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Abstract Surface conformal maps between genus-0 surfaces play important roles in applied
mathematics and engineering, with applications in medical image analysis and computer
graphics. Previous work (Gu and Yau in Commun Inf Syst 2(2):121–146, 2002) introduces
a variational approach, where global conformal parameterization of genus-0 surfaces was
addressed through minimizing the harmonic energy, with two weaknesses: its gradient descent
iteration is slow, and its solutions contain undesired parameterization foldings when the
underlying surface has long sharp features. In this paper, we propose an algorithm that
significantly accelerates the harmonic energy minimization and a method that iteratively
removes foldings by taking advantages of the weighted Laplace–Beltrami eigen-projection.
Experimental results show that the proposed approaches compute genus-0 surface harmonic
maps much faster than the existing algorithm in Gu and Yau (Commun Inf Syst 2(2):121–146,
2002) and the new results contain no foldings.

Keywords Harmonic energy minimization · Conformal map · Optimization with
orthogonality constraints ·Weighted Laplace–Beltrami eigenfunctions

R. Lai (B)
Department of Mathematics, University of Southern California, Los Angeles, CA, USA
e-mail: rongjiel@usc.edu

Z. Wen
Department of Mathematics, MOE-LSC and Institute of Natural Sciences, Shanghai Jiaotong University,
Shanghai, China

W. Yin
Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA

X. Gu
Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY, USA

L. M. Lui
Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

123



706 J Sci Comput (2014) 58:705–725

Fig. 1 A conformal
parametrization from a brain
surface to the unit sphere

1 Introduction

Surface parameterization is the process of mapping a surface onto a simple domain, such
as a unit sphere or 2D rectangle. It allows operations on the surface to be carried out on
the simple parameter domain. A special type of parameterization is called the conformal
parameterization. Under the conformal parameterization, angles and thus local geometry
are well preserved. Surface conformal parameterization has been widely used in different
areas such as medical image analysis and computer graphics. For example, in medical image
analysis, human brains are often conformally mapped to a unit sphere (Fig. 1). Computa-
tions and analysis of the brain surface can then be carried on the simple sphere, rather than
on the complicated brain cortical surface [2,3]. In computer graphics, surface conformal
parameterization is applied for texture mapping and solving PDEs on surfaces [4].

Several local conformal parameterization algorithms have been proposed by different
research groups. Levy et al. [5] compute a conformal parameterization of topological disks
by approximating the Cauchy–Riemann equation using the least squares method. Eck et al.
[6] introduce the discrete harmonic map, which approximates the continuous harmonic map
[7] by minimizing a metric dispersion criterion. In [8], Desbrun et al. use conformal maps to
define geometry maps, where they compute the conformal maps from a topological disk to
the complex plane. Kanai et al. [9] use a harmonic map for geometric metamorphosis. These
works mainly deal with the local conformal parameterizations of surface patches, which are
homeomorphic to the topological disk.

In many situations, a global conformal parameterization that maps a surface onto one
global parameter domain is desirable. The global nature avoids the needs of introducing cuts
on the surface and partitioning the surface into several patches. Computations can then be
performed on one simple parameter domain. Spherical conformal parameterization has been
widely used in many different areas such as human brain mapping, computer vision and
computer graphics, just to name a few. In this paper, we consider global conformal map from
a genus-0 surface to the unit sphere.

Several global conformal parameterization methods have been proposed. Hurdal et al. [10]
propose a circle packing approach for spherical conformal parameterization. This method is
based on the mean value property of the harmonic map and does not consider the specific
metric. Stereographic projection method is also considered for computing conformal para-
meterization from genus-0 surfaces to the unit sphere. In this method, a face on the mesh
is punctured to change the topology of the surface and is then conformally mapped to the
2D plane by either solving a linear system given by the Laplace–Beltrami operator [11] or
computing a curvature flow in terms of the conformal factor [12]. After that, stereographic
projection is then involved to map the surface onto the sphere. However, artificial chosen of the
punctured triangle in this approach will affect the computation results. A more direct approach
to face the challenging of the global map is introduced by Gu and Yau [1,13], where a non-
linear optimization method is considered to compute global conformal parameterizations for
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genus-0 surfaces. The optimization is done in the tangent spaces of the sphere using gradient
descent. This method avoids the stereographic projection and is more stable and accurate.
As for the global conformal parameterization of higher-genus surfaces, Gu et al. [1,14]
propose to compute the conformal parameterization using the holomorphic 1-form. Curva-
ture flow methods for conformal parameterization of high-genus surfaces, which deform the
background Riemannian metric into a uniformization metric, are also proposed by Gu et al.
[15,16].

However, there are two weaknesses of the algorithm in [1,13]. First, it often converges
slowly due to the gradient descent and the method of projection back to the sphere in their
approach. As an example, the conformal parameterization of a surface mesh with 16k vertices
takes more than 20 min to compute. This hinders the application of this algorithm. Second,
undesired foldings occur in the parameterization of long sharp features of the surface. This
leads to inaccurate global parameterizations. The robustness of the algorithm cannot be
guaranteed especially for surfaces with complicated geometries. To address these issues, we
propose in this paper new methods to compute conformal maps from genus-0 surfaces to the
unit sphere.

To compute global spherical conformal parameterizations (i.e., conformal map) of genus-
0 closed surfaces, we introduce an efficient approach for minimizing the harmonic energy of
the map, based on the fact that a diffeomorphic map between two genus-0 surfaces M and
S2 is conformal if and only if it is a local minimizer of the harmonic/Dirichlet energy [17].
It is worth noting that (i) all local minimizers give the same harmonic energy, and (ii) this
result does not hold if the map is not a diffeomorphism. The constant map f (x) ≡ y0 ∈
S2, for example, minimizes the harmonic energy to 0 but is clearly not conformal. Hence,
the minimization must be confined to the set of diffeomorphisms. In Sect. 3, we introduce
an efficient algorithm for minimizing the harmonic energy, but in order to return a local
minimum that is a diffeomorphism—a conformal map—the algorithm must start from an
initial diffeomorphism. The Gauss map, a common choice of initial map, is generally not a
diffeomorphism because on surfaces with long sharp features, it tends to contain foldings—
parts of the surface being mapped in a way as if they were folded inside other parts. To have
a diffeomorphism, we must remove the foldings, and this is a task that no existing maps
or algorithms can effectively accomplish without introducing artificial surface cutting. Our
attempt is a 3-step heuristic algorithm outlined as follows:

Step 1 Let F0 be the Gauss map of the input surface.
Step 2 Run an algorithm for minimizing the harmonic energy, which starts from F0 and
returns F. (see Sect. 3)
Step 3 Generate a new map F0 by applying the weighted Laplace–Beltrami eigen-projection
on F and go to step 2. (see Sect. 4)

We demonstrate that just two or three iterations of Steps 2 and 3 remove the foldings in F0

and return a folding-free harmonic map F, which is also conformal. Given an initial map
F0 with foldings, the algorithm on Step 2 generally returns a map F also with foldings, but
they appear as localized sharp “singularities.” The leading terms of the weighted Laplace–
Beltrami eigen-decomposition of F, alike those of the Fourier transform, tend to capture
the overall geometry of F and smooth out the sharps. Consequently, the new initial map F0

constructed by using only the first three leading eigen-terms tends to contain fewer foldings,
or no foldings at all. Then, step 2 is applied again starting from this new initial map and
yields a map F with fewer or no foldings. Although we can not theoretically guarantee the
removal of all foldings by this iterative procedure, our numerical experiments on a variety of

123



708 J Sci Comput (2014) 58:705–725

different surfaces show that our code always removed all the foldings and returned a (discrete)
harmonic map in no more than three iterations.

Moreover, our algorithm performs very fast. Step 2 applies an optimization algorithm
modified from the one in [18]. For harmonic energy minimization, our algorithm is designed
in a way to take advantages of optimization techniques such as Barzilai–Borwein (using the
current and previous gradients to approximate a Newton step) and non-monotone line search
(to ensure convergence) to significantly accelerate its convergence. On problems that the
algorithm in [1,2] runs in minutes, our algorithm runs in seconds and returns folding-free
discrete global harmonic maps. In addition, this fast algorithm is not necessary to restricted
on solving harmonic minimization problem. It can be easily adapted to efficiently solve the
harmonic energy with landmark-matching problems [3,19] or the p-harmonic minimization
problem. Both of these problems are not straightforward to be handled using the stereographic
projection method. These potential applications of our fast algorithm will be further explored
in our future work.

The rest of this paper is organized as follows. Section 2 reviews the background of confor-
mal maps and its relation to the harmonic energy minimization problem. Section 3 describes
the harmonic energy minimization problem and our algorithm for it, and Sect. 4 describes the
folding correction based on weighted Laplace–Beltrami eigenfunctions. Numerical experi-
ments and comparisons with existing methods are presented in Sect. 5. The paper is concluded
in Sect. 6.

2 Mathematical Background

In this section, we give a brief review of the harmonic energy minimization problem and its
generalization of the p-harmonic energy minimization problem [7,17,20].

To introduce the concepts of the harmonic energy minimization problem and harmonic
maps between Riemannian surfaces M and N , we use φM(x1, x2) : R2 →M ⊆ R

3 and
φN (y1, y2) : R

2 → N ⊆ R
3 as their local coordinates respectively. The inner product of

the tangent vectors at each point of the surface can be represented by its first fundamental
form. The first fundamental form on M can be written as g = ∑

i, j gi j dxi dx j , where

gi j = ∂φM
∂xi · ∂φM

∂x j and i, j = 1, 2. Similarly, the first fundamental form on N can be written

as h = ∑
i, j hi j dyi dy j where hi j = ∂φN

∂yi · ∂φN
∂y j and i, j = 1, 2. Given a smooth map

f :M→ N with local coordinate representation f (x1, x2) = ( f1(x1, x2), f2(x1, x2)), the
harmonic energy density of f is:

e( f ) = ‖d f ‖2 =
∑

i, j=1,2

gi j 〈 f∗∂xi , f∗∂x j 〉h (1)

where (gi j ) is the inverse of (gi j ) and the inner products of pushforward vectors f∗∂xi and
f∗∂x j are:

〈 f∗∂xi , f∗∂x j 〉h =
〈

2∑

m=1

∂ fm

∂xi
∂ym ,

2∑

n=1

∂ fn

∂x j
∂yn

〉

h

=
2∑

m,n=1

hmn
∂ fm

∂xi

∂ fn

∂x j
(2)

This formula also defines a new Riemannian metric f ∗(h)(v1, v2) := 〈 f∗(v1), f∗(v2)〉h on
M from a linear extension of the above formula, called the pullback metric induced by f
and h.
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Let’s denote the set of all smooth maps from M to N by S(M, N ). The harmonic energy
minimization problem is defined as follows:

min
f ∈S(M,N )

E( f ) = 1

2

∫

M
e( f )dM. (3)

where E( f ) = 1
2

∫
M e( f )dM is called the Harmonic energy or Dirichlet’s energy of f .

Critical points of the harmonic energy E are called harmonic maps from M to N . In particular,
if the target manifold N is R

2, a harmonic map f = ( f1, f2) from M to R
2 are given by

two harmonic functions on M.
In this paper, we are particularly interested in harmonic maps from a genus-0 surface

(M, g) to the unit sphere (S2, g0). In other words, we consider:

f :M −→ S2 ↪→ R
3

x 
−→ y 
−→ F(x) = ( f1(x), f2(x), f3(x)) s.t.
3∑

i=1

f 2
i (x) = 1 (4)

According (1), the harmonic energy density in this case is given by:

e( f ) =
∑

i, j=1,2

gi j 〈 f∗∂xi , f∗∂x j 〉g0 =
∑

i, j=1,2

gi j
〈

∂F
∂xi

,
∂F
∂x j

〉

=
∑

i, j=1,2

gi j
3∑

α=1

∂ fα
∂xi

∂ fα
∂x j
=

3∑

α=1

‖∇M fα‖2 (5)

where ∇M fα =∑2
i, j=1 gi j ∂ fα

∂xi ∂x j are gradient of fα, α = 1, 2, 3 on M.

Therefore, computing the harmonic map from M to S2 is equivalent to solving the fol-
lowing optimization problem with spherical constraints:

min
F=( f1, f2, f3)

E(F) = 1

2

∫

M
‖∇M f1‖2 + ‖∇M f2‖2 + ‖∇M f3‖2dM

s.t. ‖F(x)‖2 = f 2
1 (x)+ f 2

2 (x)+ f 2
3 (x) = 1, ∀x ∈M.

(6)

We say that the map f is conformal if

f ∗(h) = e2u g (7)

with a smooth function u :M→ R on M. Intuitively, a map is conformal if it preserves the
inner product of the tangent vectors up to a scaling factor, called the conformal factor e2u .
An immediate consequence is that every conformal map preserves angles.

Harmonic maps from a genus-0 surface M to the unit sphere S2 is closely related to
surface conformal maps, which preserve the inner product of the tangent vectors up to a
scaling factor. In fact, for a diffeomorphism f between two genus-0 surfaces M and S2, f
is conformal if and only if it is a harmonic map [17]. Therefore, computing a conformal map
between two genus-0 surfaces is equivalent to computing a harmonic map between them,
which can be obtained by finding a critical point of the energy functional E in (3).

Remark 1 More generally, we can consider about p-harmonic map from a n-dimensional
manifold M to the n-dimensional sphere Sn ⊂ R

n+1, which can be computed as the
n-dimensional p-harmonic energy minimization problem:
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min
F=( f1,..., fn+1)∈S(M,Sn)

Ep(F) = 1

p

∫

M

(
n+1∑

k=1

‖∇M fk‖2
)p/2

dM

s.t.
n+1∑

k=1

f 2
k (x) = 1, ∀x ∈M.

(8)

Our algorithm for solving harmonic energy minimization discussed in Sect. 3 can be easily
adapted to solve this general problem.

3 Optimization Over Diffeomorphisms Between Genus-0 Surfaces

According to our discussion in Sect. 2, harmonic maps between a genus-0 surface M and
S2 can be obtained by solving the optimization problem (6) with spherical constraints. Since
the equivalence between conformal maps and harmonic maps M to S2, solutions to the
optimization problem (6) restricted to the set of diffeomorphic maps also provide conformal
maps from the given genus-0 surface M to the unit sphere. Due to its non-convexity, the
problem can have multiple local minimizers. This coincides with the fact that conformal maps
from surface M to the unit sphere are non-unique. However, any two different conformal
maps of M only differ by a Mobius transformation of the unit sphere. In addition, the
harmonic energies of all conformal maps are identical [20]. Thus, all diffeomorphic local
minimizers of problem (6) have the same harmonic energy, and any one of them gives a
harmonic map (or conformal map) from M to the unit sphere.

However, since it is difficult to characterize diffeomorphic maps at least numerically, our
first stage is to solve problem (6) itself but relax the diffeomorphic constraints. Empirical
evidence show that the quality of the returned map is usually very good except that the
map can have foldings which appear as localized sharp “singularities.” We should point
out that foldings in our problem are due to the folding in the initial solutions, which are
not diffeomorphic. Any existing harmonic-energy-minimization algorithms including ours,
if starting from a map with folding, may return a map with foldings. If the initial map has
no foldings, our experience shows that the solution has no folding, too. Generally speaking,
it is not straightforward to have a diffeomorphism from an arbitrary given genus-0 surface
to the unit sphere without introducing artificial cutting. Hence, we first describe an algo-
rithm for solving problem (6) and the next section is devoted to generating a folding-free
initial map.

Unlike optimization in R
n where it is straightforward to decrease the objective along

a straight search line (e.g., along the negative gradient direction), it is not as easy to do
so in a curved manifold. A natural choice is the geodesic, which is the analog of straight
line and has the shortest length between two different points. Another choice is iterative
projection: descent along straight lines and project points back to the manifold. There are
various optimization methods for optimization on manifold such as [21–23] and references
therein, which are mostly based on either geodesics or projections. Considering the fact that
at each x ∈M, ‖F(x)‖ = 1 defines a unit sphere, we choose to develop a sphere-geodesic
descent method which is essentially identical to the recent work [18]. It is numerically efficient
and lets us apply state-of-the-art acceleration techniques such as Barzilai–Borwein steps and
non-monotone line search with global convergence guarantees.
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3.1 Constraint Preserving Update

The constraint of problem (6) is often referred to as the unit-sphere manifold, which is a
special case of the Stiefel manifold. Our constraint preserving scheme can be viewed as a
kind of projected gradient method on the manifold. The Lagrangian of problem (6) is

L(F, λ) := E(F)− 1

2

∫

M
λ(x)

(‖F(x)‖2 − 1
)

dM,

where λ is the Lagrange multiplier. The first-order optimality conditions of (6) are (assuming
they are well-defined)

{
gradFL(F, λ) := H − λF = 0,

‖F(x)‖ = 1, ∀x ∈M,
(9)

where H = grad E(F) = −(�M f1,�M f2,�M f3) is the Fréchet derivative of E(F) with
respect to F and�M is the Laplace–Beltrami operator of M. For concise notation, we let A∗F
denote the function (A∗F)(x) := 〈A(x), F(x)〉. Applying the linear operator F∗ to both sides
of the first equation in (9) and using the fact (F∗F)(x) = ‖F(x)‖ = 1, ∀x ∈M, we obtain
λ = F∗H = H∗F. Plugging λ back to (9) gives 0 = H − (F∗H)F = H(F∗F) − F(H∗F)

or, equivalently

AF = 0 with A := HF∗ − FH∗.

By definition, A(x) is skew-symmetric at every x ∈ M. Following [18], we use A and its
skew-symmetry to define a search path maintaining ‖F‖ = 1.

Observe that A(x)F(x) is the gradient of E at x projected to S2. In R
3, the steepest descent

path is Y(x) := F(x)− τ A(x)F(x), where τ is a scalar representing the step size. However,
this Y(x) does not generally have a unit norm. If we instead apply the implicit update

Y(x) = F(x)− τ

2
A(x)(F(x)+ Y(x))

and obtain

Y(x) =
(

I + τ

2
A(x)

)−1 (
I − τ

2
A(x)

)
F(x), (10)

then the fact that
(
I + τ

2 A(x)
)−1 (

I − τ
2 A(x)

)
is orthogonal gives us ‖Y(x)‖ = ‖F(x)‖ = 1.

Hence, we define the update path Y[τ ] by

Y[τ ] := F− τ

2
A(F+ Y[τ ]). (11)

Theorem 1 below shows that the constraints are preserved at every τ . Since the Eq. (11) is
linear with respect to Y[τ ], its closed-form solution can be computed explicitly as a linear
combination of F and H , in which the linear coefficients are determined by τ , ‖F‖, ‖H‖ and
F∗H .

Theorem 1 For every τ , Y [τ ] of (11) satisfies ‖Y[τ ]‖ = ‖F‖ point-wise. In addition, it is
given in the closed-form

Y[τ ] =
(

I + τ

2
A
)−1 (

I − τ

2
A
)

F,
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Fig. 2 An illustration of constraints preserving update. Given x , ‖F(x)‖ = 1. The point F(x)− τ A(x)F(x)

is not feasible, but Y(x) given by (10) is feasible

which can be computed as Y[τ ] = α[τ ]F+ β[τ ]H, Here,

α[τ ] =
(
1+ τ

2 F∗H
)2 − (

τ
2

)2 ‖F‖2‖H‖2
1− (

τ
2

)2
(F∗H)2 + (

τ
2

)2 ‖F‖2‖H‖2
,

β[τ ] = −τ‖F‖2
1− (

τ
2

)2
(F∗H)2 + (

τ
2

)2 ‖F‖2‖H‖2
.

We refer [18] for the details of the proof of this theorem. The result of theorem is visualized
in Fig. 2.

According to Theorem 1, the cost of computing Y[τ ] is dominated by the computation of
‖H‖2 and F∗H . It is also worth noting that τ sometimes needs updates, which incurs updates
to Y[τ ], but the cost is relatively small.

3.2 Algorithm and Initial Map

To make the maximal use of the computed ‖H‖2 and F∗H at each iteration k, we determine
a step size τk that makes significant descent while still guarantees the convergence of the
overall iterations. To this end, instead of the classical Armijo–Wolfe based monotone line
search, we apply nonmonotone curvilinear1 search with an initial step size determined by
the Barzilai–Borwein formula, which we have found more efficient for our problem. They
were developed originally for R

n in [24] and [25], respectively. At iteration k, the step size
is computed as

τk,1 =
∫
M ‖Dk−1(x)‖2dM

| ∫M D∗k−1(x)Wk−1(x)dM| or τk,2 =
| ∫M D∗k−1(x)Wk−1(x)dM|

∫
M ‖Wk−1(x)‖2dM , (12)

1 As our search path is a curve rather than a straight line.
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where Dk−1 := Fk−Fk−1 and Wk−1 = AkFk−Ak−1Fk−1. The final value for τk is a fraction
(up to 1, inclusive) of τk,1 or τk,2 determined by the nonmonotone search in Algorithm 1,
Lines 3 and 5, which enforce a trend of descent in the objective value but do not require strict
descent at each iteration. At the first iteration where Fk−1 and Ak−1 are not available, one can
set a unit initial step size. The convergence of this algorithm can be obtained by extending
the proof in [18] ofr R

n in our setting.
Assembling the above parts, we arrive at Algorithm 1, in which ε is a stopping parameter,

and ρ, δ, and ξ are curvilinear search parameters, which can be set to typical values as 10−4,
0.1 and 0.85, respectively.

Algorithm 1: A Fast Algorithm

Given F0 , pick ρ, δ, ξ, ε ∈ (0, 1). k ← 0.1
while ‖∇E(Fk )‖ > ε do2

Compute τk ← τk,1δh or τk ← τk,2δh , where h is the smallest nonnegative integer satisfying3

E(Yk (τk )) ≤ Ck + ρτkE ′(Yk (0)).
Fk+1 ← Yk (τk ).4

Qk+1 ← ξ Qk + 1 and Ck+1 ← ξ Qk Ck+E(Fk+1)

Qk+1
.5

k ← k + 1.6

Generally speaking, it is difficult to construct one-to-one and onto smooth maps from a
given genus-0 surface to the unit sphere. In practice, we choose the Gauss map as the initial
map F0, which is defined as follows:

Definition 1 (Gauss map) G :M→ S2, G(p) = np , where np is the unit normal vector at
p ∈M.

As we shall see later, when Gauss map contains foldings—which are common for surfaces
with long and sharp parts—the initial map is not a diffeomorphism. It leads to foldings in the
solutions of our discrete algorithm below. We address foldings in subsection 3.4 and their
removal in Sect. 4.

3.3 Implementation and Simulations

In the implementation of Algorithm 1, we approximate M by a triangulated surface M =
{V = {pi }Ni=1, T = {Tl}Ll=1}, where pi ∈ R

3 is the i-th vertex and Tl is the l-th triangle.
For a function h = (h(p1), . . . , h(pN )) defined on the triangle mesh, we approximate the
Laplace–Beltrami operator and numerical integral on surface M by [26–28]:

�Mh(pi ) ≈ 3
∑

pi∈Tl
Area(Tl)

∑

j∈Ni

ωi j (pi )
(
h(p j )− h(pi )

)
,

∫

M
hdM(x) ≈

N∑

i=1

h(pi ) · Ai (13)

where ωi j (pi ) = cotαi j (pi )+cotβi j (pi )

2 , αi j and βi j are the two angles opposite to the edge
pi p j , Ni is the first ring neighborhood of the vertex pi , and Ai = 1

3

∑
pi∈Tl

Area(Tl).
For a general given genus-0 surface (M, g), there is no analytical form of the harmonic

maps from (M, g) to (S2, g0). However, a harmonic map F from M to S2 is also conformal.
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Table 1 Iterations and
computation times for surfaces in
Fig. 3

Surface # of vertices # of iterations Time (s) ε

Putamen 10,000 1, 414 4.80 1e−10

Brain 15,002 1, 329 9.36 1e−10

Maxplanck 12,556 892 5.19 1e−10

Namely, the harmonic map F will preserve angles of tangent vectors and satisfying F∗(g0) =
e2u g. Here, we would like to check the accuracy of the resulting harmonic map F by checking
its conformality. Given a surface map F : M → S2, p 
→ ( f1(p), f2(p), f3(p)), the
“conformal factor” with respect to the map F can be approximated by:

e2u(pi ) =
∑

pi∈Tl
Area(F(Tl))

∑
pi∈Tl

Area(Tl)
(14)

Table 1 and Fig. 3 give the results of Algorithm 1 on three different examples: a Puta-
men surface, a brain surface and a Maxplanck surface. Their harmonic maps are obtained
by Algorithm 1 with a fixed ε = 10−10 and initialized by the Gauss map. The sur-
face sizes, numbers of iterations and computation times are given in Table 1. The top
row of Fig. 4 shows how the energies decrease over the iterations. To illustrate the
quality of the result maps, we compute the angle differences between triangles on the
input surfaces and the corresponding triangles on the obtained maps. As shown in the
histograms on the bottom row of Fig. 4, most of the angle differences are close to
zero, so the obtained maps do preserve angles and thus nearly satisfy the main property
of the harmonic map. In general, Algorithm 1 can efficiently compute harmonic maps
of a large class of surfaces as long as they do not contain extremely long and sharp
patterns.

3.4 Artificial Folding Issue

For arbitrary given genus-0 surface M, it is not easy to obtain an initial diffeomorphism from
M to the unit sphere S2. The most natural map from M to S2 is the Gauss map. However, the
initial Gauss map can introduce artificial foldings for surfaces with complicated geometries,
especially for those with long sharp features. The Gauss map as the initial map with foldings
often cause singularities in the solution of algorithm for harmonic energy minimization. Such
phenomenon has also been observed in the well-known algorithm [1,13], where artificial
cutting was introduced to overcome this issue [13].

Figure 5 depicts the singularities in the solution near the long neck, tail and four legs of a
dinosaur surface. To tackle this difficulty, we introduce a folding removal method based on
the weighted Laplace–Beltrami eigen-projection in the next section.

4 Folding Removal by Weighted Laplace–Beltrami Eigenfunctions

Since the possible foldings in the maps out of our Algorithm 1 are localized and sharp, we
novelly propose to “smooth” them out using the leading three terms of the weighted Laplace–
Beltrami (LB) eigenfunctions on M. To clearly introduce our folding removal method, we
first present our simple observation on spherical harmonics and then extend it to weighted
LB eigenfunctions for the folding removal algorithm.
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Fig. 3 First row three input surfaces; second row harmonic maps obtained by Algorithm 1; third row surfaces
color-coded by the corresponding u in the conformal factors (Color figure online)

4.1 Laplace–Beltrami Eigenfunctions and Spherical Harmonics

Given a closed Riemannian surface (M, g), its Laplace–Beltrami (LB) operator is defined
as [20,29]:

�gφ = 1√
G

2∑

i=1

∂

∂xi

⎛

⎝
√

G
2∑

j=1

gi j ∂φ

∂x j

⎞

⎠ (15)
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Fig. 4 Top row harmonic energy (6) versus iteration number; bottom row angle difference histograms

Fig. 5 The artificial foldings in the dinosaur surface

where (gi j ) is the inverse matrix of g = (gi j ) and G = det(gi j ). The LB operator is self
adjoint and elliptic, so its spectrum is discrete. We let the eigenvalues of �g be denoted as
0 = λ0 < λ1 ≤ λ2 ≤ · · · and the corresponding eigenfunctions as φ0, φ1, φ2, . . . such
that

�gφn = −λnφn,

∫

M
φ2

ndM = 1, n = 0, 1, 2, . . . . (16)

Then {φn | n = 0, 1, 2, . . .} forms an orthonormal basis of the smooth function space on
M. A well-known example of the LB eigen-problems is the LB eigen-problem of the unit
sphere (S2, g0), namely, �g0φn = −λnφn, n = 0, 1, 2, . . ., whose solutions are spherical
harmonic functions. More specifically, if we use the standard spherical coordinate (θ, ξ) for
the unit sphere in R

3:
⎧
⎪⎨

⎪⎩

x = sin θ cos ξ,

y = sin θ sin ξ,

z = cos θ,

θ ∈ [0, π ], ξ ∈ [0, 2π), (17)
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Fig. 6 a–c The first three nontrivial LB eigenfunctions φ1, φ2 and φ3 color-coded on the unit sphere. d The
surface reconstructed by φ1, φ2 and φ3 (Color figure online)

the spherical harmonic functions can be written as smooth functions in θ and ξ . We are
especially interested in the first three nontrivial spherical harmonic functions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ1 = 1
2

√
3
π

sin θ cos ξ,

φ2 = 1
2

√
3
π

sin θ sin ξ,

φ3 = 1
2

√
3
π

cos θ.

θ ∈ [0, π], ξ ∈ [0, 2π), (18)

An interesting observation is that the first three nontrivial spherical harmonic functions
φ1, φ2, φ3 provide us with left-right, up-down and forward-backward structures of the given
sphere (see Fig. 6). More precisely, since φ2

1 +φ2
2 +φ2

3 = 3
4π

, one can use � = (φ1, φ2, φ3)

to construct a diffeomorphism as:

S� : S2 → S2, p 
→ S�(p) = �(p)− c
‖�(p)− c‖ , (19)

where c =
∫

S2 �dS2
∫

S2 dS2 = 0 and S� is called the star map defined from � = (φ1, φ2, φ3).

An advantage of using � = {φ1, φ2, φ3} to construct the Star map is that {φ1, φ2, φ3} are
all intrinsically defined on the unit sphere. Thus the Star map construction in this way does
not depend on the chosen of Euclidean coordinate representation of the sphere. Moreover,
due to the analytic form of φ1, φ2, φ3 in (18), the Star map obtained from � is a smooth
one-to-one and onto map from S2 to S2. We would like to generalize this observation to
obtain a one-to-one and onto map from arbitrary given genus-0 surface (M, g) to the unit
sphere, which is described in the following subsection.

4.2 Weighed LB Eigenfunctions and Folding Removal Algorithm

A general given genus-0 closed surface (M, g) can be viewed as a topological manifold S2

with a given metric g. Since there always exits a conformal map between M = (S2, g) and
(S2, g0) [7], we write the corresponding conformal factor of (S2, g) as e2u . Namely, we have
e2u g = g0.

Theorem 2 Given a genus-0 surface (M, g) with conformal factor e2u. Let �u =
(φu

1 , φu
2 , φu

3 ) be the first three nontrivial eigenfunctions of the weighted Laplace–Beltrami
eigensystem:

�gφ
u
n = −λe2uφu

n , n = 0, 1, 2, . . . (20)
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Write c =
∫
M �udM
∫
M dM . Then the Star map:

S�u :M→ S2, S�u (p) = �u(p)− c
‖�u(p)− c‖ ,

defined from �u is a smooth one-to-one and onto map from M to S2.

Proof Since M is a genus-0 surface, the underlying topological manifold of (M, g) is a
sphere. Consider the Laplace–Beltrami eigen-problems on M with respect to the standard
metric of the unit sphere g0:

�g0φn = −λnφn, n = 0, 1, 2, . . . . (21)

Therefore, the solutions of (21) on M are spherical harmonic functions. On the other hand,
since g0 = e2u g, the definition of the Laplace–Beltrami operator in (15) provides:

�e2u gφ =
1

e2u
√

G

2∑

i=1

∂

∂xi

⎛

⎝e2u
√

G
2∑

j=1

e−2u gi j ∂φ

∂x j

⎞

⎠ = e−2u�gφ, (22)

where (gi j ) is the inverse matrix of g = (gi j ) and G = det(gi j ). By combining with (21)
and (22), we have the solutions of weighted Laplace–Beltrami eigensystem:

�gφ
u
n = −e2uλnφu

n , n = 0, 1, 2, . . . (23)

are spherical harmonic functions. Therefore, from the analytic expression of the first three
spherical harmonic functions in (18), �u = (φu

1 , φu
2 , φu

3 ) should satisfy (φu
1 )2 + (φu

2 )2 +
(φu

3 )2 = 3
4π

. More importantly, Su
� is a diffeomorphism from M to the unit sphere S2. ��

The above theorem provides a constructive approach to have a one-to-one and onto diffeo-
morphism from an arbitrary given genus-0 surface (M, g) to the unit sphere. Then a folding
free conformal map can be obtained by using this map as an initial map in the Algorithm 1. The
conformal factor e2u of M in the above weighted Lapalce-Beltrami eigensystem is crucial.
It is not true that the first three nontrivial eigenfunctions standard LB eigensystem without
weight will provide the diffeomorphism. We would like to point out that the conformal factor
e2u of (M, g) is related to a highly nonlinear equation

�gu + K − e2u = 0, where K is the Guass curvature of M (24)

whose solution is not straightforward to have [7,12,30].
As we discussed in Sect. 3.4, for a surface M with long and sharp parts like the dinosaur

neck, tail and legs in Fig. 5, the result mapping F0 :M→ S2 from Algorithm 1 contains arti-
ficial foldings introduced by the initial Gauss map. More importantly, those artificial foldings
appear as localized sharp “singularities”. In this case, we can view F0 as an approximation
of the conformal map which can give us the first approximation of the “conformal factor”,
e2u0 , with respect to F0. However, e2u0 might be inaccurate in these localized singularites.
Due to the global properties of the leading terms of the weighted LB eigen-system, alike
those of the Fourier transform, the corresponding Star map S�u tends to capture the overall
geometry and smooth out these sharps. This motives us to propose the following Algorithm
2 for computing a folding free harmonic map with folding removal iteration using weighted
LB eigen-projection, which is also illustrated in Fig. 7. We also would like to point out that
this algorithm is currently lack of rigorous proof, while it does provide good conformal maps
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Fig. 7 An illustration of Algorithm 2

for surfaces with long and sharp features in practice. A rigorous mathematical validation of
this algorithm will be certainly considered in our future work.

As we can see from the Fig. 9, the conformal map before the folding removal iteration has
foldings, and the obtained conformal factor is not accurate enough. Thus, the visualization of
�u = (φu

1 , φu
2 , φu

3 ) is not a sphere but an ellipsoid. While, the start map from this ellipsoid
will certainly provide a good initial map. From the two steps of the proposed folding removal
iteration illustrated in last two rows of Fig. 9, we can see that the resulting conformal map
is folding-free, and the corresponding conformal factor is accurate. Therefore the �u =
(φu

1 , φ2
u , φu

3 ) is a sphere as we state in the Theorem 2.

Algorithm 2: Folding removal by weighted LB Eigen-projection

1. Compute a map F0 :M→ S2 using Algorithm 1.
Compute the corresponding e2u0 using the approximation formula (14).

Iterate the following steps starting from k = 1.
2. Given the map Fk−1 and conformal factor e2uk−1 , solve (20).

3. Construct a Star map using {φuk−1
1 , φ

uk−1
2 , φ

uk−1
3 }.

4. Start Algorithm (1) for the Star map and obtain Fk and uk .

Similar to using the finite element method (FEM) for computing the LB eigen-system
on triangulated surfaces [31–34], we use FEM to solve the above weighted LB eigen-
system (23). For any given surface M in R

3, we represent M as a triangular mesh{
V = {pi }Ni=1, T = {Tl}Ll=1

}
, where pi ∈ R

3 is the i th vertex and Tl is the l-th triangle.
One can choose linear elements {ei }Ni=1, which satisfy ei (p j ) = δi, j in the Kronecker delta
notion, and write E = SpanR{ei }Ni=1. Then the discrete version of the weak form of the
continuous problem is to find a φ ∈ E such that
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Fig. 8 Surfaces for comparisons listed in Table 2

Table 2 Comparison between the proposed Algorithm 1 and the algorithm in [1]

Surface # of vertices ε The proposed Algorithm 1 Algorithm in [1]

# of iterations Time (s) # of iterations Time (s)

Hippocampus 1 2,000 1e−10 210 0.19 790 16.91

Hippocampus 2 2,562 1e−10 4,225 5.83 1,594 108.36

Putamen 10,002 1e−10 1,414 4.80 2,684 760.33

Gray matter 10,000 1e−10 1,598 5.79 2,794 822.90

Brain 15,002 1e−10 1,329 9.36 1,560 664.97

Maxplanck 12,556 1e−10 892 5.19 1,990 704.01

Bimba 15,002 1e−10 1,432 17.40 3,197 1,358.72

∑

l

∫

Tl

∇Mφ∇Mη = λ
∑

l

∫

Tl

e2uφη, ∀η ∈ E. (25)

If we write
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ =∑N
i=1 xi ei

A = (ai j )N×N , ai j =∑
l

∫

Tl

∇Mei∇Me j

Bu = (bi j )N×N , bi j =∑
l

∫

Tl

e2uei e j ,

(26)

where the stiffness matrix A is symmetric and the mass matrix Bu is symmetric and pos-
itive definite, and the discrete variational problem is equivalent to the generalized matrix
eigen-problem:
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Fig. 9 The first row the mapping results, the corresponding conformal factor u and visualization of �u

before folding removal iteration; the second and third rows the mapping results, the corresponding conformal
factors and visualization of �u = (φu

1 , φu
2 , φu

3 ) obtained by one and two steps of folding removal iteration,
respectively

{
Ax = λBu x, where x = (x1, . . . , xN )T

φ =∑N
i=1 xi ei .

(27)

Note that both A and Bu are N × N sparse matrices. The problem can be efficiently solved
by a variety of numerical packages. For instance, a standard function “eigs” in Matlab can
be used to solve the above generalized eigenvalue problem.

We would like to point out that it is challenging to quantitatively characterize foldings,
thus it is hard to theoretically predict the step number of the above folding removal iteration.
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Fig. 10 Comparison of the results on Dino, Armadillo, Bird and Dilo surfaces obtained by Algorithm 2 and
the algorithm in [1]. The first column the input surfaces; the second column the results of the algorithm in [1]
with the histograms of angle differences; the third column the results of the proposed Algorithm 2 with the
histograms of angle differences
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Table 3 Comparison between the proposed Algorithm 2 and the algorithm in [1]

Surface # of vertices ε The proposed Algorithm 2 Algorithm in [1]

(foldings removed) (foldings remained)

Iter 0 step Iter 1 step Iter 2 step Time (s) # of
iterations

Time (s)

Dino 5,524 1e−10 4,480 1,518 3,652 91.11 2,854 835.53

Dilo 9,731 1e−10 3,610 5,000 4,184 73.94 3,106 513.56

Bird 1 950 1e−10 1,054 4,444 1,038 2.64 716 19.29

Bird 2 926 1e−10 592 1,674 5,000 14.44 599 14.09

Armadillo 16,519 1e−10 4,164 294 496 70.68 3,355 1,648.30

Generally speaking, the step number of the folding removal method is dependent on the
complexity of the input surface. However, according to our experiments in Sect. 5 to surfaces
with long and sharp features as complex as the shapes of dinosaur, armadillo and bird, only
two steps of folding removal iteration will provide us folding free conformal maps.

5 Numerical Results

In this section, we demonstrate the efficiency and robustness of the proposed algorithms for
computing global conformal maps of genus-0 surfaces to the unit sphere. On efficiency, we
compare the proposed Algorithm 1 with the existing algorithm in [1]. On robustness against
foldings, we extend the comparison to include the proposed Algorithm 2 on surfaces with
long and sharp features. To further demonstrate the advantage of our global method, we
also conduct comparison with a stereographic method introduced in [12]. All experiments
were performed on a PC with a 2.66GHz CPU. It is worth noting that the algorithm [1] was
written in C++, and our Algorithms 1 was implemented in MATLAB (Release 7.9.0) and
the computation of weighted Laplace–Beltrami eigen-system was coded in C++. Since C++
is generally more efficient than MATLAB, the programming language difference does not
introduce any biases toward our algorithms.

In our first experiment, we compare the speeds of Algorithm 1 and the algorithm [1] on
several different surfaces listed in Fig. 8 with the corresponding Guass maps as initial maps.
The number of iterations and computation times of both algorithms are given in Table 2. It
is clear that Algorithm 1 is much more efficient on the given surfaces.

Our second experiment demonstrates how foldings are removed by Algorithm 2. The
first row of Fig. 9 depicts the results of Algorithm 1 with obvious foldings and inaccurate
conformal factors, which are highlighted by rounded boxes. Foldings are also observed in
the results of the algorithm [1] given in the second column of Fig. 10. The second and third
rows of Fig. 9 show the results after one and two folding removal iteration in Algorithm 2,
respectively. It is clear that foldings are completely removed only using two iterations of
folding removal iteration, which gives an accurate harmonic map.

To further demonstrate the robustness of Algorithm 2, we compute the harmonic maps
obtained by Algorithm 2 and the algorithm [1] for a Dino surface, a Dilo surface, two bird
surfaces and an armadillo surface. We also illustrate the corresponding histogram of angle
differences of the resulting map F. As we can expect, a good conformal map should have small
angle differences. From the third column of Fig. 10, we can clearly see that the resulting maps
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have good angle preserving properties. With only two steps of folding removal iteration, the
results of Algorithm 2 are free of foldings. As comparisons, the results of the algorithm [1]
are given on the second column of Fig. 10, and they contain foldings, thus the resulting angle
differences are not satisfactory. In Table 3, we list the iteration numbers of each correction
step and the total computing times of Algorithm 2, as well as those of the Algorithm [1].
In summary, the proposed Algorithm 2 can efficiently generate the folding-free harmonic
maps.

6 Conclusions

This paper introduces an efficient algorithm for minimizing the harmonic energy problem,
which quickly computes global conformal maps for genus-0 surfaces. To avoid foldings
introduced by initial solutions which arise on surfaces with long and sharp features, a folding
removal iteration based on the weighted Laplace–Beltrami eigen-projection is proposed.
Numerical comparisons to the existing method [1] on several different surfaces demonstrate
the efficiency and accuracy of the proposed algorithms. The generality of the proposed method
can be further applied to solving variational problem of harmonic energy with additional
fidelity terms or global p-harmonic minimization problems, which will be our future work.
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