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Shape Analysis of Planar Multiply-Connected
Objects Using Conformal Welding

Lok Ming Lui, Wei Zeng, Shing-Tung Yau, and Xianfeng Gu, Member, IEEE

Abstract—Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of
objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape
space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected
shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this
work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A
metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The
main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner
disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S

1 can be obtained, which together with the
conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure
dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected
objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This
completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm
between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments
have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable
shape representation scheme.

Index Terms—Shape analysis, shape signature, multiply-connected shapes, conformal welding, conformal modules, morphing

1 INTRODUCTION

THE study of geometric shapes from their observed
silhouettes is a crucial problem in the field of vision with

many different applications, such as classification, recogni-
tion and image retrieval. In order to study shapes effectively,
a common approach is to look for an efficient representation
for the collection of all shapes, and define a robust metric
on the representation space to measure their dissimilarities.

Finding a simple shape representation is however dif-
ficult, due to the complicated structure of the space of all
shapes. For example, the set of shapes has no linear struc-
ture and is inherently infinite dimensional [15]. Designing a
suitable representation for the space of all shapes becomes
a big challenge. Recently, many different representations for
2D shapes and various measures of dissimilarity between
them have been proposed [1]–[10], [15]–[20]. For exam-
ple, Zhu et al. [1] proposed the representation of shapes
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using their medial axis and compare their skeletal graphs
through a branch and bound strategy. Liu et al. [2] used
shape axis trees to represent shapes, which are defined by
the locus of midpoints of optimally corresponding bound-
ary points. Belongie et al. [3] proposed to represent and
match 2D shapes for object recognition, based on the shape
context and the Hungarian method. Mokhtarian [4] intro-
duced a multi-scale, curvature-based shape representation
technique for planar curves, which is especially suitable
for recognition of a noisy curve. Besides, various statisti-
cal models for shape representation were also proposed by
different research groups [5]–[7]. These approaches provide
a simple way to represent shapes with finite dimensional
spaces, although they cannot capture all the variability of
shapes. Yang et al. [8] proposed a signal representation
called the Schwarz representation and applied it to shape
matching problems. Lee et al. [9] proposed to represent
curves using harmonic embedding through their complete
silhouettes. Lipman et al. [10] proposed to detect shape dis-
similarities up to isometry using conformal densities. In
the past few years, several shape space models involving
Riemannian manifolds of shapes have been proposed [28]–
[36]. For example, models of deformable templates have
been proposed to represent shapes based on deforma-
tions represented by diffeomorphisms acting on landmarks,
curves, surfaces or other structures [28]–[32]. Sharon and
Mumford [15] proposed a conformal approach to model
simple closed curves which captured subtle variability of
shapes up to scaling and translation. They also introduced
a metric, called the Weil-Petersson metric, on the proposed
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representation space. Conformal maps are also used for the
shape analysis of Riemann surfaces embedded in R

3. Zeng
et al. [12], [13] analyzed 3D surfaces based on conformal
modules. Their shape index can only determine shapes up
to conformal deformations.

Most of the above methods work only on simple
closed curves and generally cannot deal with multiply-
connected objects. In real world applications, objects from
their observed silhouettes are usually multiply-connected
domains (i.e. domains with holes in the interior). In order
to analyze such kind of shapes effectively, it is necessary
to develop an algorithm which can deal with multiply-
connected domains. Although the analysis of simply-
connected shapes has been widely studied, the analysis
of multiply-connected shapes is comparatively less stud-
ied. This motivates us to look for a good representation,
which is equipped with a metric, to model planar objects
of arbitrary topologies.

In this paper, we extend Sharon-Mumford confor-
mal approach [15], which models 2D simply-connected
domains, to represent multiply-connected shapes. Sharon-
Mumford’s approach provides an effective way to represent
2D simple curves and capture their subtle differences. To
extend it to multiply-connected shapes, the key idea of our
method is to map the exterior and interior of the domain
conformally to unit disks and circle domains, using holo-
morphic 1-forms. A set of diffeomorphisms from the unit
circle S

1 to itself can be obtained, which together with the
conformal modules are used to define the shape signa-
ture. Our proposed signature uniquely determines shapes
with arbitrary topologies under suitable normalization. We
also introduce a reconstruction algorithm to obtain shapes
from their signatures. This completes our framework and
allows us to move back and forth between shapes and
signatures. With the reconstruction scheme, a morphing
algorithm between shapes can also be developed through
the interpolation of Beltrami coefficients associated with the
shape signatures. Last but not least, the proposed represen-
tation space also inherits a metric, which can be used to
measure dissimilarity between shapes. Preliminary results
have been reported in [25].

In short, the contributions of this work are as follows:
(i) we present a representation for the space of multiply-
connected shapes using conformal modules and a set of
diffeomorphisms(conformal weldings) of the unit circles.
The representation uniquely determines the shape and can
be considered as a unique ’fingerprint’ for the shape; (ii) we
present a reconstruction scheme to obtain shapes from their
signatures, which allows us to go back and forth between
shapes and signatures; (iii) we propose a simple metric on
the representation space, which allows us to measure shape
dissimilarities quantitatively and; (iv) we present a sim-
ple shape morphing algorithm between multiply-connected
objects, by interpolating the Beltrami coefficients associated
with the shape signatures.

The paper is organized as follows: Section 2 introduces
the theoretic background, including the existence and the
uniqueness of conformal/quasi-conformal mappings and
the theory of conformal welding signature for simply con-
nected domains; Section 3 proves the main theorem of the
current work: the planar multiple connected shape and its

signature are mutually determined by each other; Section 4
defines a Riemannian metric for the proposed signature
space; Section 5 explains the implementation details thor-
oughly; Section 6 reports our experimental results. The
paper is concluded in Section 7, where we point out future
directions.

2 THEORETICAL BACKGROUND

2.1 Quasiconformal Mappings and Beltrami
Equation

Let f :� ⊆ C → C be a complex function. The fol-
lowing differential operators are more convenient for the
discussion

∂
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f is said to be quasi-conformal associated to μ if it is
orientation-preserving and satisfies the following Beltrami
equation:

∂f
∂ z̄

= μ(z)
∂f
∂z

(1)

where μ(z) is some complex-valued Lebesgue measurable
function satisfying ||μ||∞: = sup |μ| < 1. In terms of the
metric tensor, consider the effect of the pullback under f
of the usual Euclidean metric ds2

E; the resulting metric is
given by:

f ∗ (ds2
E

)
=
∣∣∣∣ ∂f
∂z
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2

|dz + μ(z)dz|2. (2)

which, relative to the background Euclidean metric dz and

dz, has eigenvalues (1 + |μ|)2
∣∣∣ ∂f
∂z

∣∣∣2 and (1 − |μ|)2
∣∣∣ ∂f
∂z

∣∣∣2. μ is
called the Beltrami coefficient, which is a measure of non-
conformality. In particular, the map f is conformal around
a small neighborhood of p when μ(p) = 0. Infinitesimally,
around a point p, f may be expressed with respect to its
local parameter as follows:

f (z) = f (p)+ fz(p)z + fz(p)z

= f (p)+ fz(p)(z + μ(p)z).
(3)

If μ(z) = 0 everywhere, then f is called conformal
or holomorphic. A conformal map satisfies the following
well-known Cauchy-Riemann equation:

∂f
∂ z̄

= 0.

Inside the local parameter domain, f may be considered
as a map composed of a translation to f (p) together with
a stretch map S(z) = z + μ(p)z, which is postcomposed
by a multiplication of fz(p), which is conformal. All the
conformal distortion of S(z) is caused by μ(p). S(z) is the
map that causes f to map a small circle to a small ellipse
(see Fig. 1). From μ(p), we can determine the angles of
the directions of maximal magnification and shrinkage and
the amount of them as well. Specifically, the angle of max-
imal magnification is arg(μ(p))/2 with magnifying factor
1 + |μ(p)|; the angle of maximal shrinkage is the orthogo-
nal angle (arg(μ(p))−π)/2 with shrinking factor 1 −|μ(p)|.
The distortion or dilation is given by:

K = (1 + |μ(p)|)/(1 − |μ(p)|). (4)
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Fig. 1. (a) Shows the original hippocampus. (b) Shows the parameter
domain with circle packing pattern. Under the quasiconformal parame-
terization, the infinitesimal circles on the parameter domain are mapped
to infinitesimal ellipses on the hippocampus, as shown in (c).

Thus, the Beltrami coefficient μ gives us important infor-
mation about the properties of the map (See Fig. 2).

Given a compact simply-connected domain � in C and
a Beltrami coefficient μ with ‖μ‖∞ < 1. There is always a
quasiconformal mapping from � to the unit disk D which
satisfies the Beltrami equation in the distribution sense [21].
More precisely,

Theorem 2.1.•(Measurable Riemann Mapping Theorem,
see [22]). Suppose � is a simply connected domain in C that
is not equal to C, and suppose that μ:� → C is Lebesgue
measurable and satisfies ‖μ‖∞ < 1, then there is a quasicon-
formal homeomorphism φ from � to the unit disk, which is in
the Sobolev space W1,2(�) and satisfies the Beltrami equation
(1) in the distribution sense.

This theorem plays a fundamental role in the current
work. Suppose f , g:C → C are with Beltrami coefficients
μf , μg respectively. Then the Beltrami ceofficient for the
composition g ◦ f is given by

μg◦f = μf + (μg ◦ f )τ

1 + μ̄f (μg ◦ f )τ
(5)

where τ = f̄z
fz

.

2.2 Conformal Modules and Conformal Welding
Suppose �1 and �2 are planar domains. We say �1 and
�2 are conformally equivalent if there is a biholomorphic
diffeomorphism between them. All planar domains can
be classified by the conformal equivalence relation. Each
conformal equivalence class shares the same conformal
invariants, the so-called conformal module. The conformal
module is one of the key components for us to define the
unique shape signature.

Suppose � is a compact domain on the complex plane
C. If � has a single boundary component, then it is called
a simply-connected domain. Every simply-connected domain
can be mapped to the unit disk conformally and all such
kind of mappings differ by a Möbius transformation:

z → eiθ z − z0

1 − z̄0z
. (6)

Denote the conformal parameterization of � onto the
unit disk by �1:� → D. Similarly, C\� can be parameter-
ized onto the unit disk by �2:C\� → D. The composition
map

Fig. 2. Quasi-conformal maps infinitesimal circles to ellipses. The
Beltrami coefficient measure the distortion or dilation of the ellipse under
the QC map.

f : = �2 ◦�−1
1 :S1 → S

1 (7)

from the unit circle to itself is called the conformal welding
of ∂�. There is a close relationship between the domain �
and the conformal welding f , which can be described as
follows.

Definition 2.1 (Quasi-symmetric mapping). A homeomor-
phism f :R → R is quasi-symmetric if there exists M > 0
such that

1
M

≤ f (x + t)− f (x)
f (x)− f (x − t)

≤ M (8)

for all x ∈ R and t > 0, and if f (∞) = ∞. A homeomorphism
f :S1 → S

1 is quasi-symmetric if φ ◦ f ◦ φ−1:R → R is quasi-
symmetric, where φ(z) = i 1+z

1−z .

In particular, if � is a Jordan domain, then the conformal
welding of ∂� is quasi-symmetric [22]. Conversely, we have
the following theorem.

Theorem 2.2.•(Conformal welding of a simply-connected
domain, see [22]). Let f :S1 → S

1 be a quasisymmetric map-
ping. Then there exists a Jordan domain � and conformal
mappings φ:� → D and ψ :C\� → C\D, such that

f = φ ◦ ψ−1

The domain � is unique up to a Möbius transformation.

In other words, every simply-connected domain can be
determined by a conformal welding (up to a Möbius trans-
formation). Our goal in this paper is to extend this theorem
to multiply-connected domains.

Now, suppose � is a connected domain with multiple
boundary components:

∂� = γ0 − γ1 − γ2 · · · γn,

where γ0 represents the exterior boundary component.
� is called a multiply-connected domain. A circle domain
is a unit disk with circular holes. Two circle domains
are conformally equivalent, if and only if they differ by
a Möbius transformation. It turns out every multiply-
connected domain can be conformally mapped to a
circle domain, as described in the following theorem
(see Fig. 3).

Theorem 2.3.•(Riemann mapping for multiply-connected
domain, see [26]). If � is a multiply-connected domain,
then there exists a conformal mapping φ:� → D, where D
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Fig. 3. Every multiply-connected domain can be mapped conformally to
a circle domain (unit disk with inner disks removed). The conformal map
is unique up to a Möbius transformation.

is a circle domain. Such kind of mappings differ by Möbius
transformations.

Therefore, each multiply-connected domain is confor-
mally equivalent to a circle domain. The conformal module
for a circle domain is represented by the centers and
radii of its inner boundary circles. All simply-connected
domains are conformally equivalent. The topological annu-
lus requires 1 parameter to represent the conformal module.
Suppose now there are n > 1 inner circles. Since the Möbius
transformation group is 3-dimensional, the conformal mod-
ule requires 3n − 3 parameters. We denote the conformal
module of �i by Mod(�i).

Fix n, all conformal equivalence classes form a 3n − 3
Riemannian manifold, called the Teichmüller space. The
conformal module can be treated as the Teichmüller coordi-
nates. The Weil-Peterson metric [15] is a Riemannian metric
for Teichmüller space, which induces negative sectional
curvature. Therefore, the geodesic between arbitrary two
points is unique.

Suppose � = {γ0, γ1, . . . , γk} are non-intersecting smooth
closed curves on the complex plane. � segments the plane
to a set of connected components:

C
∗ = �0 ∪�1 ∪ · · · ∪�s,

with each segment �i being a simply-connected or
multiply-connected domain (See Fig. 5). We assume �0 con-
tains the infinity point and p �∈ �0. By using a Möbius
transformation

φ(z) = 1
z − p

,

p is mapped to ∞ and �0 is mapped to a compact domain.
We can replace �0 by φ(�0). We then construct �k:�k → Dk
to map each segment �k to a circle domain Dk, 0 ≤ k ≤ s.

Assume that γk = �i∩�j, then �i(γk) is a circular bound-
ary on the circle domain Di and �j(γk) is another circular
boundary on Dj. Let fij = �i◦�−1

j :S1 → S
1 be the diffeomor-

phism from the unit circle to itself. fij is called the conformal
welding of γk (please refer to Fig. 4 for the illustration). Here,
we ignore the radii of �i(γk) and �j(γk), and treat both of
them as S

1.
The conformal modules and conformal weldings are

the key components to define the unique signature of a
multiply-connected shape.

Fig. 4. Illustration of how conformal welding is defined as the composi-
tion map of the conformal parameterizations of the multiply-connected
domain.

2.3 Circular Slit Map and Koebe’s Iteration
In order to compute the conformal modules, one needs to
map the multiply-connected domain to a circle domain.
In the following, we introduce a general method, which
can map a genus zero surface with multiple boundary
components to a planar circle domain.

First, the multiply-connected domain (or surface) is con-
formally mapped to a planar annulus with concentric
circular slits, based on Ahlfors’ theorem:

Theorem 2.4 (Circular Slit Map, see [27]). Suppose � is a
multiply-connected domain with more than one boundary
components, then there exists a conformal mapping φ:� → C,
such that γ0, γ1 are mapped to concentric circles, other γk’s are
mapped to concentric circular slits. All such kind of mappings
differ by a rotation.

Fig. 6(b) shows the circular slit map for a triply-connected
domain as shown in Fig. 6(a).

Second, the inner circular hole in the slit map image is
filled as shown in Fig. 6(c) to form a disk with circular
slits. Then the circular slit map is carried out on the disk
with circular slits, as shown in Fig. 6(d). By repeating this
procedure, all holes in the multiply-connected domain will
be filled.

Finally, we perform Koebe’s iteration. The disk that fills
γ1 is removed and the domain is conformally mapped to
an annulus. The central hole is again filled again. Then we

Fig. 5. Illustration of a family of non-intersecting closed contours which
segment the complex plane into seven connected components.
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Fig. 6. Example of circular map. (a) Holomorphic l-form. (b) Circular slit
map. (c) Fill the inner hole. (d) Circular map of (c).

repeat this for γ2, then same procedure is performed on
γ3 and so on. By repeating this process, namely: deleting
the disk inside γk; conformally mapped to an annulus; fill
γk again. All holes will become rounder and rounder, and
the image will converge to a circular domain under Möbius
normalization. The proof of the convergence of the Koebe’s
iteration can be found in [26].

Theorem 2.5.•(Koebe’s iteration, see [26], page 502-505).
The Koebe’s iteration converges to the conformal mapping from
the multiple-connected domain to the circle domain under a
Möbius normalization.

3 SIGNATURES BY CONFORMAL WELDING

In this section, we describe how the shape signature of a
multiply-connected shape is defined, which is based on its
conformal modules and conformal weldings.

Given a shape � with n + 1 non-intersecting bound-
aries � = {γ0, γ1, . . . , γn} on the complex plane. Suppose
� segments the plane to a set of connected components
{�0,�1, . . . , �s}, where each component �i is either a

Fig. 7. Conformal mapping for a simply-connected domain by punc-
turing a small hole in the center. (a) Exact form. (b) Closed form.
(c) Holomorphic l-form. (d) Conformal mapping.

Fig. 8. Illustration of the proof of the Main Theorem (Theorem 3.1).

simply-connected or a multiply-connected domain. We can
compute the conformal welding for each γk. This can be
done by conformally parameterizing each component �i
onto the circle domain Di, denote them by �i:�i → Di.
Assume that γk = �i ∩ �j. The conformal welding of γk is
given by:

fij: = �i ◦�−1
j :S1 → S

1.

We also call the conformal welding fij of γk the signature
of γk. Again, we ignore the radii of �i(γk) and �j(γk), and
treat both of them as S

1.
The signatures of all γk together with the conformal mod-

ules, Mod(Di), of all Di define the shape signature of the
multiply-connected shape �.

Definition 3.1 (Signature of a family of loops). The sig-
nature of a family of non-intersecting planar closed curves
� = {γ0, γ1, . . . , γn} is defined as

S(�): = {Mod(D0), . . . ,Mod(Ds)} ∪ {fij}(i,j)∈I.

where I = {(i, j):�i ∩�j �= φ}.
Note that if a circle domain Dk is a disk, its conformal
module can be omitted from the signature.

The advantage of this proposed shape signature is that
it determines a multiply-connected shape up to a Möbius
transformation. This can be explained in more details by the
following main theorem. This theorem plays a fundamental
role for the current work.

Theorem 3.1 (Main Theorem). The family of non-
intersecting planar closed curves � is determined by its
signature S(�), uniquely up to a Möbius transformation of
the Riemann sphere C ∪ {∞}. The Möbius transformation
of the Riemann sphere is given by (az + b)/(cz + d), where
ad − bc = 1, a, b, c, d ∈ C.

Proof. Suppose a family of planar smooth curves
� = {γ0, . . . , γm} divide the plane to segments
{�0,�1, · · · ,�n}, where �0 contains the ∞ point (See
Fig. 5). We represent the segments and the curves as a
tree as shown in Fig. 8(left), where each node represents
a segment �k, each link represents a curve γi. If �j is
included by �i, and �i and �j shares a curve γk, then
in the tree, the link γk connects �j to �i, denoted as
γk:�i → �j.

In Fig. 8(right), each segment �k is mapped con-
formally to a circle domain Dk by �k:Dk → �k. The
signature for each closed curve γk is computed fij =
�i ◦ �−1

j |γk :[0, 2π] → [0, 2π], where γk:�i → �j in the
tree.
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Let γk:Di → Dj, Dj be a leaf of the tree. For each point
z = reiθ in Dj, the extension map

Gij(reiθ ) = re
√−1fij(θ).

Suppose Dk is a circle domain, a path from the root
D0 to Dk is {i0 = 0, i1, i2, . . . , in = k}, then the map from
Gk:Dk → Sk: = Gk(Dk) is given by

Gk = Gi0i1 ◦ Gi1i2 ◦ · · · ◦ Gin−1in .

Note that, by definition, G0 is identity. Also, S = S0∪S1∪
...∪ Sn is a Riemann sphere. Let Fk: = �k ◦ G−1

k :Sk → �k.
Define G� :S → � by:

G�|Sk = Fk

We first prove that G� is a well-defined map from S
to �. The values under the map G� on γk can be defined
either by Fin−1 or Fin (= Fk).We need to prove that Fin−1 |γk

= Fin |γk . This is true since Fin−1 |γk = �in−1 ◦ G−1
in−1

|γk and
Fk|γk = �in ◦G−1

in−1in
◦G−1

in−1
|γk = �in ◦�−1

in
◦�in−1 ◦G−1

in−1
|γk =

�in−1 ◦ G−1
in−1

|γk .
Now the Beltrami coefficient μ of G� can be eas-

ily computed. In particular, the Beltrami coefficient of
G−1

k :Sk → Dk can be directly computed, denoted it by
μk:Sk → C. The composition Fk: = �k ◦ G−1

k :Sk → �k
maps Sk to �k. Since �k is conformal, the Beltrami coef-
ficient of �k ◦ G−1

k is equal to μk. μ can be determined
by μ|Sk = μk.

The shape can then be determined from the shape
signature by computing a map from the Riemann sphere
S to the original Riemann sphere �, G� :S → � associated
with the Beltrami-coefficient μ.

By theorem 2.1, the solution exists and unique up to
a Möbius transformation. This proves the theorem.
Due to the conformal ambiguity, the obtained conformal

modules and conformal weldings of a multiply-connected
shape are not unique. To remove the conformal ambigu-
ity, a normalization must be performed. For the conformal
parameterization of the outermost domain, we restrict it
to fix the point ∞ (north pole). As for the the conformal
parameterizations of the inner domains, we normalize them
in such a way that each conformal weldings fij fixes the
points −1,1 and i. After the normalization, the shape signa-
ture can determine the shape uniquely up to a translation,
rotation and scaling. More precisely, it can be described as
follows:

Theorem 3.2 (Normalization). Suppose the shape signature
is obtained by restricting the conformal parameterization of
the outermost domain to fix ∞ (north pole). Assume that the
conformal parameterizations of the inner domains are normal-
ized. The shape signature S(�) determines the shape uniquely
up to a translation, rotation and scaling.

Proof. According to the proof of the Main Theorem,
every shape signature is associated with a Beltrami
coefficient μ� defined on the Riemann sphere S. The
quasi-conformal map corresponding to μ� can be recon-
structed. The reconstructed quasi-conformal map is not
unique. But it is unique up to a Möbius transformation.
Let f1:S → S and f2:S → S be quasi-conformal maps cor-
responding to μ� . Then f −1

2 ◦ f1 is a conformal map of

the Riemann sphere. All conformal map of the Riemann
sphere is given by

φ(z) = az + b
cz + d

Suppose the conformal parameterization of the outer-
most domain is restricted to fix ∞ (north pole). Then
φ(∞) = ∞ and hence the conformal map φ is of the
form: φ(z) = az + b. In other words, f1 = af2 + b. This
implies the multiply-connected shapes reconstructed
from f1 and f2 respectively differ by a translation, rotation
and scaling.
In fact, by restricting the conformal parameterization of

the outermost domain to fix any three points, the obtained
shape signature determines the shape uniquely.

Corollary 3.2 (Fixing three points). By fixing any 3 points
of the conformal parameterization of the outermost domain,
the shape signature determines the shape uniquely.

Proof. It follows from the proof of Theorem 3.2 that if
the conformal parameterization of the outermost domain
is restricted to fix any three points, the Möbius trans-
formation φ(z) can be uniquely determined. In other
words, the quasi-conformal map associated to μ� is
unique. Hence, the shape signature determines the shape
uniquely.
Sometimes, we might consider the multiply-connected

shape to be embedded in a unit disk. By restricting the
conformal parameterization of the outermost domain to fix
the points −1, 1 and i, the shape signature can uniquely
determine the shape. It can be explained by the following
theorem:

Theorem 3.3 (Shape embedded in D). Let the multiply-
connected shape be embedded in a unit disk D. By restricting
the conformal parameterization of the outermost domain to
fix the points −1, 1 and i, the shape signature uniquely
determines the shape.

Proof. Similarly, the shape signature is associated with a
Beltrami coefficient μ� defined on the unit disk D. The
reconstructed quasi-conformal maps corresponding to D

differ by a Möbius transformation of D, which is given
by

φ(z) = eiθ z − a
1 − az

where a ∈ D.

By restricting the conformal parameterization of the out-
ermost domain to fix the points −1, 1 and i, φ(z) can
be uniquely determined. Hence, the shape signature
determines the shape uniquely.
Therefore, one key advantage of the proposed shape sig-

nature is that it determines the associated shape uniquely
up to some transformations. Given a shape signature,
one can reconstruct its associated shape. We explain in
details how shapes can be reconstructed from their shape
signatures.

The reconstruction scheme follows from the proof of
the Main Theorem. Let � = {{cij, rij}ni

j=i}n
i=1 ∪ {fij}(i,j)∈I be

the shape signature of a multiply-connected shape � =
�0 ∪�1 ∪ ...∪�n. Here, I = {(i, j):�i ∩�j �= φ}. Suppose Dk
is a circle domain and a path from D0 to Dk is given by:

{i0 = 0, i1, i2, . . . , in = k}
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Fig. 9. Illustration of how G� can be used to reconstruct the associated
shape.

Here, a path is a sequence such that �ik−1 and �ik shares a
common boundary.

Compute the Beltrami coefficient μk of G−1
k given by:

Gk = Gi0i1 ◦ Gi1i2 ◦ ... ◦ Gin−1in

where

Gij

(
reiθ

)
= re

√−1fij(θ).

Let Sk = Gk(Dk). The Riemann sphere S2 can be
expressed as the union of Sk’s, namely, S2 = ⋃n

k=0 Sk. We
can then compute the quasi-conformal map G� :S2 → S2

whose Beltrami coefficient is given by:

μG� = μk on Sk.

The multiply-connected shape � = �0 ∪�1 ∪ ...∪�n can
be reconstructed by:

�k = G�(Sk) for k = 0, 1, 2, . . . ,n

(See Fig. 9 for an illustration).
Similarly, the multiply-connected shape embedded in the

unit disk D can be reconstructed from its shape signature
as well.

4 METRIC ON THE SIGNATURE SPACE

To compare two shapes S1 and S2, it is important to have
a metric measuring their geometric differences. The space
of all shape signatures proposed in this paper inherits a
metric, which can be used to measure shape differences. In
this section, we describe how the metric can be constructed.

Let ϒ1 and ϒ2 be two shape signatures. Note that we
assume the shape signatures are normalized to remove the
conformal ambiguity. This can be done by normalizing the
conformal parameterizations of the outer domain and inner
domains, as discussed in Section 3.

To obtain a distance between two shape signatures, the
correspondence of contours between two shapes must be
assigned. The correspondence of contours can be adjusted
by performing a permutation of contours at each level.

Suppose the shape signature ϒk (k = 0, 1) is given by:

ϒk = {Mod(Dk
i )}n

i=1 ∪ {f k
ij}(i,j)∈I

where

Mod(Di) = {ck
ij, rk

ij}ni
j=1

For i = 1, 2, . . . n, let σi be the permutation of {1, 2, . . . ,ni},
which is a permutation of the inner contours of Di. A

permutation of the shape signature is defined as:

(σ1, . . . , σn)(ϒk) = {Mod(σi(Dk
i ))}n

i=1 ∪ {f k
iσi(j)

}(i,j)∈I

where

Mod(σi(Dk
i )): = {ck

iσi(j)
, rk

iσi(j)
}ni
j=1

We can then define a distance between ϒ1 and ϒ2 as
follows:

dshape(ϒ1, ϒ2) = min
σ1,...,σn

dist(�1, (σ1, . . . , σn)(�2))

: = min
σ1,...,σn

⎧⎨
⎩
∑
(i,j)∈I

(|c1
ij − c2

iσi(j)
|2 + |r1

ij − r2
iσi(j)

|2

+
∫ 2π

0
|f 1

ij − f 2
iσi(j)

|dθ)
}

(9)

Remark 4.1. The distance function dshape defined in
Equation (9) is a metric.

By direct computation, it is easy to verify that the
distance function satisfies the following:

• dshape(ϒ1, ϒ2) = dshape(ϒ2, ϒ1);
• dshape(ϒ1, ϒ2) = 0 if and only if ϒ1 ∼ ϒ2;
• dshape(ϒ1, ϒ2)+ dshape(ϒ2, ϒ3) ≥

dshape(ϒ1, ϒ3).
Under different normalization, the metric measures the

dissimilarity between two shapes up to different trans-
formations. Assume that the shapes are embedded in the
whole 2D plane. Suppose the shape signature is obtained
by restricting the conformal parameterization of the outer-
most domain to fix ∞ (north pole). Then the shape distance
dshape is equal to 0 if and only if two shapes are equal up to
a translation, rotation and scaling. By restricting the confor-
mal parameterization of the outermost domain to fix any
three points, dshape = 0 if and only if two shapes are exactly
the same.

Similarly, suppose the shapes are embedded in the unit
disk D. By restricting the conformal parameterization of the
outermost domain to fix the points −1, 1 and i, dshape = 0
if and only if the two shapes are exactly equal.

Following the idea proposed in Sharon-Mumford
model [15], one can also choose the Weil-Peterson met-
ric for the metric on the signature space. We choose the
above proposed metric for easier and faster computation.
Experimental results on shape clustering show that our pro-
posed metric is an effective metric for classifying shapes
(see Section 6).

5 IMPLEMENTATION DETAILS

Here, we assume a planar multiply-connected domain �

has n inner boundary components. Let the boundaries of
the mesh be ∂� = γ0 −γ1 · · ·−γn. Suppose � is represented
by a triangular mesh. We use vi to denote a vertex, [vi, vj]
to denote an edge and [vi, vj, vk] to denote a face. The angle
structure of the mesh is defined as follows:

Definition 5.1 (Angle Structure). The angle at vertex vi in
a triangle [vi, vj, vk] is denoted as θ i

jk. The angle structure of
the mesh is defined as the set

A(�): = {θ i
jk, θ

k
ij, θ

j
ki|[vi, vj, vk] ∈ �}.
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All the following computations depend solely on the
angle structure of the mesh.

5.1 Discrete Holomorphic 1-Forms
Conformal parameterization plays an important role for
our shape signature. In this work, the computation of the
conformal parameterizations of the planar object onto cir-
cle domains rely on the discrete holomorphic 1-forms. In this
subsection, we will explain how the discrete holomorphic
1-form can be computed.
Discrete Differential Operators: Discrete 0-forms are discrete
functions defined on vertices, whereas discrete 1-forms
and 2-forms are functions defined on edges and faces
respectively satisfying compatibility conditions under the
change of orientation. More specifically, for discrete 1-
forms, f ([vi, vj]) = −f ([vj, vi]) for any edge [vi, vj]. For
discrete 2-forms, f ([vi, vj, vk]) = −f ([vj, vi, vk]) for any face
[vi, vj, vk].

The gradient of a 0-form f , df , is a discrete 1-form, which
is given by

df ([vi, vj]) = f (vj)− f (vi).

The curl of a discrete 1-form ω is given by

curl ω([vi, vj, vk]) = ω(∂[vi, vj, vk])

= ω([vi, vj])+ ω([vj, vk])+ ω([vk, vi]).

The div of ω is given by

div ω(vi) =
∑

[vi,vj]∈�
wij ω([vi, vj]),

where wij is the edge weight, defined as the follows:

wij : =
{

cot θk
ij + cot θ l

ji [vi, vj] �∈ ∂�
cot θk

ij [vi, vj] ∈ ∂�

where θk
ij and θ l

ij are the corner angles on the faces adjacent
to the edge [vi, vj] and against the edge [37].

The discrete wedge operator ∧ is defined as follows. Given
[vi, vj, vk] ∈ �, τ1, τ2 are discrete 1-forms, then

τ1 ∧ τ2([vi, vj, vk]) = 1
2

∣∣∣∣ τ1([vi, vj]) τ2([vi, vj])
τ1([vj, vk]) τ2([vj, vk])

∣∣∣∣ .
Discrete Harmonic Functions: Let f be a discrete function.
We say f is a discrete harmonic function, if it satisfies the
following equation:

div df (vi) = 0,∀vi �∈ ∂�.
One can easily obtain n harmonic functions, fk:� →

R, k > 0, which satisfies the above equation with the
following boundary condition

fk(vi) = 1,∀vi ∈ γk, fk(vj) = 0,∀vj ∈ ∂� \ γk.

Let τk = dfk, 1 ≤ k ≤ n. Then {τ1, τ2, . . . , τn} forms a basis
for all exact harmonic 1-forms on �.
Discrete Harmonic 1-forms: A basis of the discrete closed har-
monic 1-form group on � can be obtained. We first compute
the shortest cut ηk from γk to γ0, 1 ≤ k ≤ n. Then we slice �
along ηk to get an �̃k, such that the shortest path ηk becomes

Fig. 10. Harmonic 1-form basis. (a) Exact form τ1. (b) Exact 1-form τ2.
(c) Closed form τ3. (d) Closed form τ4.

η+
k and η−

k . Next, we construct a function hk:�̃k → R, such
that

hk(p) = 1,∀p ∈ η+
k ; hk(p) = 0,∀p ∈ η−

k ;
and hk(p) is random for all interior vertices on �̃k. Then dhk
is a discrete exact 1-form on �̃k. Because of the consistency
along the boundaries, dhk is also a closed 1-form (but not
exact) on �. We compute a function gk such that dhk + dgk
is a harmonic 1-form by solving the equation,

div(dhk + dgk)(vi) = 0,∀vi �∈ ∂�.
Let τn+k: = dhk + dgk, 1 ≤ k ≤ n, then {τn+1, τn+2, . . . , τ2n}
form the basis for all closed (non-exact) harmonic 1-form
group on �. As a result, {τ1, . . . , τ2n} forms a basis for the
discrete closed harmonic 1-form group on � (See Fig. 10).
Discrete Holomorphic Differential: A holomorphic 1-form can
be constructed by a harmonic 1-form and its conjugate
τk + i∗τk, where ∗ is the Hodge star operator. The discrete
Hodge Star ∗ is defined as follows. Each face is an Euclidean
triangle embedded in R

2 with the isometric local coordi-
nates (x, y). Suppose τ is a discrete closed 1-form, then it
has a local representation ω = c1dx + c2dy, where c1, c2 are
constants on each face, ∗ω = c1dy − c2dx.

The conjugate form of a harmonic 1-form is still a
harmonic 1-form. Therefore,

∗τk =
2n∑

i=1

ckiτi,

where cki’s are unknown real numbers. In particular,

∫
�

τj ∧ ∗τk =
2n∑

i=1

cki

∫
�

τj ∧ τi, j = 1, 2, . . . , 2n, (10)

Now for any two discrete harmonic 1-forms ω and τ ,
assume that locally ω = c1dx + c2dy and τ = d1dx + d2dy.
Then

ω ∧ ∗τ =
∣∣∣∣ c1 c2
−d2 d1

∣∣∣∣ dx ∧ dy,
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Fig. 11. Holomorphic 1-form basis.

We can treat ω ∧ ∗τ as a discrete 2-form, such that ω ∧
∗τ([vi, vj, vk]) = (c1d1 + c2d2)Aijk, where Aijk is the area of
[vi, vj, vk]. Hence, the left hand side of Equation (10) can be
written as∫

�

ω ∧ ∗τ =
∑

[vi,vj,vk]∈�
ω ∧ ∗τ([vi, vj, vk])

=
∑

[vi,vj,vk]∈�
(τ

j
1τ

k
1 + τ

j
2τ

k
2 )Aijk

(11)

where τj = τ
j
1dx + τ

j
2dy and τk = τ k

1 dx + τ k
2 dy

Equation (10) is then converted to the following linear
system:

∑
[vi,vj,vk]∈�

(τ
j
1τ

k
1 + τ

j
2τ

k
2 )Aijk =

2n∑
i=1

cki

∫
�

τj ∧ τi, (12)

where j = 1, 2, . . . , 2n. Similarly, the integral of the right
hand side of Equation 12 can be written explicitly as:∫

�

τj ∧ τi =
∑

[vi,vj,vk]∈�
(τ

j
1τ

i
2 − τ

j
2τ

i
1)Aijk (13)

By solving Equation 12, we can find all the unknown
coefficients and get the conjugate form. Let ωk = τk + i∗τk.
Then {ω1, ω2, . . . , ω2n} forms a basis for the holomorphic
1-form group of the surface.

Fig. 11 shows the holomorphic 1-form group basis for
the 2-hole planar domain.

5.2 Computational Algorithm for Shape Signature
We describe the algorithm to compute the shape signa-
ture of � with n inner boundary components. The inner
boundaries decompose � into s + 1 sub-domains �k (k =
0, 1, 2, . . . , s). In other words, � = �0 ∪ �1 ∪ ... ∪ �s The
algorithm consists of two main steps:

Step 1: Compute the conformal parameterizations from �k
onto circle domains Dk;
Step 2: Compute the conformal modules for each sub-
domain �k and the signature fij for each boundary.

We will now describe each step in details.

Step 1: Conformal map from �k to Dk

The conformal parameterization of �k can be obtained
easily by computing the circular slit map and performing
the Koebe’s iteration. For detail, please refer to [11].
Circular slit map: The circular slit map can be obtained by
finding a holomorphic 1-form ω, such that

Img
(∫

γ0

ω

)
= 2π,

Img
(∫

γ1

ω

)
= −2π,

Img
(∫

γk

ω

)
= 0, 2 ≤ k ≤ n − 1.

(14)

To solve Equation 14, we first express ω as a linear combina-
tion of the basis for the holomorphic 1-form group. Suppose
ω = ∑n

k=1 λkωk. The coefficients {λk} can be calculated by
solving the following linear system:

n∑
i=1

Img
(∫

γ0

ωi

)
λi = 2π,

n∑
i=1

Img
(∫

γ1

ωi

)
λi = −2π,

n∑
i=1

Img
(∫

γk

ωi

)
λi = 0, 2 ≤ k ≤ n − 1.

(15)

The circular slit map is then given by:

φ(p) = exp

(∫ p

q
ω

)
,∀p ∈ �, (16)

where q is a base point, and the integration path is arbi-
trarily chosen in �. Fig. 6 shows the circular slit map of a
2-hole planar domain.

If � is a simply-connected domain (topological disk), we
can compute the conformal parameterization of � onto the
unit disk in the following way. First, we punch a small
hole in the domain, and treat it as a topological annulus.
Then we use the circular slit map to map the punched
annulus to the canonical annulus. By shrinking the size of
the punched hole, the circular slit map converges to the
conformal mapping. Fig. 7 shows one such example.
Hole Filling: After computing the circular slit map, the
planar domain is mapped to the planar annulus � with
concentric circular slits. In particular, γ0 is the unit circle,
γ1 is the inner circle and γk’s are slits for 2 ≤ k ≤ n. We
use Delaunay triangulation to generate a disk D1 bounded
by γ1 such that ∂D1 = γ1, and glue � with D1 along γ1 to
obtain �1: = � ∪γ1 D1.

We then use circular slit map again to parameterize �1,
such that γ2 is opened to a circle. We compute a disk D2
bounded by γ2 and glue �1 with D2 to get �2. By repeating
the circular slit map, at step k, γk is opened to a circle. We
compute a circular disk Dk bounded by γk and glue �k−1
with Dk to get �k = �k−1 ∪γk Dk.

Eventually, we can fill all the holes to get �n.
Koebe’s iterations: Note that all the disks Dk in �n are
not exactly circular. It can be fixed by Koebe’s iterations.
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Through Koebe’s iterations, all the boundary components
become rounder and rounder. Basically, in each iteration,
we choose a disk Dk. The complement of Dk in �n is a
doubly-connected domain. We then map the complement
to the canonical planar annulus. Hence, γk becomes a cir-
cle. We recompute the disk Dk bounded by the updated γk
and glue the annulus with the updated Dk. After this iter-
ation, γk becomes a circle. Next, we choose another disk Dj
and repeat this process to make γj a circle. This will destroy
the perfectness of the circular shape of γk. But by repeating
this process, all the γk’s become rounder and rounder, and
eventually converge to perfect circles. The convergence is
exponentially fast. Detailed proof can be found in [26].

Step 2: Computing Mod(Di) and fij
After the conformal parameterization of �k to the cir-

cle domain is computed, it has to be normalized so that
a unique shape signature can be obtained. The shape
signature comprises of the conformal modules and the
conformal weldings fij of each boundary.

For each domains �k, we denote its initial conformal
parameterization by �′

k:�k → D′
k. First, we normalize the

conformal parameterization of the outermost domain �0.
When the shape is embedded in the Riemann sphere S,
we can normalize it by composing the initial parameter-
ization with the Möbius transformation φ(z) = az+b

cz+d . For
example, if a shape signature is required to determine a
shape up to a translation, rotation and scaling, the param-
eterization of the outermost domain must fix ∞. Suppose
�′

k(∞) = z0. Then the normalized parametrization can be
obtained by composing the initial parameterization with
the Möbius transformation φ(z) = az+b

z−z0
. When the shape is

embedded in the unit disk D, the initial parametrization of
the outermost domain can be normalized by the Mobiüs
transformation of D: φ(z) = eiθ z−a

1−az .
After the normalized parameterization �0:�0 → D0 is

computed, other initial parameterizations �′
k (k = 1, 2, ...n)

can be normalized so that: fij = �i ◦ �−1
j fixes the points

1,−1 and i. This can be done by composing the initial
parameterization with the Möbius transformation of the
unit disk.

Denote the normalized conformal parameterizations by
�k:�k → Dk (k = 0, 1, 2, . . . ,n). We can then compute
the conformal module of Dk, which can be described by
its inner radii and centers. We denote it by Mod(Dk): =
{ri, ci}nk

i=1.
Now each boundary component γij is the intersection

of two adjacent domains, namely, γij = �i ∩ �j. The sig-
nature or conformal welding of γij can be computed by
fij = �i ◦�−1

j .
The conformal modules together with the conformal

weldings give the shape signature of �:

S(�) = {{rij, cij}ni
j=1}n

i=1 ∪ {fij}(i,j)∈I (17)

The detailed algorithm for computing the shape signa-
ture of a multiply-connected shape can be summarized as
in Algorithm 5.1.

5.3 Reconstruction of Shapes from their Signatures
Every planar multiply-connected domain � is associated
with a unique shape signature S(�). As described in

Algorithm 5.1: (Computation of shape signature)
Input: Triangular meshes �i (i = 0, 1, . . . ,n) of each sub-
domains
Output: Shape signature consisting of Mod(Di): =
{rij, cij}ni

j=1 and {fij}(i,j)∈I for i = 0, 1, . . . ,n

1) For each i, compute the holomorphic 1-form ωi to
obtain the circular slit map of �i

2) Apply the hole-filling algorithm on the circular slit
map and Koebe’s iteration to obtain the conformal
parameterization of �i

3) Normalize the conformal parameterizations
to obtain a normalized conformal modules
Mod(Di): = {rij, cij}ni

j=1
4) Obtain the conformal welding {fij}(i,j)∈I using

Equation (7)

Section 3, given the shape signature S(�), its associated
shape � can be reconstructed, which is unique up to a
Möbius transformation. The conformal ambiguity can be
further removed by suitable normalization.

In Section 3, we describe that, in the continuous case,
a shape can be reconstructed from its shape signature by
solving the Beltrami equation. More specifically, given a
shape signature S(�), we can obtain a Beltrami coefficient
μ� corresponding to S(�). The associated shape can then
be reconstructed by computing the quasi-conformal map
G� with the Beltrami coefficient μ� . In particular, the asso-
ciated shape � is given by � = G�(S0) ∪ G�(S1) ∪ ... ∪
G�(Sn) (See Fig. 9). In the discrete case, the computation
of the quasi-conformal map can be more direct without
explicitly solving the Beltrami equation. Given a triangu-
lar mesh of the Riemann sphere S (or unit disk D), the
angle structure of the mesh can be deformed according
to the Beltrami coefficient. As a result, the computation
of the quasi-conformal map will be converted to the com-
putation of the conformal map under the deformed angle
structure.

More specifically, from the Beltrami coefficient μ� , one
can deform the conformal structure of Sk to that of �k.
Under the conformal structures of �k, G� :S → � becomes a
conformal mapping. The conformal structure of �k is equiv-
alent to that of Dk, therefore, one can use the conformal
structure of Dk directly. In the discrete case, the confor-
mal structure is represented by the angle structure (5.1).
Therefore in our algorithm, we copy the angle structures
of Dk’s to S, and compute the conformal map under the
deformed angle structure directly. For details, we refer the
readers to [14].

In summary, the reconstruction algorithm can be divided
into two main steps:

Step 1: Glue the circle domains together;
Step 2: Compute the conformal map under the deformed
angle structure for shape reconstruction.

Below we describe each steps in details.

Step 1: Glueing of the circle domains
Given a shape signature S(�) = {Mod(Dk)}n

k=0∪{fij}(i,j)∈I.
We first construct the circle domains Dk’s directly from their
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conformal modules Mod(Dk)’s. This can done by tessellat-
ing the circular boundaries of each Dk and triangulating
Dk using Delaunay triangulation. The triangular meshes Di
and Dj are then combinatorially glued together by the con-
formal welding fij. Suppose the boundary circle γi ∈ ∂Di
corresponds to γj ∈ ∂Dj, hence fij:γi → γj. For each vertex
vi ∈ γi, we insert fij(vi) to γj. And vice versa, for each ver-
tex vj ∈ γj, we insert f −1

ij (vj) to γi. With the newly inserted
vertices on ∂Di and ∂Dj, we use constrained Delaunay tri-
angulation to refine the triangulation of Di and Dj. The
refined triangular mesh Di and Dj can therefore be combi-
natorially glued through γi and γj, by identifying vk ∈ ∂Di
with fij(vk) ∈ ∂Dj. This process is repeated for all fij’s, to
obtain a combinatorial simply-connected triangular mesh.
We denote it by D (which is a triangular mesh of either the
Riemann sphere or the unit disk).

Step 2: Shape reconstruction
Now, the angle structure A(d) of the combinatorial trian-

gular mesh D can be computed. In fact, A(d) = ∪n
k=0A(Dk).

The mesh D with respect to the angle structure A(d)
can then be conformally parameterized onto a triangular
mesh of the unit disk (or Riemann sphere if the shape
is embedded in the whole plane). We compute the con-
formal parameterization G� as described in Section 5.2.
The original shape � can then be reconstructed by � =
G�(S0) ∪ G�(S1) ∪ ... ∪ G�(Sn).

The detailed shape reconstruction algorithm can now be
summarized as in Algorithm 5.2

Algorithm 5.2: (Shape reconstruction)

Input: Shape signature consisting of Mod(Di): = {rij, cij}ni
j=1

(i = 0, 1, . . . ,n) and {fij}(i,j)∈I
Output: Shape � corresponding to the shape signature

1) Construct the circle domains Di’s directly from the
conformal modules Mod(Di)’s

2) Use constrained Delaunay triangulation to refine the
triangulation of Di’s based on the conformal welding
{fij}(i,j)∈I

3) Combinatorially glue the refined triangular meshes of
Di’s to obtain a combinatorial simply-connected trian-
gular mesh D

4) Equip D with the angle structure A(d) = ∪n
k=0A(Dk),

and compute the conformal parameterization G� of D
5) Reconstruct the shape � by � = G�(S0)∪G�(S1)∪ ...∪

G�(Sn).

6 EXPERIMENTAL RESULTS

Implementation: Our proposed algorithm is implemented
on a generic C++ windows XP platform, with Intel Duo
CPU 2.33 GHz, 3.98G RAM. The numerical systems are
solved using Matlab C++ library. The contour extraction is
obtained using the OpenCV library. The computational time
for our algorithm is shown in Tables 1 and 2. In general,
both the signature calculation and reconstruction process
take less than 1 minute to compute, even on complicated
domains.
Shape signature: In Fig. 12, we demonstrate the process
of computing the shape signature S(�) of a double fish

TABLE 1
Computational Time (Second) for Signature

image. Given the original image, we first perform image
segmentation to get the binary image. We then calculate
the contours of the objects in the image. The contour of
each fish is shown in the figure. For simplicity, we treat
the outermost boundary of the image as the unit circle.
Then all the contours segment the image into three sub-
domains, namely, �0,�1,�2. We conformally map each
connected sub-domain to a circle domain as shown in (a).
�0 is mapped to a disk D0 with two circular holes. The
centers and radii (c0, r0) and (c1, r1) represent the confor-
mal module of �0. �1 and �2 are mapped to the unit
disks D1 and D2 respectively. We denote the conformal
maps of �i by �i:�i → Di (i = 0, 1, 2). The contour of
the small fish are mapped to the boundary of D1 and one
inner boundary of D0. Its conformal welding is given by
f01: = �1 ◦ �−1

0 , which is shown in (b) as the blue curve.
Here, the diffeomorphisms from circle to circle is consid-
ered as a monotonic function from [0, 2π] to itself. Similarly,
the conformal welding f02 of the contour of the shark can
also be computed, which is also shown in (b) as the red
curve. The shape signature of the double fish image is given
by S(�) = {c0, c1, r0, r1, f01, f02}.

Fig. 13(a) shows another double fishes image with spa-
tial changes in the positions of the two fishes. Compared
with Fig. 12, the big shark and small fish interchanged their
positions. The shape signature of the image is shown in
Fig. 13(b), which is quite different from the shape signa-
ture in Fig. 12 (see red and blue curves). In other words,
our shape signature can effectively capture spatial changes
of objects in the image.

TABLE 2
Computational Time (Second) for Reconstruction
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Fig. 12. (a) Each segment is mapped to a circle domains. (b) Conformal
modules (centers and radii of inner circles) of the circle domains and
conformal weldings define the shape signature.

Fig. 14 shows the shape signatures of five different
images with 2 boundaries and 2 levels (levels = number of
multiply-connected sub-domains). The first row shows the
shape signature of the flower image. Note that the fluctuat-
ing pattern of the outer boundary of the flower is effectively
captured by f01 (the red curve). The other rows show the
shape signatures of the fish, brain, elephant and ameba
images respectively. The five different images have very
different shape signatures.

We also apply this algorithm to detect shape differences
between brain shapes extracted from MR images. Each
brain shape has 2 boundaries and 2 levels. Fig. 15 shows
three brain shapes and their associated shape signatures.
The original MR images and their associated contours are
shown on the left column. Their corresponding shape signa-
tures are shown on the right column. Note that the patterns
of the conformal weldings of each shapes look similar. But
the details of the shape signatures are obviously different.
Our proposed signature can potentially be used for medical
shape analysis.

Fig. 16 shows the shape signatures of two different
images with 3 boundaries and 2 levels. The top shows the
contours of the Mickey mouse image, which consists of 3
contours. The exterior and interior of the domain are con-
formally parameterized. The conformal domains consist of
two circle domains, and their conformal modules consist of
3 centers and 3 radii. The conformal modules together with
the conformal weldings define the shape signature, which
is shown on the right column. The bottom shows the shape
signature of a cat image also with 3 boundaries and 2 levels.
The corresponding shape signature is as shown in the right

Fig. 13. (a) Shark image with spatial changes in the positions of the two
fishes. (b) Shape signature. The shape signature can effectively capture
spatial changes of objects in the image (compared to Fig. 12).

Fig. 14. Shape signatures of different images with 2 boundaries and 2
levels. The original images and their associated contours are shown in
the left column. Their corresponding shape signatures are shown in the
right column.

column, which is very different from the shape signature
of the Mickey mouse image.

Fig. 17 shows a wolf image with 3 boundaries and 1
level. The exterior and interior of the domain are confor-
mally mapped to circle domains. The conformal domains
consist of one circle domain with 3 inner disks removed, as
shown on the left. Hence, the conformal modules consist
of 3 centers and 3 radii. The shape signature of the image
is as shown in the right column.

We also computed the shape signatures on more com-
plicated images. Fig. 18 shows an image with two cats.
It consists of 6 boundaries with 2 levels. The confor-
mal domains comprise of 3 circle domains with 3 holes
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Fig. 15. Shape signatures of three brain shapes extracted from MR
images. Each shape has 2 boundaries and 2 levels. The original images
and their associated contours are shown in the left column. Their
corresponding shape signatures are shown in the right column.

removed. Hence, the conformal modules consist of 6 cen-
ters and 6 radii. The shape signatures are plotted on the
right column. The top shows the signature for the outer
level whereas The bottom shows the signature of the inner
level.
Shape clustering: In Section 4, we propose a shape dis-
tance defined on the space of all shape signatures.The
shape distance provides us a useful tool to quantita-
tively measure the geometric differences between different
multiply-connected objects. In order to demonstrate the
effectiveness of the shape distance to measure geometric
differences, a shape clustering experiment for a collection
of shapes have been carried out. In Fig. 21, we show a col-
lection of multiply-connected shapes from three different
categories, namely, 1. fish; 2. brain and 3. tool. They are
randomly distributed and our goal is to cluster them into
their corresponding categories using our proposed shape
signature and shape distance. Using the k-mean method,
we cluster the randomly distributed collection of multiply-
connected shapes into three categories. The clustering result
is shown in Fig. 22. As shown in the figure, the shapes can
be successfully clustered into their corresponding groups.
Fig. 23 shows the signatures of the collection of shapes. (a)
shows the signature corresponding to the outer boundary.
(b) shows the signature corresponding to the inner bound-
ary. They are colored according to the clustering result.

Fig. 16. Shape signatures of different images with 3 boundaries and
2 levels.

Observe that the signatures of shapes in the same cate-
gory are similar. It demonstrates that our proposed shape
signature can be an effective candidate for shape clustering.
Shape signature with added noises: We have examined the
sensitivity of our proposed shape signature to noises. We
synthetically add noises to the contours of a shape and com-
pute its associated shape signature. In Fig. 19, noises are
added to the outer boundary of the ameba, brain and ele-
phant shapes respectively. The inner contours of the shapes
remains unchanged. Their associated shape signatures are
computed and are shown in the right column. Note that
their shape signatures are very similar to the shape sig-
natures of their original shapes (compared to the shape
signatures as shown in Fig. 14). The signatures of the inner
contours are almost the same. The shape distances between
the original shape signatures and the noisy shape signa-
tures are also computed, as shown in Table 3. The shape
distances are all less than 0.09, which is very small. It
shows that our proposed shape signature is stable under
noises.
Shape reconstruction: Fig. 20 shows the reconstruction of the
double fish image from its shape signature. The recon-
structed shape closely resembles to the original shape,
except some very tiny details are smoothed out (as shown

Fig. 17. Shape signatures of the wolf image with 3 boundaries and
1 levels.
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Fig. 18. Shape signature of the double cat image with 6 boundaries and
2 levels.

in the zoomed views). It shows our algorithm can effec-
tively reconstruct shapes from their signatures. We also
tested our reconstruction algorithm on images with 2 levels.
Fig. 24(top) shows the Ameba image with 2 boundaries and
2 levels. We reconstruct the image from its shape signature,

Fig. 19. Shape signatures of the ameba, brain and elephant shapes with
noise added to the outer boundaries.

Fig. 20. Top row shows the comparison between the original contours
and the reconstructed ones. The bottom row shows the zoomed views.
It shows that the reconstructed ones are smoother.

which is very close to the original image. Fig. 24(bottom)
shows a cat image with 3 boundaries and 2 levels. The orig-
inal contour of the cat image is a bit noisy. We compute the
shape signature of the image and reconstruct the contours
from the computed shape signature. The reconstructed
image is shown on the right. Again, the reconstructed
image is very close to the original one, although some tiny
details of the original noisy contours are smoothed out a
little bit.

Finally, we studied the numerical error of our recon-
struction scheme. Table 4 shows the distance between the
original and reconstructed contours of the Ameba and cat

Fig. 21. Collection of shapes from three different categories (fish, brain
and tool), which are randomly distributed. Our goal is to cluster them
using our proposed shape distance.
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Fig. 22. Shape clustering result of the collection of shape given in
Fig. 21, using our proposed shape distance.

images. It shows a very small numerical error. The aver-
age distance is less than 0.005. It means our proposed
reconstruction algorithm is accurate.
Shape morphing: Our algorithm can also be applied to
shape morphing. Shape morphing refers to the process of
interpolation between two different shapes, which plays
an important role in animation. Our shape signature and
reconstruction scheme allows us to easily perform a mor-
phing between two multiply-connected object.

Given two different multiply-connected shapes �1 and
�2. We compute their associated shape signatures. Each

Fig. 23. Signatures of the collection of shapes given in Fig. 21, colored
according to the clustering result. (a) Shows the signature correspond-
ing to the outer boundary. (b) Shows the signature corresponding to the
inner boundary.

Fig. 24. Reconstruction of the ameba image and the cat image from
their shape signatures.

shape signature ϒi (i = 1, 2) is associated with a quasi-
conformal map Gϒi , which can be used to reconstruct the
multiply-connected shape �i (see Section 3). Each quasi-
conformal map Gϒi is associated with a Beltrami coefficient
μi. An interpolation between μ1 and μ2 can be performed.
Mathematically, we can find μ(t) for 0 ≤ t ≤ 1 such that
μ(0) = μ1 and μ(1) = μ2. We can then reconstruct the
corresponding quasi-conformal map G(t) associated with
μ(t) for 0 ≤ t ≤ 1. Hence, the intermediate shape �(t)
corresponding to μ(t) can be constructed, with �(0) = �1
and �(1) = �2. �(t) gives a morphing between the two
multiply-connected shapes �1 and �2. Note that in classi-
cal Teichmüller theory, each point in the Teichmüller space
represents a Riemann surface (in our case, Riemann sur-
faces are multiply-connected domains). The path given by
the interpolation between the Beltrami coefficient repre-
sents a geodesic between the two Riemann surfaces under
the Teichmüller metric.

Fig. 25. Morphing between two ameba images.
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TABLE 3
Shape Distance between the Original and Noisy Shapes

Fig. 25 shows the morphing result between an initial
ameba shape and a final ameba shape. The shape signatures
of the initial ameba shape and the final ameba shape are
computed. We denote them by Sinitial and Sfinal respectively.
Then we find an interpolation S(t) between Sinitial and Sfinal,
such that S(0) = Sinitial and S(1) = Sfinal. The intermediate
shape associated with the shape signature S(t) can then
be reconstructed. Fig. 25 shows the intermediate shapes
between the initial and final ameba shapes. Experimental
result shows that the morphing is smooth. In Fig. 26, we
show the morphing result between an initial brain shape
and a final brain shape. The intermediate shapes between
the initial and final brain shapes are shown. Again, it
demonstrates a smooth morphing between the two brain
shapes.

7 CONCLUSION

In this paper, we propose a novel shape signature to
represent 2D multiply-connected objects using conformal
weldings and conformal modules. A metric can be defined
on the proposed representation space, which measures
dissimilarities between objects of general topologies. The
basic idea is to conformally map the interior and exterior
domains to unit disks and circle domains using holomor-
phic 1-forms. A set of diffeomorphisms of the unit circle
(called the conformal weldings) can be obtained, which
together with the conformal modules can be used to define
the shape signature. The shape signature uniquely deter-
mines its associated shape under a suitable normalization.
Hence, the shape signature can be considered as a fin-
gerprint of the multiply-connected object. In this paper,

Fig. 26. Morphing between two brain shapes.

TABLE 4
Distance between the Original and Reconstructed Contours

we introduce a reconstruction algorithm to obtain shapes
from their shape signatures by solving the Beltrami equa-
tion. This completes the framework and allows us to move
back and forth between shapes and their signatures. A
morphing algorithm can also be developed by interpo-
lating the Beltrami coefficients associated with the shape
signatures of different shapes. We test the proposed frame-
work on real images to compute their shape signatures.
Experimental results of the shape clustering for a collection
of multiply-connected objects demonstrate the effectiveness
of the proposed shape signature to distinguish shapes.

Nevertheless, the current proposed model still has some
limitations. Firstly, the current computation for the Koebe’s
iterations requires dense triangulation, which has high stor-
age requirement. We are therefore seeking for a mesh free
method to reduce storage requirement and further improve
the efficiency. Secondly, the current model is vulnerable to
topological noises. If the segmentation result is not good,
extra holes (or islands) will be created. The obtained signa-
ture will then be completely different. We are looking for
measures to cope with this limitation.

Finally, we believe the proposed shape signature will
open up several other interesting research directions. One
interesting direction is to explore different metrics on the
proposed signature space. There are several metric for the
Teichmüller space from the quasi-conformal Teichmüller
theory. We will examine which metric is the best for the pur-
pose of shape analysis and develop efficient algorithms to
compute the metric. Another direction is to generalize the
proposed algorithm to analyze surface curves defined on
Riemann surfaces with arbitrary topologies. It will be useful
for the shape analysis of features on anatomical structures
in medical morphometry. Last but not least, experimental
results suggest that our method can effectively combine
with other statistical shape analysis methods and machine
learning methods for shape clustering and shape analysis.
We will explore this research direction in more details and
apply it to medical shape analysis problems.
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