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Abstract. Surface parameterizations and registrations are important in computer graphics and imaging, where
1-1 correspondences between meshes are computed. In practice, surface maps are usually repre-
sented and stored as three-dimensional coordinates each vertex is mapped to, which often requires
lots of memory. This causes inconvenience in data transmission and data storage. To tackle this
problem, we propose an effective algorithm for compressing surface homeomorphisms using Fourier
approximation of the Beltrami representation. The Beltrami representation is a complex-valued
function defined on triangular faces of the surface mesh with supreme norm strictly less than 1.
Under suitable normalization, there is a 1-1 correspondence between the set of surface homeomor-
phisms and the set of Beltrami representations. Hence, every bijective surface map is associated with
a unique Beltrami representation. Conversely, given a Beltrami representation, the corresponding
bijective surface map can be exactly reconstructed using the linear Beltrami solver introduced in this
paper. Using the Beltrami representation, the surface homeomorphism can be easily compressed
by Fourier approximation, without distorting the bijectivity of the map. The storage requirement
can be effectively reduced, which is useful for many practical problems in computer graphics and
imaging. In this paper, we propose applying the algorithm to texture map compression and video
compression. With our proposed algorithm, the storage requirement for the texture properties of a
textured surface can be significantly reduced. Our algorithm can further be applied to compressing
motion vector fields for video compression, which effectively improves the compression ratio.

Key words. Beltrami representation, registration, linear Beltrami solver, texture map compression, video com-
pression, motion vector compression
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1. Introduction. Surface registration and parameterization are important processes in
computer graphics and imaging, where 1-1 correspondences between meshes are computed.
For example, in video compression, registrations between image frames are necessary to cap-
ture the deformation of objects in images [42, 47]. Also, in computer graphics, surface param-
eterizations are needed for texture mapping [11, 19]. There are many different applications
and approaches for surface registration and parameterization. A commonly used method is
to find surface maps satisfying certain constraints, such as matching landmarks, matching
intensity or minimizing distortions [7, 54]. Surface maps computed from these processes can
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BELTRAMI REPRESENTATION AND ITS APPLICATIONS 1881

be highly convoluted and are usually represented and stored as three-dimensional (3D) co-
ordinate functions in R

3. A huge amount of storage is therefore required, especially when a
large set of fine surface meshes is to be processed. For instance, in computer graphics, mesh
parameterization that maps each vertex of the surface to a two-dimensional (2D) position on
an image is required for texture mapping. In order to have a high-quality textured mesh,
mesh parameterizations of high resolution are necessary. Usually, a great amount of memory
and bandwidth are needed to store and transmit the data of the surface map, which causes a
great deal of inconvenience. Nevertheless, very little work has been done on the compression
of bijective surface maps. This motivates us to look for a compression scheme for surface
homeomorphisms, which can significantly reduce the storage requirement.

In this work, we propose an effective algorithm for compressing surface homeomorphisms
using the Beltrami representation. The Beltrami representation is a complex-valued function
defined on triangular faces of the surface mesh with supreme norm strictly less than 1. It
measures the local conformality distortion of the surface map. Every surface map is associ-
ated with a unique Beltrami representation. According to the quasi-conformal Teichmüller
theory, under suitable normalization, there is a 1-1 correspondence between the set of sur-
face homeomorphisms and the set of Beltrami representations. In other words, every surface
map can be represented by a unique Beltrami representation. Conversely, given a Beltrami
representation, one can reconstruct the unique surface map associated with it. In this pa-
per, we propose an algorithm called the linear Beltrami solver to reconstruct the surface map
associated with a given Beltrami representation. Using the Beltrami representation, 1/3 of
the required storage space for a bijective surface map is saved. Furthermore, the Beltrami
representation has very few constraints. The only notable constraint is that its supreme norm
has to be strictly less than 1. It does not have any requirements for injectivity or surjectivity.
This allows us to further compress the Beltrami representation using Fourier approximations,
without distorting the bijectivity of the map. The memory required can then be significantly
reduced. However, Fourier compression is not possible for other representations such as 3D
coordinate functions, as the bijective property (1-1 and onto) of the resulting maps cannot be
guaranteed (see Figure 4).

Our proposed algorithm for surface map compression can be practically applied to prob-
lems in computer graphics and imaging. In this paper, we propose applying the algorithm to
texture map compression and video compression. With our proposed algorithm, the storage
requirement for the texture properties of a textured surface can be significantly reduced. Our
algorithm can further be applied to compressing motion vector fields for video compression,
which effectively improves the compression ratio.

In short, the contribution of this paper is threefold: 1. we propose a compression algorithm
for surface homeomorphisms using the Fourier approximation of the Beltrami representation;
2. we propose the linear Beltrami solver to exactly reconstruct a surface map from its as-
sociated Beltrami representation; and 3. we apply the proposed algorithm to texture map
compression and video compression, which significantly reduces the storage requirement.

This paper is laid out as follows. In section 2, we describe the relevant works closely
related to this paper. In section 3, we describe some basic mathematical concepts related to
our algorithms. In section 4, we describe in detail the main algorithm we use to compress
bijective surface maps with their Beltrami representations. We also describe how surface
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1882 LOK MING LUI, KA CHUN LAM, TSZ WAI WONG, AND XIANFENG GU

maps can be efficiently and accurately reconstructed. Algorithms for texture map and video
compression are also presented. Details of the numerical implementation are included in
section 6. In section 7, experimental results are reported to show the feasibility of our proposed
algorithms.

2. Related works. In this section, we give an overview of the previous works mostly
related to our paper.

Surface parameterization/registration. Surface registration and surface parameteriza-
tion have been extensively studied. A variety of approaches have been proposed to find mean-
ingful bijective maps between images or surfaces. For image registration, different intensity-
based registration algorithms have been developed [1, 2, 9, 12, 46], which aim to obtain
1-1 correspondences between images based on image intensity. Landmark-based registration
approaches have also been studied [4, 6, 26, 49], which compute registrations that match land-
mark features consistently. As for surface registration or parameterization, different methods
have been invented, such as conformal approaches [16, 18, 21, 32], curvature matching ap-
proaches [37, 48], LDDMM approaches [44], and so on. Various landmark matching surface
registration algorithms have also been developed [34, 35, 45].

Texture mapping. The technique of texture mapping has been extensively employed on
rendering 3D graphics in animation and video gaming. The basic idea of it is to map an image
onto a given surface so as to increase the realism of the 3D model [13, 19]. The problem of
finding a suitable parameterization for texturing a polygonal mesh has been widely studied
[5, 29, 31, 38, 51]. Besides, the memory for texture properties contributes a significant portion
of the total file size of a textured mesh. Texture map compression is therefore necessary.
Recently, much attention has been focused on compressing texture images while preserving the
quality of the textured 3D model [3, 23, 50]. Furthermore, to overcome the bandwidth problem
in 3D rendering, mesh compression algorithms, which reduce the memory for mesh geometry
and mesh connectivity, have been proposed [10, 27, 41, 43]. However, compression of texture
coordinates has received less attention. Isenburg and Snoeyink [24] proposed an algorithm in
which texture coordinates are predicted from mesh vertices through the parallelogram rule.
However, this algorithm reduces only half of the storage requirement and depends greatly on
the similarities between meshes and the texture map.

Video compression. Video compression has developed rapidly over the last decades. Many
techniques and algorithms for video compression have been proposed [20, 47]. The basic idea
to achieve the compression is to remove the temporal and spatial redundancies existing in
video sequences. The first generation of video compression involves techniques for intraframe
coding and simple interframe coding [15]. Motion-compensated predictive coding was later
proposed, which has been exploited in all recent video coding standards, such as MPEG-2,
MPEG-4, or H.264. The major component in motion-compensated coding is the motion vector
(MV) estimation. Various techniques for MV estimation have been proposed [25, 52, 53].

Surface map compression. Compression of mappings has also been studied. Chai et
al. [8] proposed the depth map compression algorithm by encoding mappings as simplified
triangular meshes. Lewis and English [33] described a technique for compressing surface
potential mapping data using transform techniques. All these methods deal with the com-
pression of real-valued functions defined on 2D domains. For vector-valued functions, Stachera
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BELTRAMI REPRESENTATION AND ITS APPLICATIONS 1883

Figure 1. Illustration of how the Beltrami coefficient measures the conformality distortion of a quasi-
conformal map.

and Rokita [40] developed an algorithm to compress normal maps by decomposing them in
the frequency domain. Ioup, Gendron, and Lohrenz [22] also proposed compressing vector
map data in the frequency domain. Kolesnikov and Akimov [28] proposed an algorithm for
distortion-constrained compression of vector maps, based on optimal polygonal approxima-
tions and dynamic quantizations of vector data. Furthermore, surface parameterization can
also be represented by a triangular mesh of the parameter domain. Under this framework,
compression of the parameterization can be done through mesh compression, such as the
spectral compression method [27] and the parallelogram rule for predicting vertex positions
[43]. All these methods do not deal with preserving bijective maps between surfaces. The
bijectivity (1-1, onto) of the maps can be easily lost due to lossy compression.

Compression of surface registrations that preserves the bijectivity was preliminary studied
by Lui et al. [36]. In that work, Beltrami coefficients (BCs) defined on every vertex of the
mesh were proposed to represent bijective surface maps. BCs can approximate the associated
surface map well only when the triangulation is regular. Also, Beltrami holomorphic flow
(BHF) was used to iteratively reconstruct surface maps from their BCs. Integration has to
be computed in each iteration, which causes inefficiency in many practical applications. BHF
was further applied for the optimization of surface registrations in [37].

3. Mathematical background. In this section, we describe some basic mathematical con-
cepts related to our algorithms. For details, we refer the readers to [14].

Quasi-conformal maps are a generalization of conformal maps, which are orientation pre-
serving homeomorphisms between Riemann surfaces with bounded conformality distortion.
Mathematically, f : C → C is quasi-conformal provided that it satisfies the Beltrami equation

(3.1)
∂f

∂z
= μ(z)

∂f

∂z

for some complex-valued Lebesgue measurable function μ satisfying ||μ||∞ < 1. μ is called
the BC of f . The BC μ gives us all the information about the conformality of f (see Figure
1).

Theorem 3.1 (measurable Riemann mapping theorem). Suppose μ : C → C is Lebesgue mea-
surable and satisfies ‖μ‖∞ < 1; then there is a quasi-conformal homeomorphism φ from C

onto itself, which is in the Sobolev space W 1,2(C) and satisfies the Beltrami equation (3.1)
in the distribution sense. Furthermore, by fixing 0, 1, and ∞, the associated quasi-conformal
homeomorphism φ is uniquely determined.
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1884 LOK MING LUI, KA CHUN LAM, TSZ WAI WONG, AND XIANFENG GU

By reflection, the above theorem can be further extended to BCs defined on the unit disk
D [14, 37].

Theorem 3.2. Suppose μ : D → C is Lebesgue measurable and satisfies ‖μ‖∞ < 1; then there
is a quasi-conformal homeomorphism φ from the unit disk to itself, which is in the Sobolev
space W 1,2(Ω) and satisfies the Beltrami equation (3.1) in the distribution sense. Furthermore,
by fixing 0 and 1, the associated quasi-conformal homeomorphism φ is uniquely determined.

Given an orientation preserving homeomorphism φ, we can find the corresponding BCs
from the Beltrami equation:

(3.2) μφ =
∂φ

∂z̄
/
∂φ

∂z
.

The Jacobian J of φ is related to μφ as follows:

(3.3) J(φ) =

∣∣∣∣∂φ∂z
∣∣∣∣2 (1− |μφ|2

)
.

Since φ is an orientation preserving homeomorphism, J(φ) > 0 and |μφ < 1 everywhere.
Hence, we must have ‖μφ‖∞ < 1. Furthermore, Theorems 3.1 and 3.2 suggest that under
suitable normalization, every μ with ‖μ‖∞ < 1 is associated with a unique homeomorphism.
We can therefore conclude that there is a 1-1 correspondence between the set of all quasi-
conformal homeomorphisms and the set of all BCs with supreme norm less than 1. In other
words, a homeomorphism from C or D onto itself can be uniquely determined by its associated
BC. Theorems 3.1 and 3.2 can also be extended to homeomorphisms between Riemann surfaces
[37]. For example, by giving four points of correspondence on the boundaries of two open
simply connected Riemann surfaces, the surface homeomorphism can be uniquely determined
by its Beltrami coefficient (See Figure 2(A)). These observations play important roles for the
main algorithms proposed in this paper.

4. Main algorithms. In this section, we describe in detail the main algorithms proposed
in the paper to compress the surface homeomorphisms using Beltrami representation. We
first introduce the Beltrami representation for the bijective surface map. Second, we present
a fast reconstruction algorithm of the surface map from its Beltrami representation. We then
introduce the Fourier approximation of the Beltrami representation for the compression of
surface homeomorphisms. Based on these techniques, we introduce new storage formats to
compress texture maps and videos.

4.1. Beltrami representation for bijective surface maps. Surface registration and pa-
rameterization are commonly represented by 3D coordinate functions. This representation
requires lots of storage space and is difficult to manipulate. For example, the Jacobian of the
3D coordinate functions has to be strictly greater than zero in order to preserve the 1-1 corre-
spondence of the surface maps. Enforcing this constraint adds extra difficulty in manipulating
or compressing surface maps. It is therefore important to have a simpler representation with
as few constraints as possible.

According to quasi-conformal Teichmüller theory, a surface homeomorphism can be unique-
ly determined by its BC by fixing few points of correspondence (two points if the surfaces are

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BELTRAMI REPRESENTATION AND ITS APPLICATIONS 1885

Figure 2. Illustration of how Beltrami representations for homeomorphisms between meshes can be com-
puted. (A) shows the case of a homeomorphism between simply connected open meshes. The two meshes are
mapped to a unit square by harmonic parameterizations. (B) shows the case of a homeomorphism between
genus-0 closed surface meshes. The two meshes are parameterized onto a triangle in R

2, after cutting away a
triangular face on each mesh.

of disk topology and three points if the surfaces are genus-0 closed surfaces). It is similar to
the fact that a conformal map between two unit spheres is uniquely determined by fixing three
points of correspondence. It motivates us to represent the surface homeomorphism using the
BC.

Suppose M1 and M2 be two simply connected open surfaces. Let f : M1 → M2 be an
orientation preserving homeomorphism between M1 and M2. Suppose {pi ∈ ∂M1}4i=1 and
{qi ∈ ∂M2}4i=1 are the two sets of corresponding points between M1 and M2, where ∂M1

and ∂M2 are the boundaries of M1 and M2, respectively. We first parameterize M1 and M2

onto a unit square R = [0, 1] × [0, 1] by harmonic maps: φ1 : M1 → R and φ2 : M2 → R
such that φ1(pi) and φ2(q1) are the four corners of the unit square R. In case M1 and M2

are two genus-0 close surfaces, we can also parameterize them by φ1 : M1 → S
2 ∼= C and

φ2 : M2 → S
2 ∼= C, respectively. For details of computing the harmonic parameterizations,

please refer to [17, 39].

The bijective map f : M1 → M2 can now be represented by the BC μf of the composition
map f̃ = φ2 ◦ f ◦ φ−1

1 : D → D, where D is the parameter domain in R
2. (see Figure 2).

Since φ1, φ2, and f are all orientation preserving homeomorphisms, f̃ is also an orientation
preserving homeomorphism. We get ||μφ2◦f◦φ−1

1
||∞ < 1. Hence, μf̃ uniquely determines the

surface map f̃ . The map f : M1 → M2 can then be reconstructed by f := φ−1
2 ◦ f̃ ◦ φ1.

Hence, the complex-valued function μf := μf̃ ◦ φ1 uniquely determines the surface map f :
M1 → M2. We call μf the Beltrami representation of f . Given a Beltrami representation, the
corresponding surface homeomorphism can be reconstructed, which will be described in the
next subsection.

Representing surface homeomorhpisms by Beltrami representations is beneficial. First,
1/3 of the required storage space for a bijective surface map is saved. Second, the Beltrami
representation has very few constraints. The only notable constraint is that its supreme norm
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has to be strictly less than 1. It does not have any requirements of injectivity or surjectivity.
This allows us to further compress the Beltrami representation using Fourier approximations,
without distorting the bijectivity of the map. The memory required can then be significantly
reduced.

4.2. Fast reconstruction of surface map from Beltrami representation. Given a Bel-
trami representation, it is important to have an efficient algorithm to reconstruct the associ-
ated quasi-conformal homeomorphism.

Suppose M1 and M2 are two surfaces with the same topology (either topological disks or
genus-0 closed surfaces). Given a Beltrami representation μ on M1, our goal is to reconstruct
the associated homeomorphism f : M1 → M2 between M1 and M2.

To reconstruct the surface homeomorphism, we first compute the harmonic parameteri-
zations φ1 : M1 → D and φ2 : M2 → D. We shall look for the quasi-conformal mapping
f̃ : D → D with BC μf̃ := μ ◦φ−1

1 . The desired homeomorphism f can then be reconstructed

by taking the composition: f = φ−1
2 ◦ f̃ ◦ φ1.

To reconstruct the quasi-conformal mapping f̃ , let f̃ = u+ iv, where i =
√−1. From the

Beltrami equation (3.1), we have

(4.1) μ(f̃) =
(ux − vy) + i(vx + uy)

(ux + vy) + i(vx − uy)
.

Let μ(f̃) = ρ+ iτ . We can write vx and vy as linear combinations of ux and uy,

−vy = α1ux + α2uy;

vx = α2ux + α3uy.
(4.2)

where α1 =
(ρ−1)2+τ2

1−ρ2−τ2
; α2 = − 2τ

1−ρ2−τ2
; α3 =

(ρ+1)2+τ2

1−ρ2−τ2
.

Similarly,

−uy = α1vx + α2vy;

ux = α2vx + α3vy.
(4.3)

Since ∇ · (−vy
vx

)
= 0, we obtain

(4.4) ∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0, A =

(
α1 α2

α2 α3

)
.

Besides, f̃ has to satisfy certain constraints on the boundary. For example, when M1

is a topological disk, the parameter domain D is a unit square. In this case, the desired
quasi-conformal map should satisfy

f̃(0) = 0; f̃(1) = 1; f̃(i) = i; f̃(1 + i) = 1 + i;

Re(f̃) = 0 on arc [0, i]; Re(f̃) = 1 on arc [1, 1 + i];

Imag(f̃) = 0 on arc [0, 1]; Imag(f̃) = 1 on arc [i, 1 + i].

(4.5)

Hence, by solving the partial differential equations with Dirichlet boundary conditions
mentioned above, we can obtain the x-coordinate and y-coordinate functions of f̃ . The details
of the numerical implementation will be discussed in the next section.
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4.3. Compression of surface homeomorphisms. With the Beltrami representation in-
troduced above, we can further compress the surface homeomorphisms using the Fourier
approximation. An important consideration is to preserve the bijectivity of the reconstructed
surface map after the compression.

Under the representation by coordinate functions, the surface map cannot be easily com-
pressed using the Fourier approximation without distorting the bijectivity. In order to preserve
the bijectivity, the Jacobian of the coordinate functions has to be greater than 0. This con-
straint is equivalent to an inequality in the partial derivatives of the coordinate functions.
Enforcing this constraint is difficult during compression, and the bijective property can be
easily lost. The Beltrami representation, however, is advantageous because it does not have
any requirement for the injectivity or surjectivity, making the Jacobian constraint unneces-
sary. The only requirement for the Beltrami representation μ is that it be a complex-valued
function with supreme norm less than 1. We can therefore compress μ using the Fourier
approximation without losing the bijectivity (see Figure 4).

Let M1 and M2 be simply connected open surfaces. Suppose μ is the Beltrami representa-
tion of the surface map f : M1 → M2. We first parameterize M1 to the unit square D by the
parameterization φ1 : M1 → D. We can then obtain the BC μf̃ := μ ◦ φ−1

1 , which is defined
on parameter domain D = [−T, T ]× [−T, T ]. μf̃ can be expressed by the Fourier expansion
as

(4.6) μf̃ (x, y) =

∞∑
m,n=−∞

cm,ne
iπmx/T eiπny/T ,

where

cm,n =
1

4π

∫ T

−T

∫ T

−T
uf̃ (x, y)e

−iπjx/T e−iπky/Tdxdy.

In practice, we can use the fast Fourier transform (FFT) to compute the coefficients
cm,n efficiently. One can then take fewer Fourier coefficients to approximate the BC μf̃ ,
which can significantly reduce the storage requirement. With the Fourier coefficients of the
truncated Fourier series, the compressed BC defined on D and hence the compressed Beltrami
representation μc defined on M1 can be obtained. μc accurately approximates μ, and hence
the quasi-conformal map associated with μc closely resembles f .

4.4. Compression of texture mapping. Texture mapping techniques have been exten-
sively studied to provide realistic 3D rendering in movies, animation, and video gaming. The
basic idea of texture mapping is to map a texture image onto a given surface, so as to in-
crease the realism of the 3D model. Typically, a textured surface mesh is represented by its
mesh geometry, mesh connectivity, texture map, and texture image. Usually, the memory
requirement for texture properties contributes a significant portion of the total file size of the
textured mesh. In addition, the demand for a higher level of realism is rising, which in turn
requires a higher resolution of texture mapping for producing more detailed models. The need
for a compact representation of the texture map is therefore crucial.

Using the Beltrami representation of the texture map and the reconstruction procedure
mentioned in previous subsections, we introduce a new format to store the texture map for
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compression. In the following, we propose an effective algorithm to encode and decode the
texture map using the new storage format.

Consider a surface mesh M with texture maps {ρi : Mi → [0, 1] × [0, 1]}ni=1, where Mi’s
are patches of M . Our goal is to compress the texture mappings ρi. We first parameterize
Mi onto a unit square D by harmonic parameterizations φi : Mi → D. The BC μ̃i of
ρ̃i := ρ ◦ φ−1

i can then be computed. As described in section 4.1, the Beltrami representation
μi := μ̃i ◦ φi together with the boundary map ρi|∂Mi

uniquely determines ρi. Using the
Fourier compression scheme as described in section 4.3, the Beltrami representation μi can be
effectively compressed. Hence, the texture map ρi can now be represented by (1) the Fourier
coefficients cij,k in the truncated Fourier series, and (2) the texture coordinates of all boundary
vertices of Mi. This significantly reduces the storage requirement for the texture mappings.
Note that in the case where the texture image is of regular shape (e.g., 2D rectangle), storing
the texture coordinates of the boundary vertices is unnecessary. Instead, texture coordinates
of the four boundary vertices are sufficient.

The decoding algorithm is also straightforward. Given the Fourier coefficients cij,k and the
texture coordinates of the boundary vertices, our goal is to reconstruct the texture map ρi.
Using the inverse FFT applied to Fourier coefficients cij,k saved, the Beltrami representation
μi : Mi → C can be restored. With the Beltrami representation, the texture map ρi can be
reconstructed. More specifically, ρi can be computed by solving the two linear systems (4.4),
subject to the boundary condition given by the texture coordinates of the boundary vertices.
Texture coordinates of Mi can then be obtained.

Algorithm 4.1 (encoding of the texture coordinates).
Input : Surface mesh M ; Texture coordinate function f : M → D ⊂ [0, 1] × [0, 1].
Output : Fourier coefficients cj,k in the truncated Fourier series; Target coordinates of the
boundary vertices of f(D).

1. Obtain the harmonic parametrization, φ : M → [0, 1] × [0, 1];
2. Compute the Beltrami representation μf of f as in section 4.1;
3. Compress the Beltrami representation μf using Fourier approximation described in

section 4.3;
4. Store the Fourier coefficients cj,k in the truncated Fourier series and coordinates of

the boundary vertices of f(D).

Algorithm 4.2 (decoding of the texture coordinates).
Input : Surface mesh M ; Fourier coefficients cj,k of the Beltrami representation; Coordinates
of the boundary vertices.
Output : Reconstructed texture coordinates of the surface mesh M .

1. Apply the inverse FFT on cj,k to restore the Beltrami representation μf defined on
triangular faces of M ;

2. Parametrize the surface mesh M by the harmonic mapping φ to the unit square;
3. Reconstruct the texture coordinates by solving (4.4) subject to the boundary condition

given by the texture coordinates of the boundary vertices.

4.5. Video compression. With the development of video compression techniques, real
time digital television and Internet streaming video become practical. However, resolution of
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the video is limited by the channel bandwidth. Video compression is therefore an important
field of research.

The basic idea of most existing algorithms is to remove the temporal and spatial redun-
dancies existing in a video sequence. In motion compensation techniques, instead of storing
every image frame in the video, the I-frame, P-frame, and B-frame are introduced. The I-
frame is the reference frame, which is stored in the compressed image form. The P-frame is
called the predictive frame. It is encoded as an MV field together with a residual. The MV
field creates a prediction depicting how pixels in the previous frame move. This prediction is
then subtracted from the original frame to obtain the residual image. The B-frame is called
the bidirectional predictive frame, which is obtained from the interpolated MV fields from
previous and future frames. For details, please refer to [20, 30].

On average, P-frames contribute 50% less storage than that of I-frames. However, the
required storage for the MV field is still significant when considering HD videos. For example,
if a maximum of a 4 × 4 block mode is used in a full HD [1920 × 1280] video, each P-frame
requires 2.765 × 106 bits of memory to store the MV field. It thus calls for the need of
compressing the MV field.

Every MV field V can be represented by the Beltrami representation μ. Using the scheme
proposed in section 4.3, the MV field V can be compressed by performing the Fourier com-
pression of μ. Storing the Fourier coefficients of the truncated Fourier series of μT requires
much less storage than that of the MV field itself.

The reconstruction of the MV field from the Fourier coefficients cj,k is straightforward.
We first carry out the inverse FFT to restore the BC μ. By the reconstruction procedure as
described in section 4.2, the corresponding MV field V can be reconstructed.

The encoding and decoding of the compression algorithm can be summarized as follows.

Algorithm 4.3 (encoding of the P-frame).
Input : Frame F1 (Reference) and F2 (P-frame)
Output : Coefficients cj,k in the truncated Fourier series

1. Obtain the MV field V from F1 to F2 in the regular grid;
2. Compute the Beltrami representation;
3. Use the algorithm described in section 4.3 to compress the Beltrami representation μ

and store the coefficients cj,k in the truncated Fourier series.

Algorithm 4.4 (decoding of the P-frame).
Input : Frame F1; Coefficients cj,k in the truncated Fourier series
Output : MV field V

1. Apply the inverse FFT to restore the Beltrami coefficient μ̃;
2. Perform the reconstruction procedure to obtain V .

5. Numerical implementation. In this section, we describe in detail the numerical imple-
mentation of our proposed algorithms.

5.1. Computation of the Beltrami representation. In practice, surfaces are represented
by triangular meshes. Surface maps are usually approximated by piecewise linear homeomor-
phisms between meshes.

Suppose K1 and K2 are two surface meshes with the same topology (either genus-0 closed
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surface meshes or simply connected open surface meshes). Since we are considering the rep-
resentation of the bijective map between the two surfaces K1 and K2, there is a 1-1 corre-
spondence between them. We can then assume that they have the same number of vertices
and same connectivity information. Define the set of vertices of K1 and K2 by V 1 = {v1i }ni=1

and V 2 = {v2i }ni=1, respectively. Similarly, define the set of triangular faces of K1 and K2

by F 1 = {T 1
j }mj=1 and F 2 = {T 2

j }mj=1, respectively. Now, consider a piecewise linear homeo-
morphism f : K1 → K2 between K1 and K2. We first parameterize K1 and K2 onto a 2D
parameter domain D by harmonic maps [17]. Denote them by φ1 : K1 → D and φ2 : K2 → D,
respectively. We then have the composition mapping f̃ = φ2 ◦ f ◦ φ−1

1 .
To compute μf̃ , we simply need to approximate the partial derivatives at each face T .

We denote them by Dxf̃(T ) and Dy f̃(T ), respectively. Note that f̃ is piecewise linear. The
restriction of f̃ on each triangular face T can be written as

(5.1) f̃ |T (x, y) =
(

aTx+ bT y + rT
cTx+ dT y + qT

)
.

Hence, Dxf̃(T ) = aT + icT and Dyf̃(T ) = bT + idT . Now, the gradient ∇T f̃ :=
(Dxf̃(T ),Dy f̃(T ))

t on each face T can be computed by solving

(5.2)

(
�v1 − �v0
�v2 − �v0

)
∇T f̃i =

(
f̃i(�v1)− f̃i(�v0)

f̃i(�v2)− f̃i(�v0)

)
,

where [�v0, �v1] and [�v0, �v2] are two edges on T . By solving (5.2), aT , bT , cT , and dT can be
obtained. The BC μf̃ (T ) of the triangular face T can then be computed from the Beltrami
equation (3.1) by

(5.3) μf̃ (T ) =
(aT − dT ) + i(cT + bT )

(aT + dT ) + i(cT − bT )
.

5.2. Linear Beltrami solver. Given the BC μf̃ , we can reconstruct the corresponding

quasi-conformal mapping f̃ by solving (4.4). In this subsection, we propose the linear Beltrami
solver to solve (4.4).

Recall that the restriction of f̃ on each triangular face T is linear and can be written as

(5.4) f̃ |T (x, y) =
(

aTx+ bT y + rT
cTx+ dT y + qT

)
.

By (4.2) and (4.3), we have

−dT = αT
1 aT + αT

2 bT ;

cT = αT
2 aT + αT

3 bT
(5.5)

and

−bT = αT
1 cT + αT

2 dT ;

aT = αT
2 cT + αT

3 dT .
(5.6)
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Let T = [vi, vj , vk] and wI = f̃(vI), where I = i, j, or k. Suppose vI = gI + ihI and
wI = sI + itI (I = i, j, k). Using (5.2), aT , bT , cT , and dT can be written as follows:

aT = AT
i si +AT

j sj +AT
k sk; bT = BT

i si +BT
j sj +BT

k sk;

cT = AT
i ti +AT

j tj +AT
k tk; dT = BT

i ti +BT
j tj +BT

k tk,
(5.7)

where

AT
i = (hj − hk)/2Area(T ), AT

j = (hk − hi)/2Area(T ), AT
k = (hi − hj)/2Area(T );

BT
i = (gk − gj)/2Area(T ), BT

j = (gi − gk)/2Area(T ), BT
k = (gj − gi)/2Area(T ).

(5.8)

For each vertex vi, let Ni be the collection of neighborhood faces attached to vi. By careful
checking, one can observe that

(5.9)
∑
T∈Ni

AT
i bT =

∑
T∈Ni

BT
i aT ;

∑
T∈Ni

AT
i dT =

∑
T∈Ni

BT
i cT .

Thus, following from (5.5) and (5.6), we have

(5.10)
∑
T∈Ni

(
AT

i [α
T
1 aT + αT

2 bT ] +BT
i [α

T
2 aT + αT

3 bT ]
)
= 0

and

(5.11)
∑
T∈Ni

(
AT

i [α
T
1 cT + αT

2 dT ] +BT
i [α

T
2 cT + αT

3 dT ]
)
= 0

for all vertices vi ∈ D. Note that aT and bT can be written as a linear combination of the
x-coordinates of the desired quasi-conformal map f̃ . Hence, (5.10) gives us the linear system
to solve for the x-coordinate function of f̃ . Similarly, cT and dT can also be written as a
linear combination of the y-coordinates of the desired quasi-conformal map f̃ . Therefore,
(5.11) gives us the linear system to solve for the y-coordinate function of f̃ .

6. Numerical experiments. In this section, experimental results are presented to demon-
strate the effectiveness of the proposed algorithms.

6.1. Reconstruction of surface homeomorphism using linear Beltrami solver. Given a
Beltrami representation, the corresponding surface homeomorphism can be exactly computed
using a linear Beltrami solver. Experimental results show that the proposed linear Beltrami
solver can effectively compute the surface homeomorphism associated with a given Beltrami
representation. Figure 3(A) shows the homeomorphism of the unit square and the homeo-
morphism of the synthetic genus-zero closed surface. Figure 3(B) shows the reconstructed
homeomorphisms from their corresponding BCs. The original homeomorphisms and the re-
constructed ones have no observable difference. Figure 3(C) shows the norm of their BCs.

Compared to the BHF method introduced in [36, 37], our method can compute the associ-
ated surface homeomorphism more accurately and efficiently. Table 1 shows the comparison of
the computational time and error under the LBS method and the BHF method. Experimental
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Figure 3. Illustration of the proposed linear Beltrami solver. (A) shows the original homeomorphism
of the unit square (I) and the homeomorphism between two synthetic genus-0 closed surface (II). (B) shows
the reconstructed homeomorphisms from the Beltrami representations. (C) shows the norm of their Beltrami
representations.

Table 1
Comparison of the computational time and error under LBS and BHF.

||µ||∞ L1-error (LBS) Time (LBS) L1-error (BHF) Time (BHF)

Map 1 0.6258 1.365 × 10−14 0.032 s 0.0064 98.5 s
Map 2 0.8556 9.326 × 10−15 0.028 s 0.0159 96.4 s
Map 3 0.9995 2.408 × 10−13 0.033 s 0.0313 102.2 s

results show that the LBS method can compute the associated surface map much faster than
the BHF method. Also, the accuracy is much better when using LBS. As shown in Table 1, the
numerical error under LBS is much less than that under BHF. The computational efficiency
of LBS allows us to apply our proposed algorithm in more practical applications that require
real-time processing, such as video compression.

6.2. Compressing surface homeomorphism using Fourier approximation. Experiments
have been carried out to compress the surface homeomorphisms, which are shown in Figures
3(A)(I) and 3(A)(II). Results show that the proposed compression algorithm is stable and ef-
fective in reducing the storage requirement of bijective surface maps. Figure 4(A)(left) shows
the reconstructed homeomorphism from the compressed Beltrami representation. The recon-
structed map closely resembles the original one (see Figure 3(A)(I)). Figure 4(A)(right) shows
the reconstructed map from the compressed coordinate functions. Note that the bijectivity is
completely disrupted.

The proposed compression scheme can also be applied to compressing surface homeomor-
phisms. Figure 4(B)(left) shows the reconstructed surface map from the compressed Bel-
trami representation, which closely resembles the original map (see Figure 3(A)(II)). Figure
4(B)(right) shows the the reconstructed surface map from the compressed coordinate func-
tions. Again, the bijectivity of the surface map cannot be preserved after the compression.

6.3. Texture map compression. To examine the performance of the proposed texture
map compression algorithm, experiments have been carried out on different 3D surface meshes.
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Figure 4. Compression of the bijective map. (A) and (B) show the reconstructed map from the com-
pressed Beltrami representation and the compressed coordinate functions of examples (I) and (II) in Figure 3,
respectively. The bijectivity of the reconstructed maps from the compressed coordinate functions is completely
disrupted.

Figure 5. Illustration of the proposed compression scheme for texture maps.

Figure 5(A) shows the surface mesh of a bimba surface. Its texture maps and texture images
are as shown in Figure 5(B). There are a total of four texture maps and texture images
with regular shapes. The original textured surface is as shown in Figure 5(C). We apply
the proposed compression algorithm to this example (with 1% of Fourier coefficients stored).
Figure 5(D) shows the reconstructed textured surface after the compression, which closely
resembles the original one.

Note that the preservation of the bijectivity of the texture map after compression is nec-
essary. Figure 6(A) shows the original textured Buddha surface. Figure 6(B) shows the
compressed textured surface using the Fourier compression of the Beltrami representation.
The reconstructed textured surface closely resembles the original one. Figure 6(C) shows
the compressed textured surface using the Fourier compression of the coordinate functions,
with the same compression ratio as in Figure 6(B). Distortion of the texture can clearly be
observed.

Quantitative experiments have also been carried out. Experiments are performed on three
surface meshes, namely, “Susan,” “Buddha,” and “Zebra” (see Figure 7). Susan is a simply
connected open surface with 5161 vertices. Buddha and Zebra are genus-0 closed surfaces
with 15138 vertices and 20157, vertices respectively, which are partitioned into several simply
connected open surfaces. Since some partitions in Buddha and Zebra contain very few vertices,
we applied the compression algorithm only on major parts with more vertices. We tested the
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Figure 6. Comparison between the results of compressing the Beltrami representation and the coordinate
function. (A) shows the original textured Buddha surface. (B) shows the Beltrami representation compression
result. (C) shows the coordinate function compression result.

Figure 7. Summary of compression results using 1% Fourier coefficients. The texture map examples are
freely available from http://www.kunzhou.net/tex-models.htm.

proposed algorithm with 1% and 3% of the Fourier coefficients.

To measure the accuracy of the compression scheme, we compute the root mean square
error (RMSE) between the original and the reconstructed texture maps, respectively. We also
compute the compression ratio (CR) to quantify the compression efficiency of the algorithm.
The compression results for each partition of the surface meshes are shown in Table 2. Results
show that the reconstructed textured surface after compression is very close to the original
data, with very small RMSE. Even in the case when only 1% of Fourier coefficients are saved,
the RMSE still remains in the order of 10−3. As expected, the RMSE is smaller when 3% of
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Table 2
Root mean square error.

Vertices Faces RMSE(1%) CR(1%) RMSE(3%) CR(3%)

Susan 5161 9999 5.103e−4 12.29:1 2.304e−4 8.32:1
Buddha-1 6523 12779 3.009e−3 16.64:1 1.731e−3 10.07:1
Buddha-2 1921 3609 4.298e−3 7.19:1 2.418e−3 5.67:1
Buddha-3 2385 4563 3.551e−3 9.54:1 1.870e−3 6.99:1
Buddha-4 2001 3842 2.194e−3 10.21:1 1.021e−3 7.33:1
Buddha-5 1985 3808 2.766e−3 10.03:1 1.551e−3 7.24:1
Zebra-1 7638 14683 7.042−3 10.36:1 4.898e−3 7.41:1
Zebra-2 1045 1924 3.217e−3 5.71:1 2.030e−3 4.73:1
Zebra-3 1287 2375 3.914e−3 5.85:1 2.311e−3 4.80:1
Zebra-4 7600 14622 7.576e−3 10.53:1 4.801e−3 7.50:1
Zebra-5 767 1414 1.395e−3 5.82:1 1.116e−3 4.79:1

Figure 8. Statistics of the displacement error of each vertex. (A) Buddha part-1. (B) Zebra part-1.
(C) Zebra part-4. (D) Susan. The majority of the reconstructed texture coordinates have less than 1 relative
percentage error.

Fourier coefficients are saved (see column 5). The CRs are shown in columns 4 and 6, which
illustrate that our proposed algorithm can significantly reduce the memory for texture maps.
Note also that the table shows the out-performance of CR in Buddha-1, Zebra-1, Zebra-4, and
Susan. This is expected, as texture coordinates of the boundary vertices contribute a relatively
small amount of total storage of the fine meshes. Hence, our compression algorithm, which
compresses the texture coordinates in the interior, gives better compression results. Figure
8 presents the displacement error of each reconstructed texture coordinate measured in the
supreme norm. It is observed that the majority of the texture coordinates can be reconstructed
almost losslessly.

In Table 3, we study the compression performance of the whole mesh for the three surfaces.
For each surface, 1% of Fourier coefficients are stored. Note that the RMSEs are of order 10−3

in all three cases. Therefore, there is no noticeable difference between the compressed textured
surfaces and the original ones.

The actual memory required is also listed. Note that after the compression, the memories
of the textured surfaces are much less than those of the original data. The CRs are at least
12:1. This demonstrates the efficacy of our proposed method.

Furthermore, surface parameterization can also be represented by a triangular mesh of
the parameter domain. Under this framework, compression of the texture maps can be done
through mesh compression techniques. We have carried out experiments and compared our
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Table 3
Summary of the texture map compression result.

Susan Buddha Zebra

Number of vertices 5161 15138 20157
RMSE 5.103e−4 3.176e−3 6.796e−3

CR 12.29:1 17.27:1 13.68:1
Data saving 91.86% 94.21% 92.69%

Memory required 1.6406 kB 3.3691 kB 5.6289 kB
Original memory required 20.1548 kB 58.1883 kB 77.0027 kB

Table 4
Comparison for texture map compression with an error tolerance of 10−3.

(P = parallelogram rule, S = spectral compression, B = our method).

Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6

Vertices 7638 6258 2179 1687 1090 879
Faces 13443 12203 4124 3112 1971 1582

Overlap
numbers

38 (P) 190 (P) 21 (P) 10 (P) 1 (P) 1 (P)
20 (S) 102 (S) 36 (S) 21 (S) 7 (S) 16 (S)
0 (B) 0 (B) 0 (B) 0 (B) 0 (B) 0 (B)

Bit per
vertex

6.45 (P) 6.65 (P) 7.09 (P) 7.92 (P) 8.55 (P) 10.02 (P)
14.39 (S) 16.51 (S) 20.99 (S) 19.26 (S) 16.38 (S) 14.20 (S)
4.18 (B) 1.92 (B) 1.49 (B) 1.66 (B) 4.04 (B) 3.64 (B)

algorithm for texture map compression with existing state-of-the art mesh compression tech-
niques, namely, the spectral mesh compression (S) by Kami and Gotsman [27] and the vertex
position prediction algorithm using the parallelogram rule (P) introduced by Touma and
Gotsman [43]. For fairness, we take into account only the memory required for the geometric
information (the texture coordinates in this case) and ignore the memory needed for connec-
tivity information. Table 4 shows the compression results for the three methods with an error
tolerance of 10−3. Note that the overlapping numbers of the proposed algorithm are zero for
all six texture maps, while the parallelogram rule algorithm (P) and the spectral method (S)
both produce some flips in the texture maps. The last row shows the bit per vertex needed for
the corresponding texture coordinates. Note that our proposed methods have the least bit per
vertex needed for all cases. For meshes with larger vertex numbers, the proposed algorithm
provides an even better compression ratio for the texture maps.

Finally, every smooth BC corresponds to a smooth bijective quasi-conformal map. As a
result, no abnormal texture (e.g., zaggy textures) would appear on the textured mesh (e.g.,
zero overlap numbers in Table 4). The diffeomorphic property is also a major reason why
there is no noticeable difference between the original and the reconstructed texture mapping
even with higher RMSE (see Figure 9).

6.4. Video compression. To study the performance of our proposed algorithm for video
compression, experiments have been carried out on real videos. In our experiments, all B-
frame in the Group of Picture are taken away for simplicity. Instead, we consider the following
frame set: I1P1P2P3P4. MV fields in each P-frame are obtained from the previous I-frame
or P-frame, which are then compressed by our proposed algorithm. In order to study the
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Figure 9. A close look at Zebra part-1. (A) Uncompressed texture map. (B) Compressed texture map with
4.9× 10−3RMSE.

Figure 10. Comparison between the uncompressed and the compressed video using 0.5% of Fourier coeffi-
cients: (A) Flower 1. (B) Flower 2. (C) Heart 1. (D) Heart 2. Upper rows are some original fourth P-frames
in each frame set. The lower rows show the corresponding compressed P-frames.

performance of our algorithm without adding any residual, a per-pixel MV field is used. It
should be noted that the proposed algorithm can also be applied to block-based MV fields in
exactly the same way. However, residual has to be added. In the decoding process, errors may
be introduced to the MV fields after the compression. As a result, the reconstructed P-frame
P̃i might not be identical to the original frame Pi. Meanwhile, the decoding of Pi+1 is based
on the reconstructed P-frame P̃i rather than the original Pi. The reconstruction error would
be accumulated. However, experimental results show that the accumulated errors are small
enough that the effect to the overall results would be negligible.

Experiments have been carried out on four video clips, namely, “Flower 1,” “Flower 2,”
“Heart 1,” and “Heart 2.” Their resolutions are [360 × 262], [512 × 384], [600 × 480], and
[1280× 720], respectively. Different percentages of Fourier coefficients have been used. Figure
10 shows some original P-frames of the four videos and their corresponding compressed P-
frames using our proposed algorithm. Here, 0.5% of Fourier coefficients are used. As shown
in the figure, no visible differences can be observed after compression. It demonstrates the
effectiveness and accuracy of our proposed algorithm in compressing the MV field.
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Figure 11. (A) The average PSNR between the uncompressed and the compressed P-frames for the four
videos with different percentages of Fourier coefficients saved. (B) The corresponding compression ratio ob-
tained.

Figure 12. PSNR between each pair of uncompressed and compressed P-frames. (A) Flower 1. (B) Flower
2. (C) Heart 1. (D) Heart 2.

We also examine the performance of our algorithm quantitatively. Figure 11 shows the
peak signal-to-noise ratio (PSNR) between the reconstructed P-frames and the original P-
frames. As shown in Figure 11(A), the average PSNR in all four cases is higher than 42 when
0.5% of Fourier coefficients are used. In other words, only a negligible increase in residual will
be induced by the error of the reconstructed MV field. As a result, the required memory for
the residual image will not be affected much after compression with our algorithm.

Figure 11(B) shows the corresponding compression ratio for different percentages of Fourier
coefficients stored. When 0.5% of coefficients are saved, the CR of the MV field can be as
high as 56:1. The high CR of the MV field can effectively improve the CR of the existing
video compression algorithm, such as MPEG and H.264. After the compression, the memory
of the MV field is almost negligible compared with the total file size. For example, suppose
the MV fields contribute 1/3 total storage of the compressed video; using our algorithm to
compress the MV field, the storage requirement of the compressed video can be reduced by
around 32%.

Figure 12 shows the PSNR between each pair of compressed and original P-frames. It
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Figure 13. A closer look at the plots in Figure 12. Patterns of decreasing PSNR with a period of four frames
can be observed. It is the consequence of the accumulation of errors from previous P-frame reconstruction. (A)
Flower 1. (B) Flower 2. (C) Heart 1. (D) Heart 2.

is observed that PSNR stays close to about 45. It means the compressed P-frames closely
resemble the original ones. Figure 13 shows the zoom-in of the plots in Figure 12. Decreases
in the PSNR can be observed in each frame set. This is expected since the errors in MV fields
are accumulated in each cycle. However, the decreases are very small. It means the effect of
the accumulated errors in the MV fields on the overall result is negligible.

7. Conclusion. We address the problem of compressing surface homeomorphisms, which
has important applications in computer graphics and imaging. Surface homeomorphisms are
usually represented and stored by their 3D coordinate functions. It often requires lots of
memory, which causes inconvenience in data transmission and data storage. In this paper, we
propose an effective algorithm for compressing piecewise linear bijective surface maps between
meshes using their Beltrami representations. The Beltrami representation is a complex-valued
function defined on triangular faces of the surface mesh with supreme norm strictly less than
1. Under suitable normalization, there is a 1-1 correspondence between the set of surface
homeomorphisms and the set of Beltrami representations. Given a Beltrami representation,
the associated bijective surface map can be exactly reconstructed using the linear Beltrami
solver introduced in this paper. Since the Beltrami representation has very few constraints,
it can be easily combined with the Fourier approximation to compress the bijective surface
map without distorting the bijectivity of the map. This significantly reduces the storage
requirement for surface maps. In this paper, we proposed applying the algorithm to texture
map compression and video compression. With our algorithm, the storage requirement for
textured surfaces can be significantly reduced, while well preserving the quality of the original
data. Our algorithm can also be applied to compressing MV fields for video compression.
After compressing the MV field, the CR of the state-of-the-art video compression algorithms
can be significantly improved. Experimental results on real textured surfaces and videos
demonstrate the effectiveness and efficacy of our proposed algorithms.
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[54] B. Zitová and J. Flusser, Image registration methods: A survey, Image Vis. Comput., 21 (2003), pp.
977–1000.

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

37
.1

89
.2

04
.6

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


