i f2, the minimization problem can be expanded
as follows:

f ∗ = argmin f {||μ( f )||∞} = argmin f

{
||∂ f/∂z

∂ f/∂z
||∞

}
(12)

subject to f ∗(γi ) = γ ′
i (i = 0, 1, 2, . . . , n) and μ( f ∗) = k ϕ

ϕ
for some constant 0 ≤ k < 1

and integrable holomorphic function ϕ : Ω1 → C (ϕ �= 0).
In order to minimize the above constrained minimization problem effectively, we propose

to reformulate the above problem to an optimization problem over the space of all Beltrami
coefficients:

(ν∗, f ∗) = argminν:Ω1→C E2(ν) := argminν:Ω1→C{||ν||∞} (13)

subject to:

– ν∗ = μ( f ∗) and ||ν∗||∞ < 1;
– ν∗ = k ϕ

ϕ
for some constant 0 ≤ k < 1 and holomorphic function ϕ : Ω1 → C;

– f ∗(γi ) = γ ′
i for i = 0, 1, 2, . . . , n (boundary condition).

Minimizing E2 with respect to BCs subject to the constraints is advantageous since the
diffeomorphic property of the mapping can be easily controlled. Every diffeomorphism is
associated with a smooth Beltrami coefficient μ( f ). μ( f ) measures the bijectivity (1-1 and
onto) of f . In fact, μ( f ) is related to the Jacobian J ( f ) of f by the following formula:
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J ( f ) = |∂ f

∂z
|2(1 − |μ( f )|2) (14)

Therefore, the map f is bijective if |μ( f )| is everywhere less than 1. When solving the
minimization problem (13), the bijectivity of the mapping in each iteration can be ensured
by enforcing ||ν||∞ < 1. Our goal is to look for a sequence of {νn}∞n=1 converging to the
optimal BC, ν∗, which corresponds to our desired extremal T-Map, f ∗. Another advantage of
the reformulation is that we can alternatively minimize (13) with respect to ν and minimize
||ν − μ( f )||∞ with respect to f in the implementation.

In Sect. 5, we describe a numerical algorithm to obtain such a sequence.

5 Proposed Algorithm

We describe our proposed method to compute the T-Map in this section.

5.1 Beltrami Holomorphic Flow (BHF)

Finding the extremal T-Map is equivalent to finding its associated Beltrami coefficient(BC).
As BC varies, its associated quasi-conformal map varies and vice versa. We first examine the
relationship between the variation of BCs and their associated quasi-conformal maps.

Let f μ : Ω1 → Ω2 be a quasi-conformal map, whose BC is μ : Ω1 → C. Assume
μ varies by ω, and assume its associated quasiconformal map f μ+ω varies by V. In other
words, f μ+ω(z) = f μ(z) + V(z). Obviously, V depends on ν. In fact, if f μ+tω(z) =
f μ(z)+ Vt(z) (t ∈ C), then Vt(z) depends holomorphically on t ∈ C [6]. We call the flow
from f μ to f μ+tω = f μ(z)+Vt(z) the Beltrami holomorphic flow (BHF) from μ to μ+ tω
[17,19,21,29]. In particular, V(z) = V1(z).

We shall develop an algorithm to obtain V. Let ν = μ + ω. Our problem can be simply
put as finding the variation V as μ changes to ν. Hence, f ν = f μ + V.

Theorem 3 Let f μ and f ν be the quasi-conformal maps with Beltrami coefficients μ :
Ω1 → C and ν : Ω1 → C respectively. Suppose f ν = f μ + V. Let A be the differential
operator defined by A := ∂

∂ z̄ − ν ∂
∂z . Then:

AV = −A f μ (15)

Proof Since f ν is the quasi-conformal map with Beltrami coefficient ν : Ω1 → C,
∂ f ν

∂ z̄ =
ν
∂ f ν

∂z . Equivalently,

A f ν =
(
∂

∂ z̄
− ν

∂

∂z

)
f ν = 0. (16)

Now, since f ν = f μ + V, we obtain

A f ν = A( f μ + V) ⇒ 0 = A( f μ + V) (17)

Hence, AV = −A f μ as required. ��
In other words, finding V is equivalent to solving the partial differential equation (15)

subject to the boundary condition that

( f μ + V)(γi ) = γ ′
i for i = 0, 1, 2, . . . , n (18)

Note that the point-wise correspondence between γi and γ ′
i is not required in (18).
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Using Theorem 3, we propose to iteratively deform f μ to f ν . More specifically, our goal is
to obtain a sequence of quasi-conformal maps { fn}∞n=1 such that f0 = f μ and f∞ = f ν . To
do this, the basic idea is to flowμ to ν iteratively to obtain a sequence of Beltrami coefficients
converging to ν. Their associated quasi-conformal maps are then computed by solving Eq.
(15) to obtain { fn}∞n=1, which converges to f∞ = f ν . The procedure can be illustrated in
more details as follows:

μ0 := μ −→ μ1 −→ . . . −→ μn −→ . . . −→ μ∞ = ν

� � � �
f0 := f μ −→ f1 −→ . . . −→ fn −→ . . . −→ f∞ = f ν

(19)

More specifically, we first set f0 = f μ andμ0 = μ. We then flow f0 to f1 whose Beltrami
coefficient is close to ν1 := (1 − ε)μ0 + εν (ε > 0). This can be done by solving Eq. (15)
by putting ν = ν1 with the boundary constraint to obtain V0. Note that V0 on the boundaries
is restricted to be tangential to the boundary curves. We get a new quasi-conformal map
f1 := f0 + V0 whose Beltrami coefficient is denoted by μ1.

Suppose at the nth iteration, we have the quasi-conformal map fn with Beltrami coefficient
μn .

We then flow fn to fn+1 whose Beltrami coefficient is close to νn := (1 − ε)μn + εν

(ε > 0). This is again done by solving Eq. (15) by putting ν = νn and f μ = fn with the
boundary constraint to obtain Vn . Set fn+1 := fn +Vn whose Beltrami coefficient is denoted
by μn+1. Note that in each step, ε can be chosen so that ||μn+1 − ν||∞ is minimized.

In practice, we choose ε = 1 and it works well for all our numerical experiments. A
sequence of quasi-conformal maps { fn}∞n=1is obtained, whose Beltrami coefficients converge
to ν. We call such a process to deform f μ to f ν iteratively the Beltrami holomorphic flow
(BHF) from μ to ν, and denote it by: BHF(μ → ν). The numerical implementation of the
BHF procedure will be explained in more details in Sect. 6.1.

The Beltrami holomorphic flow can be summarized as follows:

Algorithm 1 (Beltrami holomorphic flow)
Input: f μ : Ω1 → Ω2 with Beltrami coefficient μ, target Beltrami coefficient ν
Output: Sequence of quasi-conformal maps { fn}∞n=1

1. Set f0 = f μ. Solve Equation (15) to obtain V0;
2. Given fn, compute μn := μ( fn) and νn := (1 − ε)μn + εν; solve Equation (15) by

putting ν = νn and f μ = fn to obtain Vn; Set fn+1 := fn + Vn;
3. If ||μn+1 − μn || ≥ ε′, repeat step 2. Otherwise, stop the iteration.

5.2 Iteration Scheme for Computing T-Maps

In this subsection, we describe how we can obtain a sequence of BCs, {νn}∞n=1, which con-
verges to the optimal ν∗ associated to our desired extremal T-Map, f ∗.

Given an initial map f0 : Ω1 → Ω2 such that f0(γi ) = γ ′
i (i = 0, 1, 2, . . . , n), let

ν0 = μ( f0) be the BC associated with f0. We proceed to iteratively adjust ν0 to solve the
optimization problem (13).

Recall that the optimal ν∗ must be of Teichmüller type, according to Theorem 2. That is,
ν∗ ∈ T(Ω1,Ω2) where

T(Ω1,Ω2) :=
{
ν = k

ϕ̄

|ϕ|
∣∣∣∣ 0 ≤ k < 1, ϕ integrable holomorphic,

ν = μ( f ) for some f : Ω1 → Ω2

}

123



258 J Sci Comput (2014) 60:249–275

To find the desired T-Map, our strategy is to apply a simple iterative scheme over the space
of T(Ω1,Ω2) to minimize E2(ν) = ||ν||∞. According to Theorem 2, E2 has a unique global
minimizer which is in T(Ω1,Ω2).

Thus, to obtain the global minimizer, we firstly adjust ν to minimize E2 over the space
B(Ω1,Ω2) of all Beltrami coefficients. We then project ν into T(Ω1,Ω2). A sequence of BCs
can be obtained, whose supreme norms monotonically decreases to a global minimizer of
E2. According to Theorem 2, the global minimizer exists and is unique. Hence, the sequence
converges to an optimal BC, ν∗, associated with our desired extremal T-Map, f ∗.

More specifically, the proposed algorithm can be described as follows. Given ν0, we first
project it into the space of T(Ω1,Ω2). To do this, we first normalize ν0 by an averaging
operator:

N (ν) =
(∫

Ω1
|ν|dΩ1

A(Ω1)

)
eiθ (20)

where ν
|ν| = eiθ and A(Ω1) = area of Ω1. Then, we apply a Laplace smoothing L indede-

pently on |N (ν0)| and arg(N (ν0)).
The operators project ν0 to another BC. We next obtain a quasi-conformal map g :=

BHF(ν0 → L(N (ν0))), whose BC is given by ν, with the constraint that g|∂Ω1 = f0|∂Ω1 .
Note that ν is generally not in T(Ω1,Ω2). We repeat such a process and update g as follows:
g := BHF(ν → L(N (ν))). The process continues until ||ν → L(N (ν))||∞ < ε. This
procedure iteratively adjusts the norm and the argument (or angles) of ν such that ν becomes
an admissible BC of Teichmüller type. Eventually, we obtain a T-Map g : Ω1 → Ω2, whose
BC is of Teichmüller type. That is, ν ∈ T(Ω1,Ω2). We call this process the projection of ν0

into the space of T(Ω1,Ω2), and denote it by (ν, g) = P(ν0).
The existence of such a projection is theoretically guaranteed and its supreme norm must

be less than ||ν0||∞, according to Theorem 1. The convergence of the projection process
can be established by an argument of the harmonic energy minimization (see Sect. 5.4). The
algorithm of the projection can be summarized as follows:

Algorithm 2 (Projection)
Input: μ ∈ B(Ω1,Ω2)

Output: Projection, ν, of μ into T(Ω1,Ω2) and the corresponding quasi-conformal map g

1. Compute g0 := BHF(μ → L(N (μ))) and ν0 := μ(g0);
2. Given gn, compute gn+1 := BHF(νn → L(N (νn))) with gn+1|∂Ω1 = fn |∂Ω1 , and
νn+1 := μ(gn+1);

3. If ||νn+1 − L(N (νn+1))||∞ ≥ ε, repeat step 2. Otherwise, stop the iteration.

Now, to minimize E2(ν) = ||ν||∞, we perform a damping operation on ν. More specifi-
cally, we diffuse ν through

∂ν

∂t
= −ν (21)

We diffuse ν over a finite time over B(Ω1,Ω2), and denote the damping operation on ν
by D(ν). It reduces E2(ν) = ||ν||∞.

A new map g1 : Ω1 → Ω2 can then be obtained through BHF:

g1 := BHF(ν0 → D(ν0)) (22)

Let μ1 := μ(g1). We project μ1 into the space of T(Ω1,Ω2) to get (ν1, f1) := P(μ1).
Thus, we obtain the T-Map f1, whose BC is ν1. The iteration continues until it converges to
the optimal ν∗ associated to the desired extremal T-Map f ∗.
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Therefore, given fn : Ω1 → Ω2 whose Beltrami coefficient is νn , we adjust νn and fn as
follows:

gn+1 := BHF(νn → D(νn))

μn+1 := μ(gn+1)

(νn+1, fn+1) := P(μn+1) (23)

As a result, we obtain a sequence of BCs {νn}∞n=1 whose supreme norm monotonically
decreases. Hence, {νn}∞n=1 converges to an optimal ν∗. Note that ν∗ must be a global minimizer
of E2. Suppose not, then there exists an admissible μ ∈ T(Ω1,Ω2) whose supreme norm
is smaller than that of ν∗. Our algorithm, which damps the supreme norm of the BC, will
continue to look for another BC, μ ∈ T(Ω1,Ω2), whose supreme norm is smaller than that
of ν∗. It contradicts that ν∗ is a limit point of the sequence. Hence, ν∗ must be a global
minimizer of E2. Furthermore, according to Theorem 2, E2(ν) = ||ν||∞ has a unique global
minimizer. We conclude that ν∗ is the unique BC associated to our desired extremal T-Map,
f ∗, which solves the optimization problem (13).

In summary, the iterative scheme for computing T-Maps can be described as follows:

Algorithm 3 (Iteration scheme for computing T-Maps)
Input: Multiply-connected domains Ω1 and Ω2 of the same topology
Output: Optimal Beltrami coefficient ν∗ and the extremal T-Map f ∗

1. Obtain an initial map f0 : Ω1 → Ω2 with f0(γi ) = γ ′
i (i = 0, 1, 2, . . . , n). Set ν0 =

μ( f0);
2. Given νn, compute gn+1 := BHF(νn → D(νn)) and μn+1 := μ(gn); Project μn+1 into

T(Ω1,Ω2) to obtain (νn+1, fn+1) := P(μn+1);
3. If ||νn+1 − νn || ≥ ε, repeat step 2. Otherwise, stop the iteration.

Remark 1 To better illustrate the idea of the algorithm, we consider the norm of the Beltrami
coefficient on the circle {0.65eiθ : 0 ≤ θ ≤ 2π} ⊂ Ω1 at each iterations as shown in
Fig. 3a. Initially, we have an initial map f0 associated with the Beltrami coefficient, μ0. The
norm of μ0 is not a constant everywhere. We project μ0 to the space of T(Ω1,Ω2) to obtain
ν0. Observe that the norm of ν0 is uniform everywhere. Using the damping operator, we
minimize E2 to get μ1 with smaller supreme norm. By projection, we get ν1 ∈ T(Ω1,Ω2),

Fig. 3 a The norm of the Beltrami coefficient on the circle {0.65eiθ : 0 ≤ θ ≤ 2π} at each iterations with an
arbitrary initialization. b The norm of the Beltrami coefficient on the circle {0.65eiθ : 0 ≤ θ ≤ 2π} at each
iterations with the initialization introduced in Sect. 5.3
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Fig. 4 Convergence of the proposed algorithm under different initializations. a The supreme norm of νn
versus iterations under an arbitrary initialization. The iterative scheme takes about 20 iterations to converge. b
The supreme norm of νn versus iterations under the initialization described in Sect. 5.3. The iterative scheme
get to the optimal Beltrami coefficient quickly

which is of Teichmüller type, from μ1. The norm of ν1 is uniform everywhere and it is
smaller than ||μ1||∞. Eventually, we get a sequence of Beltrami coefficient {νn}∞n=1 such
that E2(νn) = ||νn ||∞ monotonically decreases (see Fig. 4a). The sequence converges to the
optimal ν∗ associated with the desired extremal T-Map.

5.3 Initialization of the Iterative Scheme

The speed of convergence of the proposed algorithm depends on the initialization chosen.
We propose to obtain a good initialization, f0, which is close to the optimal extremal T-
Map. In this paper, the initial map f0 is chosen so that its Beltrami coefficient is closest to
μ = 0 in the least square sense, using the Beltrami holomorphic flow. We first compute a
harmonic map h : Ω1 → Ω2 between Ω1 and Ω2 with arbitrary boundary correspondence.
Let μh be the Beltrami coefficient of h. We can then obtain an initial map f0 given by:
f0 := BHF(μh → μ ≡ 0).

Numerical results show that with this initialization, the iterative scheme converges very
fast. In Fig. 4a, we show the supreme norm of νn versus iterations under an arbitrary initial-
ization. The iterative scheme takes about 20 iterations to converge. In Fig. 4b, we perform the
same experiment but using the initialization introduced in this subsection. The initialization
is very close to the optimal minimizer and hence iterative scheme converges to the optimal
Beltrami coefficient quickly. Despite different initializations are used, the iterative scheme
converge to the same optimal BC. It illustrates that the extremal T-Map is unique.

Remark 2 In Fig. 3b, we again consider the norm of the Beltrami coefficient on the circle
{0.65eiθ : 0 ≤ θ ≤ 2π} ⊂ Ω1 at each iterations. When good initiation f0 is chosen, its
associated Beltrami coefficient μ0 is very close to ν∗. After projection of μ0 to T(Ω1,Ω2),
the projected Beltrami coefficient ν0 ∈ T(Ω1,Ω2) is very close to ν∗. Hence, the algorithm
converges quickly if initialization is carefully chosen.

5.4 Convergence Analysis

In this subsection, we will study the convergence of the proposed algorithms. Three algorithms
are proposed in this paper. Algorithm 1, which is also called the Beltrami holomorphic
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flow, computes the best quasi-conformal map whose BC is closest to the prescribed BC.
Algorithm 2 or the projection operator projects an arbitrary BC to a BC of Teichmüller
type. Algorithm 3, which is the main algorithm, computes the extremal T-Map between
two multiply-connected domains. The algorithm produces a sequence of BCs, {νn}∞n=1 of
Teichmüller type. We will show that the sequence converges to the optimal BC, ν∗, associated
with the unique extremal T-Map f ∗.

One step in our main algorithm (Algorithm 3) is the projecton of an arbitrary BC to a BC
of Teichmüller type (Algorithm 2). We first explain why the projection operator P works.
Suppose a BC, μn , is obtained at the nth iteration. We can show that νn obtained from P(μn)

is indeed of the Teichmüller type and its associated quasi-conformal map fn is a T-Map.
Let μ be an admissible BC, which is associated to a quasi-conformal map g : Ω1 →

Ω2. According to Theorem 1, there exists a unique T-Map f ∗, subject to the boundary
constraint f ∗|Ω1 = g|Ω1 . The convergence of the projection operator on general (open or
closed) Riemann surfaces of arbitrary topologies can be theoretically proven [16]. In [16],
we discuss the theoretical proof of the convergence in details. We have the following key
results. Basically, BHF(μ → L(N (μ))) computes the generalized harmonic map under the
auxiliary metric, |dz + L(N (μ))dz|2, given by the BC, L(N (μ)). From Algorithm 2, we
obtain a sequence of BCs, {μn := L(N (νn))}∞n=1, where νn = μ( fn). In [16], we show
that μn converges to an admissible BC, μ∗. Also, μ∗ = ν∗ := μ( f ∗), where f ∗ is the
optimal quasi-conformal map obtained and ν∗ is its associated BC. An important question is
whether the algorithm converges to the unqiue admissible BC, ν∗, of Teichmüller type, which
is associated to a T-Map, f ∗. This can be guaranteed due to the following observations.

Theorem 4 (Convergence of the projection operator) Algorithm 2 gives a convergent
sequence of pairs (νn, fn), where νn is the Beltrami coefficient of fn, whose limit point
is (ν∗, f ∗). Here, ν∗ is the unique admissible Beltrami coefficient of Teichmüller type asso-
ciated with the T-Map.

Proof Suppose ( fn, νn) is obtained at the n-th iteration. fn = BHF(νn−1 → μn), where
μn := L(N (νn−1)). Note that the BC of fn is generally not equal to μn . In fact, fn is the
harmonic map between Ω1 and Ω2 under the auxilary metric, g(μn) = |dz + μndz|2. An
energy functional EBC can then be defined on the space of all BCs, B(Ω1), by letting EBC (μ)

be the harmonic energy of the generalized harmonic map under the auxilary metric g(μ).
In [16], we prove that EBC (μ) ≥ A2 (= area of Ω2) and equality holds if and only if μ is
admissible. It is also proven thatμn converges to a minimizer of EBC , μ

∗. Since EBC attains
its minimum at μ∗ when μ∗ is admissible, it implies the QC iteration converges to a pair
( f ∗, ν∗), where ν∗ = μ( f ∗) = μ∗.

Next, we show that ν∗ is of Teichmüller type. At each step of the QC iteration, a Laplace
smoothing L and averaging N are applied on νn . At the optimal state, L(N (ν∗)) = ν∗.
This implies that �((arg)(ν∗)) = 0 and |ν∗| = k, where k is a positive constant. Since
arg(ν∗) is harmonic, there exists a harmonic conjugate ζ of arg(ν∗) such that ζ − iarg(ν∗)
is holomorphic. Let ϕ = eζ−iarg(ν∗). ϕ is holomorphic and ν∗ = k ϕ

|ϕ| . Hence, ν∗ is an
admissible BC of Teichmüller type. By Theorem 1, given the prescribed boundary constraints,
there exists only one admissible BC of Teichmüller type. We conclude that ν∗ is the unique
BC associated to the unique extremal T-Map. ��

Therefore, Algorithm 3 gives us a sequence of BCs, {νn}∞n=1, of Teichmüller type. A
question is whether the supreme norm of νn is indeed decreasing, so that an extremal T-Map
can be obtained at the optimal state. Suppose at the nth iteration in Algorithm 3, (νn, fn)

is obtained, where νn is the BC of fn . The damping operator D is applied to νn to reduce
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the supreme norm of νn . In fact, the damping operator diffuse νn to D(νn) through equation
(21). Thus, D(νn) = e−tνn for some t > 0, and ||D(νn)||∞ = e−t ||νn ||∞ < ||νn ||∞. Now,
gn+1 = BHF(νn → D(νn)) looks for a quasi-conformal map gn , whose BC μn+1 is closest
to νn . Stricly speaking, the Beltrami Holomorphic Flow (BHF) in Sect. 5.1 can be stated as
follow:

BHF(μ → ν) = argmin f ||
∂ f

∂ z̄
/
∂ f

∂z
− ν||∞ (24)

It can be solved numerically by minimizing || ∂ f
∂ z̄ /

∂ f
∂z − ν||p

p for sufficiently large p using

gradient descent. In our actual implementation, we minimize || ∂ f
∂ z̄ −ν ∂ f

∂z ||22 instead. However,
it is found that the performance is already satisfactory. Since ||D(νn)||∞ < ||νn ||∞ and
gn+1 = BHF(νn → D(νn)), then the supreme norm of the BC of gn+1 is less than that of
νn . In other words, ||μn+1||∞ < ||νn ||∞.

Note that μn is in general not of Teichmüller type. We then apply the projection operator
on μn to obtain (νn+1, fn+1) := P(μn+1).

Now, the final question is whether the supreme norm of the BC after projection would still
decrease. In other words, we need to show that ||νn+1||∞ < ||νn ||∞. This can be guaranteed
by the following theorem.

Theorem 5 Suppose (νn, fn) is obtained at the nth iteration of Algorithm 3. Let gn+1 =
BHF(νn → D(νn)). Then, ||νn+1||∞ < ||νn ||∞, where (νn+1, fn+1) := P(μn+1).

Proof νn+1 and fn+1 are obtained from the projection operator P(μn+1), where νn+1 is
the BC of fn+1. According to Theorem 1, fn+1 : Ω1 → Ω2 is the unique T-Map with the
boundary condition that fn+1|Ω1 = gn+1|Ω1 . Thus, K ( fn+1) ≤ K (gn+1) and equality holds
if and only if fn+1 = gn+1. This implies ||νn+1||∞ ≤ ||μn+1||∞ (equality holds if and only
if fn+1 = gn+1). Now, since ||μn+1||∞ < ||νn ||∞, we conclude that ||νn+1||∞ < ||νn ||∞.��

In summary, Algorithm 3 gives a sequence of BCs, {νn}∞n=1, of Teichmüller type, whose
supreme norm decreases as n increases. Each νn is associated to a T-Map fn , and fn converges
to our desired extremal T-Map. In the rare situation when the iterations get stuck at the local
minimum of the energy functional (13), one can apply L p (instead of L2) minimization in
Algorithm 1 with large p. The obtained sequence would converge to the global minimizer.

6 Numerical Implementation

In this section, we will explain in detail the numerical implementation of the algorithms
proposed in Sect. 5.

In practice, multiply-connected 2D domains or surfaces in R
3 are usually represented

discretely by triangular meshes. Suppose K1 and K2 are two meshes with the same topology
representing Ω1 and Ω2. We define the set of vertices on K1 and K2 by V 1 = {v1

i }n
i=1 and

V 2 = {v2
i }n

i=1 respectively. Similarly, we define the set of triangular faces on K1 and K2 by
F1 = {T 1

j }m
j=1 and F2 = {T 2

j }m
j=1. Our goal is to look for a piecewise linear homeomorphism

between K1 and K2 that approximates the extremal T-Map between Ω1 and Ω2.

6.1 Implementation Details of BHF

The major step in computing the Beltrami holomorphic flow as described in Algorithm 5.1 is
to solve Eq. (15). We first discretize the operator A in Eq. (15). Let f = (u+√−1v) : K1 →
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K2. To compute A, we simply need to approximate the partial derivatives at each face T . We
denote them by Dx f = Dx u + √−1Dxv and Dy f = Dyu + √−1Dyv respectively. Note
that f is piecewise linear. The restriction of f on each triangular face T can be written as:

f |T (x, y) =
(

aT x + bT y + rT

cT x + dT y + sT

)
(25)

Clearly, Dx u(T ) = aT , Dyu(T ) = bT , Dxv(T ) = cT and Dyv(T ) = dT . Now, the
gradient ∇T f := (Dx f (T ), Dy f (T ))t on each face T can be computed by solving the
linear system:

(
v1 − v0

v2 − v0

)
∇T f =

⎛
⎝

f (v1)− f (v0)
|v1−v0|

f (v2)− f (v0)
|v2−v0|

⎞
⎠ , (26)

where [v0, v1] and [v0, v2] are two edges on T . By solving Eq. (26), aT , bT , cT and dT can
be obtained. Hence on each face T ,

∇T f = 1

2A

3∑
j=1

f (v j )s j , (27)

where A is the area of T and

s1(T ) = n × (v3 − v2)

s2(T ) = n × (v1 − v3)

s3(T ) = n × (v2 − v1), (28)

where n is the unit normal of T . Let ν(T ) be a constant over the face T . Using the relations
∂
∂z = (Dx − √−1Dy)/2 and ∂

∂ z̄ = (Dx + √−1Dy)/2, the operator A can be discretized on
each face T as follows:

A f (T ) = 1
4A (1 − ν(T ),

√−1 + √−1ν(T ))
3∑

j=1
f (v j )s j . (29)

Note that the right hand side of the above equation is linear in every u(v j ) and v(v j ), j =
1, 2, 3. Hence, the above discretization of A transforms (15) into a linear system of
{V(v1

i )}n
i=1. Let V(v1

i ) = (Pi , Qi )
t and f μ(v1

i ) = ui + √−1vi , then for each face
Tj , j = 1, · · · ,m, we have

1

4Area(Tj )

(
1 − ν(Tj ),

√−1 + √−1ν(Tj )
) 3∑

i=1

(
PTj (i) + √−1QTj (i)

)
si (Tj )

= − 1

4Area(Tj )

(
1 − ν(Tj ),

√−1 + √−1ν(Tj )
) 3∑

i=1

(
uTj (i) + √−1vTj (i)

)
si (Tj ),

(30)

where Tj (i) are the indices of the vertices of Tj , i.e. Tj = [v1
Tj (1)

, v1
Tj (2)

, v1
Tj (3)

].
Secondly, the boundary constraint (18) can be approximated by a linear constraint, so

that the least square method can be applied to solve the problem. For each boundary vertex
v1

i ∈ γ j , we only require V(v1
i ) to be tangential to γ ′

j at f μ(vi ). That is, if V(v1
i ) = (Pi , Qi )

t

and (ai , bi )
t is the direction of the tangent, then

bi Pi − ai Qi = 0, (31)
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which is a linear constraint. The linear system (30) together with the constraint (31) may be
overdetermined. Therefore we solve the system by least square method. For each iteration
of Algorithm 5.1, Vn(v1

i ) is solved as above. Set f̃n+1(v1
i ) := fn(v1

i ) + Vn(v1
i ). For each

boundary vertex v1
i ∈ γ j , it is not necessary that f̃n+1(v1

i ) ∈ γ ′
j because the boundary

constraints are approximated. Nevertheless, when ||νn −μn ||∞ is sufficiently small, f̃n+1(v1
i )

shall not be far away from γ ′
j . Hence we can project f̃n+1(v1

i ) onto γ ′
j and obtain the solution

fn+1(v1
i ) such that fn+1(γ j ) = γ ′

j , i.e.

fn+1(v1
i ) := argminz∈γ ′

j
‖ f̃n+1(v1

i )− z‖2. (32)

6.2 Implementation Details of the Iterative Scheme

The main operators involved in the iterative scheme proposed in Sect. (5.2) are: BHF(μ →
ν), D and P . The numerical implementation of BHF(μ → ν) was described in the last
subsection. We now describe the numerical implementation of D and P in detail.

Recall that the damping operator D(ν) diffuses ν through ∂ν
∂t = −ν. In the discrete case,

we define the damping operator as follows:

D(ν)(T ) := ν(T )− εν(T ) (33)

where T is a triangular face of K1, ε > 0.
Other operators are the averaging operator N (ν) and the Laplace smoothing operator

L(ν). In the discrete case, the averaging operator is defined as follows:

N (ν)(T ) :=
(∑

T ′∈F1 Area(T ′)|ν(T ′)|∑
T ′∈F1 Area(T ′)

)
ν(T )

|ν(T )| (34)

where T is a triangular face of K1. Meanwhile, the Laplace smoothing operator is defined
as:

L(ν)(T ) := L(T )eiθ(T ), (35)

where

L(T ) :=
∑

Ti ∈Nbhd(T )

|ν(Ti )|
|Nbhd(T )| and θ(T ) :=

∑
Ti ∈Nbhd(T )

arg(ν(Ti ))

|Nbhd(T )| . (36)

7 Numerical Experiments

We have tested our proposed algorithms on synthetic data together with real 3D surface data
obtained from the 3D scanner. All experiments have been carried out on a laptop with an
Intel Core i7 2.10 GHz CPU and 12GB RAM.

7.1 Numerical Experiments of BHF

Example 1 We first examine the performance of BHF to iteratively compute a quasi-
conformal map f : Ω1 → Ω2 with a prescribed BC. We chooseΩ1 to be a triply-connected
circle domain defined as:

Ω1 := D \ (B0.26(0.4 − 0.02i) ∪ B0.16(−0.32 + 0.09i)).
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Fig. 5 a, b Two triply-connected domains. A quasi-conformal map f between (a) and (b) is given and its
associated Beltrami coefficient is μ f . c The reconstructed map obtained from μ f using BHF

Fig. 6 a The error in coordinates || f − fn ||∞ versus iterations of the experiment in Fig. 5. b The error in
BC ||μ f − μ( fn)||∞ versus iterations

Ω2 is chosen to be another triply-connected domain. In Fig. 5a, b shows two triply-connected
domains. Given a quasi-conformal map f between (a) and (b), we obtain a Beltrami coefficient
μ f (defined on each triangular faces) corresponding to f . Using BHF, we can reconstruct the
map f from μ f . (c) shows the reconstructed map, which closely resembles to the original
one. Figure 6a, b show the error in coordinates || f − fn ||∞ and error in BC ||μ f −μ( fn)||∞
versus iterations respectively. Both converge to 0 quickly in less than 10 iterations.

Example 2 We repeat the experiment to compute the quasi-conformal map f : Ω1 → Ω2

between two circle domains with three holes using BHF. Ω1 is chosen to be:

Ω1 := D \ (B0.16(−0.11 − 0.46i) ∪ B0.14(−0.34 + 0.37i) ∪ B0.18(0.36 + 0.01i)).

Ω2 is chosen to be another multiply-connected domain with three inner holes. Figure 7a, b
shows two domains with three holes. We compute the Beltrami coefficientμ f corresponding
(defined on each triangular faces) to f . Using BHF, we reconstruct f from μ f . (c) shows
the reconstructed map, which closely resembles to the original one. Figure 8 shows the error
in coordinates || f − fn ||∞ and error in BC ||μ f − μ( fn)||∞ versus iterations. Again, both
converge to 0 quickly in less than 10 iterations.

Example 3 In this example, we test whether the quasi-conformal map computed by BHF
converges to the continuous quasi-conformal map as mesh size tends to 0. We consider:

Ω1 := D \ (B0.1(0.5i) ∪ B0.1(−0.4 − 0.3i) ∪ B0.1(0.4 − 0.3i)).
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Fig. 7 a, b Two circle domains with three holes. A quasi-conformal map f between (a) and (b) is given and
its associated Beltrami coefficient is μ f . c The reconstructed map obtained from μ f using BHF

Fig. 8 a The error in coordinates || f − fn ||∞ versus iterations of the experiment in Fig. 11. b The error in
BC ||μ f − μ( fn)||∞ versus iterations

Ω1 is deformed to Ω2 through a diffeomorphism f given by:

f = e1.5i ze1.5i |z|, where z = x + iy (37)

Since f is a diffeomorphism,Ω2 = f (Ω1) is a multiply-connected domain with three inner
holes. The Beltrami coefficient of f can be explicitly computed, which is given by:

μ f =
(−3i

4
z2

)
/

(
|z| − 3i

4
|z|2

)
(38)

The quasi-conformal map f is as shown in Fig. 9, which is visualized a texture mapping.
Using different mesh size h, we approximate f using BHF. Figure 10a shows the log error
of the BC versus the log of the mesh size. The error decreases as the mesh size decreases
with a rate equal to 1.79. (b) shows the log error of the coordinates versus mesh size. The
error again decreases as the mesh size decreases with a rate equal to 0.92.

7.2 T-Maps Between 2D Multiply-Connected Domains

Example 4 We test our proposed iterative scheme to compute the extremal T-Map on syn-
thetic 2D multiply-connected domains. In Fig. 11, we compute the extremal T-map between
two multiply-connected domains with three holes. We consider:

Ω1 := D \ (B0.1(0.33i) ∪ B0.067(0.33 − 0.33i) ∪ B0.133(−0.33 − 0.33i));
Ω2 := D \ (B0.1(0.6i) ∪ B0.1(0.7 − 0.3i) ∪ B0.1(−0.7 − 0.3i)).
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Fig. 9 The quasi-conformal map f in Example 3, visualized using texture mapping. a The domain Ω1 and
b The mapping f (Ω1)

Fig. 10 Convergence of BHF to the continuous quasi-conformal map (described in Example 3) as mesh size
tends to 0. a The log error of the coordinates versus the log of the mesh size. b The log error of the BC versus
the log of the mesh size

Fig. 11 a, b The two multiply-connected domains with three holes. The obtained extremal T-Map is visualized
by texture mapping. The small circles on (a) are mapped to small ellipses on (b) under the extremal T-Map,
with the same eccentricity. c The histogram of the norm of the BC

(a) and (b) shows the two multiply-connected domains Ω1 and Ω2. The obtained extremal
T-Map is visualized using texture mapping. The small circles on (a) are mapped to small
ellipses on (b) under the extremal T-Map, with uniform eccentricity. In (c), we show the
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Fig. 12 This figure shows the boundary correspondence for each boundary component, plotted as a monotonic
function defined on [0, 2π ]

Fig. 13 a The energy E2(μ( fn)) := ||μ( fn)||∞ versus each iterations of Example 4 with an arbitrary
initialization. b The energy E2(μ( fn)) := ||μ( fn)||∞ versus each iterations with the initialization proposed
in Sect. 5.3

histogram of the norm of the BC. It accumulates at 0.53, meaning that the conformality
distortion is uniform over the whole domain. It illustrates that the computed extremal map is
indeed a T-Map.

Our proposed algorithm automatically determines the optimal boundary correspondence
such that the conformality distortion is minimized. Figure 12 shows the boundary correspon-
dence for each boundary component, plotted as a monotonic function defined on [0, 2π].

Figure 13 shows the energy E2(μ( fn)) := ||μ( fn)||∞ versus each iterations with dif-
ferent initializations. Figure 13a shows the energy versus each iterations with an arbitrary
initialization. Our proposed algorithm converges to the optimal BC with about 30 iterations.
Using the initialization proposed in Sect. 5.3, the algorithm converges quickly. Figure 13a
shows the energy versus each iterations with the good initialization. Note that the initial map
is already close to the optimal one.

Example 5 In this example, we study the convergence of our proposed method to compute
the extremal T-Map as mesh size tends to 0. We consider:
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Fig. 14 a Two multiply-connected domains with three inner disks removed. We compute the extremal T-Map
between them. b The log of the standard deviation of the BC norm versus the log of the mesh size h

Fig. 15 a, b Two multiply-connected domains with five holes. The obtained extremal T-Map is visualized by
texture mapping. The small circles on (a) are mapped to small ellipses on (b) under the extremal T-Map, with
uniform eccentricity. c The histogram of the norm of the BC

Ω1 := D \ (B0.1(0.5i) ∪ B0.1(−0.4 − 0.3i) ∪ B0.1(0.4 − 0.3i));
Ω2 := D \ (B0.2(0.5i) ∪ B0.2(−0.4 − 0.3i) ∪ B0.2(0.4 − 0.3i)).

Figure 14a shows two multiply-connected domains with three inner disks removed. We
proceed to compute the extremal T-Map between them with different mesh size. The standard
deviation, std(|νh |) of the BC norm for each mesh size h is then computed. Figure 14b plots
the log of the standard deviation log(std(|νh |)) versus the log of the mesh size h. It shows
that the computed T-Map using our proposed method converges to the smooth T-Map as
mesh size tends to 0. The convergence rate is about 0.86.

Example 6 We also test the algorithm on synthetic circle domains with more holes. Figure 15
shows the extremal T-map between two multiply-connected domains with 5 holes obtained
by our proposed method. The histogram of the BC norm is shown in (c), which shows that
the conformality distortion is uniform everywhere.

Example 7 In Fig. 16, we test our method on circle domains with 9 holes. (b) shows the
obtained extremal T-Map visualized by texture mapping. The histogram of the BC norm is
shown in (c), which means the obtained map is indeed a T-Map. This example demonstrates
the effectiveness of our algorithm even on complicated domains with many holes.
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Fig. 16 a, b Two multiply-connected domains with nine holes. The obtained extremal T-Map is visualized
by texture mapping. The small circles on (a) are mapped to small ellipses on (b) under the extremal T-Map,
with uniform eccentricity. c The histogram of the norm of the BC

Fig. 17 a, b Two multiply-connected domains of arbitrary shapes with two holes. The obtained extremal
T-Map is visualized by texture mapping. The small circles on (a) are mapped to small ellipses on (b) under
the extremal T-Map, with uniform eccentricity. c The histogram of the norm of the BC

Example 8 In this experiment, we test our method to compute extremal T-Map between
multiply-connected domains with arbitrary shapes (not restricted to circle domains). Figure 17
shows the computed extremal T-map between two multiply-connected domains of arbitrary
shapes with two holes, visualized by texture mapping. Again, the histogram of the BC norm
(as shown in (c)) shows that the conformality distortion is uniform everywhere, meaning that
the extremal map is indeed of Teichmüller type.

Example 9 In this experiment, we test the efficiency of our method. We consider 7 pairs of
multiply-connected domains and compute the extremal T-Map between them. The time to
obtain the extremal T-Map is recorded in Table 1. The computation of all examples can be
done within 1.5 minutes.

Example 10 In Fig. 18, we test our algorithm to compute extremal T-Map between two
multiply-connected domains with significant different sizes of the inner holes. The obtained
extremal T-Map is visualized by texture mapping. The historgram of the norm of the associ-
ated BC is shown in (c), which illustrates the computed map is indeed a T-Map.
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Table 1 The elapsed time of the
proposed algorithm for
computing the extremal T-Maps
in different examples

The stopping criteria is
‖μ( fn+1)− μ( fn)‖∞ < 10−3.
‖μ( f ∗)‖∞ of the convergent
results are also listed

Number of
vertices

Number of
faces

Elapsed
time (s)

‖μ‖∞

22,160 43,115 87.7018 0.330403

17,746 35,008 73.0281 0.446511

17,746 35,008 62.6791 0.091014

6,282 12,141 19.9097 0.343128

4,832 9,376 7.6386 0.378116

671 1,240 0.9367 0.039436

588 1,056 1.3129 0.073473

Fig. 18 a, b Two multiply-connected domains with significant different sizes of holes. The obtained extremal
T-Map is visualized by texture mapping. The small circles on (a) are mapped to small ellipses on (b) under
the extremal T-Map, with uniform eccentricity. c The histogram of the norm of the BC

Fig. 19 a, b Two multiply-connected domains with different shapes of inner punctures. The obtained extremal
T-Map is visualized by texture mapping. The small circles on (a) are mapped to small ellipses on (b) under
the extremal T-Map, with uniform eccentricity. c The histogram of the norm of the BC

Example 11 In Fig. 19, we test our algorithm to compute extremal T-Map between two
multiply-connected domains with different shapes of inner punctures. The obtained extremal
T-Map is visualized by texture mapping. The historgram of the norm of the associated BC is
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Fig. 20 a, b Two multiply-connected human faces. The extremal T-Map between them is computed, which
is visualized using texture mapping. c The histogram of the norm of the BC

shown in (c), which illustrates the computed map is indeed a T-Map. This example demon-
strates that our proposed method perform well on multiply-connected domains with compli-
cated geometry.

7.3 T-Maps Between Multiply-Connected Surfaces

The proposed method can be easily extended to compute extremal T-Map between gen-
eral multiply-connected surfaces through conformal parameterization. We test the proposed
method to compute extremal map between multiply-connected 3D human faces. We also
apply the algorithm to obtain the extremal parameterization of the human face onto a simple
user-defined parameter domain, which is important for grid generation.

Example 12 Figure 20a, b shows two multiply-connected human faces. The extremal T-Map
between them is computed, which is visualized using texture mapping. The small circles
on (a) are mapped to small ellipses on (b) under the T-Map, with the same eccentricity. In
(c), we show the histogram of the norm of the BC. It accumulates at 0.21, meaning that the
conformality distortion is uniform everywhere. Figure 21 shows the energy E2(μ( fn)) :=
||μ( fn)||∞ in each iterations with different initializations. (a) shows the energy in each
iterations with an arbitrary initialization. The algorithm converges in 20 iterations. Again, if
a good initialization is chosen as described in Sect. 5.3, the algorithm converges quickly in
less than 5 iterations as shown in (b).

Example 13 In Fig. 22, we compute the extremal parameterization of the multiply-connected
human faces with three holes. (a) shows a simple user-defined parameter domain. Using
our algorithm, an extremal map parameterizing the human face onto the simple parameter
domain with least conformality distortion can be obtained. On the simple parameter domain,
structured grids can easily obtained as shown in (a). Using the extremal T-Map, we map
the structured grid onto the multiply-connected human face as shown in (b). (c) shows the
histogram of the BC norm which illustrates that the obtained map is indeed a T-Map. In (d),
we map the checkerboard texture on the parameter domain onto the human face using the
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Fig. 21 a The energy E2(μ( fn)) := ||μ( fn)||∞ versus each iterations of Example 10 with an arbitrary
initialization. b The energy E2(μ( fn)) := ||μ( fn)||∞ versus each iterations with the initialization proposed
in Sect. 5.3

Fig. 22 The extremal parameterization of the multiply-connected human faces with three holes. a A simple
user-defined parameter domain. On the simple parameter domain, structured grids can easily obtained as
shown in (a). In (b), the structured grid is mapped onto the multiply-connected human face using the extremal
T-Map. c The histogram of the BC norm which illustrates that the obtained map is indeed a T-Map. In (d), the
checkerboard texture on the parameter domain is mapped onto the human face using the extremal T-Map

T-Map. This example demonstrates the extremal T-Map can be applied for grid generation
on multiply-connected domains or surfaces.

8 Conclusion

In this paper, we present a numerical method to compute the extremal Teichmüller map
between arbitrary multiply-connected domains. The domains of interest can either be pla-
nar domains or surfaces embedded in R

3. Given two multiply-connected domains with
boundaries, there exists a unique bijective extremal Teichmüller map(T-Map) between them
minimizing the conformality distortion. The T-Map can be considered as the ‘most con-
formal’ mapping between multiply-connected domains. In this work, we propose an itera-
tive algorithm to obtain the T-Map using the Beltrami holomorphic flow (BHF). The BHF
procedure iteratively adjusts the map, based on a sequence of complex-valued functions
converging to an optimal Beltrami coefficient associated to the desired extremal T-Map.
It produces a sequence of quasi-conformal maps, which converges to the extremal T-Map
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minimizing the conformality distortion. We test our proposed algorithms on synthetic 2D
multiply-connected domains together with real 3D human faces. Experimental results show
that our algorithm computes T-Map between multiply-connected domains accurately and
efficiently.

In the future, we will extend our algorithm to compute the extremal Teichmüller map
of high-genus surfaces and of surfaces represented by point clouds. Besides, the unique
conformality distortion of the extremal T-Map gives us a way to measure the distance between
two multiply-connected shapes, namely, the Teichmüller metric. We will explore this research
direction to apply the Teichmüller metric for the shape analysis of multiply-connected 2D/3D
objects.
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