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Abstract Surface mapping plays an important role in geometric processing, which
induces both area and angular distortions. If the angular distortion is bounded, the map-
ping is called a quasiconformal mapping (QC-Mapping). Many surface mappings in
our physical world are quasiconformal. The angular distortion of a QC mapping can be
represented by the Beltrami differentials. According to QC Teichmüller theory, there
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672 W. Zeng et al.

is a one-to-one correspondence between the set of Beltrami differentials and the set of
QC surface mappings under normalization conditions. Therefore, every QC surface
mapping can be fully determined by the Beltrami differential and reconstructed by
solving the so-called Beltrami equation. In this work, we propose an effective method
to solve the Beltrami equation on general Riemann surfaces. The solution is a QC
mapping associated with the prescribed Beltrami differential. The main strategy is
to define an auxiliary metric (AM) on the domain surface, such that the original QC
mapping becomes conformal under the auxiliary metric. The desired QC-mapping
can then be obtained by using the conventional conformal mapping method. In this
paper, we first formulate a discrete analogue of QC mappings on triangular meshes.
Then, we propose an algorithm to compute discrete QC mappings using the discrete
Yamabe flow method. To the best of our knowledge, it is the first work to compute the
discrete QC mappings for general Riemann surfaces, especially with different topol-
ogies. Numerically, the discrete QC mapping converges to the continuous solution as
the mesh grid size approaches to 0. We tested our algorithm on surfaces scanned from
real life with different topologies. Experimental results demonstrate the generality and
accuracy of our auxiliary metric method.

Mathematics Subject Classification (2000) 65 · 52 · 30

1 Introduction

Mapping between surfaces plays a fundamental role in digital geometry processing.
In general, surface mappings introduce distortions, which can be classified as area
distortion and angular distortion. Mappings without angular distortions are called
conformal mappings. Last several years, there has been fast development of various
techniques for computing conformal mappings and their applications in geometric pro-
cessing. However, conformal mappings are not common in practice. Many mappings
in our physical world are quasiconformal (QC), which introduce bounded angular dis-
tortion. For example, deformations of elastic shapes are QC, such as human expression
change, deformations of human organs, etc. In order to model surface mappings in
the real world more effectively, it is crucial to study QC mappings which allow for a
much wider domain of applications.

The theory of QC mappings is nearly 80 years old and has been firstly studied by
Ahlfors [1], Grotzsch [26], Morrey [49] and Lavrentjev [38]. QC mappings can be
viewed as a generalization of conformal mappings. Figure 1 illustrates the difference
between a conformal mapping and a QC mapping for a topological disk (a). Angular
distortion can be characterized in the following intuitive way. Geometrically, a con-
formal mapping maps infinitesimal circles on the domain to infinitesimal circles on
the image, shown as the mapping from (b) to (c). In other words, conformal map-
ping is angle-preserving. The conformality can be visualized by texture mapping in
modern graphics. In frame (d), the checker-board texture is mapped to the surface (a)
under the conformal parameterization (c). The right angles of checker-board texture
in (d) are well preserved. A quasiconformal mapping maps infinitesimal ellipses on
the domain to infinitesimal circles on the image, shown as the mapping from (e) to (f).
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Beltrami equation on Riemann surfaces 673

(a) original face (b) circle texture by C (c) conformal mapping (C-Mapping)

(d) check. texture by C (e) circle texture by QC (f) quasiconformal mapping (QC-Mapping)

Fig. 1 Conformal and Quasiconformal mappings for a topological disk: a original face; b circle texture
mapping on (a) induced by (c); c conformal mapping of (a); d checker-board texture mapping on (a) induced
by (c), visualizing the angle-preserving property of conformal mapping; e the circle texture mapping on (a)
induced by (f); f quasiconformal mapping of (a) associated with Beltrami differential μ. The eccentricity
and orientation of ellipse demonstrate the angle distortion of quasiconformal mapping

Fig. 2 Illustration of how the
Beltrami coefficient μ measures
the distortion by a
quasiconformal mapping that
maps a small circle to an ellipse
with dilation D

The eccentricity and the orientation of the ellipse can be represented by a complex val-
ued function, the so-called Beltrami coefficient μ, which is defined on the surface (a).
Specifically, the ratio between the two axes of the ellipse is given by 1+|μ(z)|

1−|μ(z)| , and
the orientation of the axis is related to argμ(z) (see Fig. 2). Here, arg is a function
operating on complex numbers and it gives the angle between the line joining the point
to the origin and the positive real axis, shown as θ in Fig. 2, known as an argument of
the point.

Beltrami coefficient is defined on a local chart. Globally, Beltrami coefficient is
represented by the Beltrami differential, which is independent of the choice of local
parameters. According to quasiconformal Teichmüller theory, fixing any 3 points on
a pair of surfaces, there is a one-to-one correspondence between the set of QC maps
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674 W. Zeng et al.

and the set of Beltrami differentials. In other words, every QC mapping can be fully
determined by the Beltrami differentials and is unique up to a finite dimensional
group. Conversely, given a particular Beltrami differentialμ(z) dz̄

dz , we can reconstruct

the QC mappings associated with μ(z) dz̄
dz . The Beltrami differential captures the most

essential information of the surface mappings. Therefore, by adjusting μ(z) dz̄
dz , we

can reconstruct a surface mapping with desired properties.
Quasiconformal mappings have been studied extensively in complex analysis

[1,2,26,39]. Applications can be found in different areas such as differential equa-
tions, topology, Riemann mappings, complex dynamics as well as applied mathematics
[4–7,12,13,17,42–45,47]. Despite the rapid development in the theory of QC map-
ping, the progress on computing QC mappings numerically has been very slow. In
fact, developing an effective numerical algorithm to compute QC mapping remains a
challenging problem.

Recently, there has been a few work on numerical QC mapping techniques on the
complex plane based on solving differential equations with finite difference or finite
element methods. Most of these methods deal with simple domains in the complex
plane and cannot be applied on arbitrary regions. Furthermore, to the best of our
knowledge, no work has been done on solving the Beltrami equation on general Rie-
mann surfaces. In this work, we are interested in developing an effective numerical
algorithm to compute the QC mapping on general Riemann surfaces of any genus.
The developed algorithm could be easily applied to arbitrary regions in the complex
plane C, since they are Riemann surfaces.

The fundamental problem in this paper is to find the QC mapping φ between two
Riemann surfaces, associated with a given Beltrami differential. This can be done
by solving the Beltrami equation using the proposed auxiliary metric method. We
first formulate a discrete analogue of QC mappings on triangular meshes. Then, we
propose a numerical algorithm to compute the discrete QC mapping. The basic idea
is to construct a discrete auxiliary metric based on the given Beltrami differential,
such that φ becomes a conformal mapping under the auxiliary metric. In this work,
we use the discrete Yamabe flow method to compute the conformal mapping under
the new discrete metric. The resulting mapping is the desired discrete QC mapping.
Numerically, the discrete QC mapping converges to the continuous solution as mesh
grid size tends to 0.

To the best of our knowledge, this is the first work to solve the Beltrami equa-
tion using the auxiliary metric and Yamabe flow for the purpose of computing QC
mappings between two Riemann surfaces. The main contributions of this work are
summarized as follows:

1. To firstly introduce a new concept for incorporating quasiconformality induced
from Beltrami differential with a conformal structure, called the Auxiliary Metric
(AM).

2. To firstly introduce the discrete analogue of QC geometry on discrete triangular
meshes using the discrete auxiliary metric. The discrete QC mapping converges
to the continuous solution as mesh grid size tends to 0, which is verified both
theoretically and numerically.
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Beltrami equation on Riemann surfaces 675

3. To firstly present a solution of computing surface QC mappings by solving
Beltrami equation on Riemann surfaces using the auxiliary metric and the Yamabe
Flow, called the Quasi-Yamabe Flow.

The paper is laid out in the following way: Sect. 2 briefly reviews the most re-
lated works in the field; Sect. 3 introduces the smooth theoretical background for QC
mapping and explains how the Beltrami equation can be solved on general Riemann
surfaces using the auxiliary metric; Sect. 4 describes the discrete analogue of QC
geometry on triangular meshes; Sect. 5 focuses on the computational methodologies
of the proposed discrete Quasi-Yamabe flow; Sect. 6 shows the numerical proof of the
convergence of the proposed algorithm; Sect. 7 reports the experimental results; the
paper is concluded in Sect. 8.

2 Previous work

Recently, there has been various work on numerical QC mapping techniques based on
solving elliptic equations in the real plane with finite difference or finite element meth-
ods. Using finite difference methods to compute QC mappings on complex plane were
proposed by Belinskii et al. [12] and Mastin and Thompson [47]. These methods are
difficult to implement for arbitrary regions. A finite difference scheme for constructing
QC mappings for arbitrary simply and doubly-connected region of the plane onto a
rectangle was developed by Mastin and Thompson [48]. Vlasynk [56] applied similar
techniques for mappings of doubly connected and triply connected domains onto a
parametric rectangle. A finite element based method was implemented by Weisel [58]
for computing the modulus of quadrilaterals. In [18] Daripa proposed a numerical
construction of QC mappings in the plane using the Beltrami equation. The author
presented an algorithm for the evaluation of one of the singular operators that arise in
solving the Beltrami equation. The author subsequently applied the same method for
numerical QC mappings of the exterior of simply connected domains onto the interior
of a unit disk using the Beltrami equation [17]. This method was further extended to
the QC mapping of an arbitrary doubly connected domain with smooth boundaries
onto an annulus �R = {σ : R < σ < 1} [19]. All of these methods deal with simple
domains in the complex plane and cannot be applied on arbitrary regions. Furthermore,
to the best of our knowledge, no work has been done on solving the Beltrami equation
on general Riemann surfaces with arbitrary topologies.

In recent decade, there is solid theoretical progress on conformal mapping. Circle
pattern was proposed by Bowers and Hurdal [10], and has been proven to be a mini-
mizer of a convex energy by Bobenko and Springborn [9]. An efficient circle pattern
algorithm was developed by Kharevych et al. [36]. Discrete Ricci flow based on cir-
cle packing method was introduced by Chow and Luo [15] and applied to graphics
in [35]. The other efficient method for scaling metrics to prescribed curvatures was
introduced in [3]. As the surface curvature flow methods, the smooth Yamabe flow
and the smooth Ricci flow are equivalent. However, their numerically computational
algorithm are different due to their different discreterization solution. The theory for
combinatorial Euclidean Yamabe flow was introduced by Luo [46]. The theory for
hyperbolic case was introduced in [8]. Springborn et al. [55] identified the Yamabe
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energy with the Milnor–Lobachevsky function and the heat equation for the curvature
evolution with the cotangent Laplace equation. Gu et al. [60] developed the discrete
Yamabe flow algorithm for computing arbitrary high-genus surfaces.

Conformal mapping has been broadly applied to surface parameterizations in digi-
tal geometry processing. Here we only review the most related work. We refer readers
to the thorough surveys of [22,34,53] for various kinds of mesh parameterization
techniques. Lévy et al. [40] applied the Cauchy–Riemann equation for mesh param-
eterization and provided successful results on the constrained 2D parameterizations
with free boundaries. Desbrun et al. [20] minimized the Dirichlet energy defined on
triangular meshes for computing conformal parameterization. Sheffer et al. [52,54]
introduced the angle based flattening (ABF) method. Zayer et al. [59] presented the
linearized version of ABF. Gu and Yau [29] computed the conformal structure using
Hodge theory and holomorphic 1-form. Gortler et al. [23] applied discrete 1-forms for
mesh parameterization with several holes. Ray et al. [51] used holomorphic 1-form to
follow the principle curvatures for the quad remeshing purpose. Kälberer et al. [37]
introduced branched covering to convert a given frame field on the surface to a vector
field on the covering space. In addition, spherical parameterizations were introduced
in [24,50]. High genus surface parameterization was pioneered by Grimm and Hughes
in [25]. Recently, hyperbolic parameterization was introduced for high genus surfaces
in [35]. Conformal mapping has also been widely used in the engineering fields, such
as brain morphology study [28], colon flattening [33], and supine-prone colon regis-
tration [61] in medical imaging, manifold spline [27] in geometric modeling, shape
analysis, shape matching and registration [41,57,62,63] in computer vision, and so on.

3 Smooth quasiconformal theory

In this section, we briefly introduce the major concepts in differential geometry,
Riemann surface theory and conformal geometry, which are necessary to explain the
QC mappings. We refer readers to [21,30] for detailed information. We further present
the main theorem of this work, which founds the computational background for QC
mappings by solving Beltrami equation using the auxiliary metric. The symbols used
for presentation are listed in Table 1.

3.1 Conformal geometry

Let ω = f (z) : C→ C be a complex function. The following differential operators
are convenient for the discussion

∂

∂z
:= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z̄
:= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

f is said to be quasiconformal associated with μ if it is orientation-preserving and
satisfies the following Beltrami equation:
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Table 1 Symbol list

S Smooth surface M Triangular mesh

μ Beltrami coefficient vi i th vertex

z, w Isothermal coordinates [vi , v j ] Edge connecting vi and v j

f General surface mapping gi j Riemannian metric on [vi , v j ]
Uα, Vβ Neighborhoods on S ui Conformal factor on vi

φα , ψβ Coordinates mapping li j Edge length on [vi , v j ]
(Uα, φα) Isothermal coordinate chart Li j Conformal deformation of li j

φαβ Holomorphic coordinates transition θi Corner angle on vi

fαβ QC coordinates transition μi j Beltrami coefficient on [vi , v j ]
K Gaussian curvature l Discrete metric (edge length)

K̄ Target curvature l̃ Discrete auxiliary metric

g Riemannian metric � Lattice of universal covering space

u Conformal factor H Hessian matrix

∂ f

∂ z̄
= μ(z)∂ f

∂z
,

where μ(z) is some complex-valued Lebesgue measurable function satisfying
sup |μ| < 1.μ is called the Beltrami coefficient of f . The Beltrami coefficientμ gives
us all the information about the conformality of f (see Fig. 2). If μ(z) = 0 every-
where, f is called holomorphic. A holomorphic function satisfies the well-known
Cauchy–Riemann equation

∂ f

∂ z̄
= 0.

Suppose S is a surface embedded in R
3, with the induced Euclidean metric g. Let

Uα ⊂ S be an open set on S, with local parameterization φα : Uα → C, such that the
metric has local representation

g = e2λ(z)dzdz̄,

where λ(z) is called conformal factor, denoting the area distortion under φα . Then
(Uα, φα) is called an isothermal coordinate chart. We can cover the whole surface by
a collection of isothermal coordinate charts. All isothermal coordinate charts form a
conformal atlas. The maximal conformal atlas is a conformal structure. The surface
with a conformal structure is called a Riemann surface.

Suppose S1 and S2 are two Riemann surfaces. (Uα, φα) is a local isothermal chart
of S1, (Vβ, ψβ) is a local chart of S2. f : S1 → S2 is a conformal mapping if and only
if

fαβ = ψβ ◦ f ◦ φ−1
α : φα(Uα)→ ψβ(Vβ)
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678 W. Zeng et al.

(a)

(b)

Fig. 3 Beltrami differential and quasiconformal mapping between Riemann surfaces. a Beltrami
differential on Riemann surface. b mapping between Riemann surfaces

is bi-holomorphic for all φα and ψβ . For simplicity, we still use f to denote its local
representation. Then a conformal mapping f satisfies ∂ f

∂ z̄ = 0. The geometric illus-
tration is shown in Fig. 3.

3.2 Quasiconformal mapping

The definition of QC mappings of plane domains can be extended to Riemann surfaces.
Instead of using the Beltrami coefficient, a global quantity called Beltrami differential
is used, which is independent of the choice of local parameters.

Definition 3.1 (Beltrami Differential) A Beltrami differential μ(z) dz̄
dz on a Riemann

surface S is an assignment to each chart (Uα, φα) of an L∞ complex-valued function
μα , defined on local parameters zα , such that

μα(zα)
dz̄α
dzα
= μβ(zβ)dz̄β

dzβ
(1)
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on the domain which is also covered by another chart (Uβ, φβ), where dzβ
dzα
= d

dzα
φαβ

and φαβ = φβ ◦ φ−1
α .

Basically, if a surface is covered by only one coordinate chart, we can use one Bel-
trami coefficient defined on that chart to describe the QC mapping. However, in case
the surface is covered by more than one chart, several Beltrami coefficients defined
on each chart are required to represent the QC mapping. In this case, the collection of
these Beltrami coefficients is called the Beltrami differential. The Beltrami differential
has to satisfy the consistency condition on the overlapping regions of different charts,
so that the definition is well-defined.

Now a QC mapping between Riemann surfaces can be defined as follows (see Fig. 3
for the geometric illustration):

Definition 3.2 (Quasiconformal Mapping between Riemann Surfaces) An orienta-
tion preserving homeomorphism f : S1 → S2 is called quasiconformal associated
with μ dz̄

dz if for any chart (Uα, φα) on S1 and any chart (Vβ, ψβ) on S2, the mapping

fαβ := ψβ ◦ f ◦ φ−1
α is QC associated with μα(zα)

dz̄α
dzα

.

Note that the above definition is well defined. On a region of S1 covered by two
different charts zα and zα′ . We have dzα

dz̄α′
= 0, therefore

μα′(zα′)= ∂ fα′β
∂ z̄α′

/
∂ fα′β
∂zα′
=

(
∂ fαβ
∂ z̄α

dz̄α
dz̄α′

) / (
∂ fαβ
∂zα

dzα
dzα′

)
= μα(zα) dz̄α

dz̄α′

/
dzα
dzα′

.

(2)

This is guaranteed by Eq. (1). Also, the definition does not depend on the chart wβ
used in the range of f . Let wβ and wβ ′ be two different charts on the range of f , μβ
and μβ ′ be the Beltrami coefficients computed under fαβ and fαβ ′ , respectively. We
have

μβ ′ (zα)=
∂ fαβ ′
∂ z̄α

/
∂ fαβ ′
∂zα

=
(
∂wβ ′
∂wβ

∂ fαβ
∂ z̄α
+ ∂wβ ′
∂w̄β

∂ f̄αβ
∂ z̄α

) / (
∂wβ ′
∂wβ

∂ fαβ
∂zα
+ ∂wβ ′
∂w̄β

∂ f̄αβ
∂zα

)

= ∂ fαβ
∂ z̄α

/
∂ fαβ
∂zα
= μβ(zα), (3)

since wβ ′ is holomorphic and so
∂wβ′
∂w̄β
= 0.

Now we consider the properties of the composed mapping.

Definition 3.3 (Composition of Quasiconformal Mappings) Let f : S1 → S2 be a QC
mapping with Beltrami coefficientμ f , g : S2 → S3 be a QC mapping associated with
Beltrami coefficient μg . The composed mapping g ◦ f : S1 → S3 is a QC mapping
with Beltrami coefficient

μg◦ f = μ f + (μg ◦ f )τ

1+ μ̄ f (μg ◦ f )τ
, τ = f̄ z̄

fz
. (4)
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Lemma 3.4 (QC-Conformal Invariance) Suppose f : S1 → S2 is a QC mapping
associated with the Beltrami differential μ f , g is a conformal mapping of f (S1)

(μg = 0). Then g ◦ f : S1 → S2 is a QC mapping with Beltrami coefficient

μg◦ f = μ f .

The Beltrami differential is invariant to all conformal transformations of the target
surface. This can be verified by Eq. (3).

Lemma 3.5 (Conformal-QC Variance) Suppose f : S1 → S2 is a conformal mapping
(μ f = 0), g : S2 → S3 is a QC mapping associated with the Beltrami differential
μg. Then g ◦ f : S1 → S3 is a QC mapping with Beltrami coefficient

μg◦ f = (μg ◦ f )τ, τ = f̄ z̄

fz
.

This can be verified by Eq. (2).
Figures 4 and 5 demonstrate the intuitive meaning of the above two lemmas, by

composing the conformal and QC mappings in different orders. Figure 4 explains
Lemma 3.4. S1 is a human face surface acquired from a 3D scanner. A QC mapping
f : S1 → S2 maps it to the planar unit disk S2. g : S2 → S3 is a Möbius transfor-
mation of the disk, which is conformal. In order to visualize the Beltrami coefficients
induced by the mappings, we use texture mapping method in modern graphics. In
frame (e), we put a circle packing texture on S2, then the circle field on S2 is pulled
back onto S1 by f . Since f is QC, the pullback circle field becomes an ellipse field.
The eccentricity and orientation of the ellipses indicate the Beltrami coefficient μ f .
Similarly, we put a circle packing texture on S3 and pull it back to S1 by g ◦ f . The
Beltrami coefficientμg◦ f can be visualized in frame (f). Carefully examine (e) and (f),
we can verify that at the same point on S1, such as the corner of eyes, the ellipse on (e)
and that on (f) share the same eccentricity and same orientation, but have different
sizes. This shows μ f equals to μg◦ f .

Similarly, Fig. 5 explains Lemma 3.5. S1, S2, S3 are unit disks. f : S1 → S2 is a
Möbius transformation. g : S2 → S3 is a QC-mapping, where μg(z) = 0.5z, z ∈ D.
We put a circle packing texture on S3, and pull it back by g to obtain the ellipse field
on S2, as shown in (e). Then μg is visualized by the ellipse field in (e). We put a circle
packing texture on S3, and pull it back by g ◦ f to obtain the ellipse field on S1, as
shown in (f). Carefully examine (e) and (f), we can see that for the same point p on S1
and the corresponding point f (p) on S2, e.g. the nose tip, eye corners, the ellipse at
p in (e) and that of f (p) in (f), have the same eccentricity, but different orientations
and different sizes. This demonstrates μg( f (p)) and μg◦ f (p) have the same norm,
but different argument.

In this work, our goal is to compute numerically the QC mapping associated with
a given Beltrami differential.
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(a) (b) (c)

(f)(e)(d)

Fig. 4 Beltrami coefficients of the composed mappings. μ f equals to μg◦ f , where g is a conformal
mapping

(a) (b) (c)

(f)(e)(d)

Fig. 5 Beltrami coefficients of the composed mappings. μg and μg◦ f differ by a rotation, where f is a
conformal mapping
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3.3 Uniformization theorem and Yamabe flow

Let S be a surface embedded in R
3 with the induced Euclidean metric g. We say another

Riemannian metric ḡ is conformal to g, if there is a scalar function u : S → R, such
that ḡ = e2ug. The Gaussian curvature K induced by ḡ is

K̄ = e−2u(−�gu + K ),

where �g is the Laplace–Beltrami operator under the original metric g. The above
equation is called the Yamabe equation. By solving the Yamabe equation for u, one
can design a conformal metric e2ug by prescribing a curvature K̄ .

The Yamabe equation can be solved using the Ricci flow method [32]. The Ricci
flow deforms the metric g(t) according to the Gaussian curvature K (t) (induced by
itself), where t is the time parameter

dg(t)

dt
= 2(K̄ − K (t))g(t).

The uniformization theorem for surfaces says that any metric surface admits a con-
formal metric, which induces constant Gaussian curvature. The constant is one of
{−1, 0,+1}, determined by the topology of the surface. Such a metric is called the
uniformization metric. Ricci flow converges to the uniformization metric. Detailed
proofs can be found in [14,31].

As the surface curvature flow methods, the smooth Yamabe flow and the smooth
Ricci flow are equivalent. However, their numerically computational algorithm are
different due to their different discreterization solution [35,60].

3.4 Auxiliary metric for solving Beltrami equation

Here, we prove the main theorem of this paper, which allows us to define an auxiliary
metric to solve the Beltrami equation on Riemann surfaces.

Theorem 3.6 (Auxiliary Metric Associated with A Beltrami Differential) Suppose
(S1, g1) and (S2, g2) are two metric surfaces, f : S1 → S2 is a QC mapping associ-
ated with the Beltrami differentialμ dz̄

dz . Let z andw be the local isothermal coordinates

of S1 and S2 respectively, indeed g1 = e2λ1(z)dzdz̄ and g2 = e2λ2(w)dwdw̄. Define
an auxiliary Riemannian metric on S1,

g̃1 = e2λ1(z)|dz + μdz̄|2. (5)

The auxiliary metric g̃1 is well-defined and the mapping f : (S1, g̃1)→ (S2, g2) is a
conformal mapping.

Proof We first prove the auxiliary metric g̃1 is well-defined. Consider the region which
is covered by two different charts zα and zβ . Suppose the local representations of g1
under zα and zβ are e2λα(z)dzαdz̄α and e2λβ(z)dzβdz̄β , respectively.
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Since dzα
dzβ
= 0, we have

dzα = dzα
dzβ

dzβ + dzα
dz̄β

dz̄β = dzα
dzβ

dzβ, and

e2λα(zα)dzαdz̄α = e2λα(zα)|dzα|2 = e2λα(zα)
∣∣∣∣dzα
dzβ

∣∣∣∣
2

|dzβ |2 = e2λβ(zβ)dzβdz̄β,

which gives e2λβ(zβ) = e2λα(zα)
∣∣∣ dzα

dzβ

∣∣∣2
.

Thus, with Eq. (1),

e2λα(zα)|dzα + μαdz̄α|2 = e2λα(zα)
∣∣∣∣dzα
dzβ

dzβ + μα dz̄α
dz̄β

dz̄β

∣∣∣∣
2

= e2λα(zα)
∣∣∣∣dzα
dzβ

∣∣∣∣
2 ∣∣∣∣dzβ + μα dz̄α

dz̄β
/

dzα
dzβ

dz̄β

∣∣∣∣
2

= e2λβ(zβ)|dzβ + μβdz̄β |2.

To see the mapping f : (S1, g̃1) → (S2, g2) is a conformal mapping, let f ∗g2
denote the pullback metric,

f ∗g2 = e2λ2( f (z))|d f (z)|2.

Under the pullback metric, the mapping f : (S1, f ∗g2)→ (S2, g2) is isometric,

d f (z) = ∂ f (z)

∂z
dz + ∂ f (z)

∂ z̄
d z̄

= ∂ f (z)

∂z
(dz + μdz̄).

Therefore,

f ∗g2 = e2λ2( f (z))
∣∣∣∣∂ f (z)

∂z

∣∣∣∣
2

|dz + μdz̄|2.

According to the definition of g̃1 in Eq. (5), f ∗g2 = e2λ2( f (z))−2λ1(z)| ∂ f (z)
∂z |2g̃1.

f ∗g2 is conformal to g̃1. Because f : (S1, f ∗g2) → (S2, g2) is isometric, therefore
f : (S1, g̃1)→ (S2, g2) is conformal.

This theorem tells us in order to solve the Beltrami equation on Riemann surfaces,
we simply need to define a new auxiliary metric associated with the prescribed Bel-
trami differential. We can then solve the Beltrami equation by computing a conformal
mapping associated with the newly defined metric. In other words, the QC mapping is
equivalent to a conformal mapping under a suitable auxiliary metric. This observation
is important for us to develop the numerical algorithm to compute QC mappings (See
Sect. 5).
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4 Discrete quasiconformal mapping using auxiliary metric

In Sect. 3, we briefly discuss the theory of QC geometry an describe the auxiliary
metric on smooth Riemann surfaces. In practice, most surfaces are approximated by
simplicial complexes, namely triangular meshes. It is therefore necessary to have a
discrete analog of QC geometry on discrete meshes. In this section, we will formu-
late the definitions of discrete quasiconformal mappings and their associated discrete
Beltrami differentials.

Suppose M is triangular mesh, V, E, F are vertex, edge and face set respectively.
We denote vi as the i th vertex; [vi , v j ] as the oriented edge from vi to v j ; [vi , v j , vk] as
the face, where the vertices are sorted counter-clockwisely. On triangular meshes, we
can derive a discrete version of Yamabe flow, called the discrete Yamabe flow, which
is analogous to the curvature flow on smooth surfaces. In this section, we describe
in detail the discrete Euclidean and hyperbolic Yamabe flow that converge to the
Euclidean and hyperbolic uniformization metric respectively.

On the discrete mesh, we can define the discrete metric, which is similar to the
Riemannian metric. Basically, the discrete metric gives the length of each edge.

Definition 4.1 (Discrete Metric) A discrete metric on a mesh M is a function
l :E→R

+, such that on each triangle [vi , v j , vk], the triangle inequality holds,

l jk + lki > li j ,

where l jk = l[v j , vk], lki = l[vk, vi ] and li j = l[vi , v j ].
Discrete metric represents a configuration of edge lengths. As shown in Fig. 6(a),

different background geometries can be assigned to a mesh.

Definition 4.2 (Background Geometry) Suppose M is a mesh with a discrete metric.
If all faces are Euclidean, or Hyperbolic triangles, then the mesh is with Euclidean, or
Hyperbolic background geometry, denoted as E

2, or H
2.

Discrete metric determines the corner angles on each face by the cosine law,

θi =
⎧⎨
⎩

cos−1 l2
ki+l2

i j−l2
jk

2lki li j
E

2

cos−1 cosh lki cosh li j−cosh l jk
2 sinh lki sinh li j

H
2
.

Definition 4.3 (Discrete Conformal Deformation) Let M be a triangulation mesh.
Suppose l and L are two different discrete metrics on M . L is a discrete conformal
deformation of l if there exists a function u : V → R, called discrete conformal factor,
such that for all edges [vi , v j ] ∈ E on M :

Li j = L[vi , v j ] =
{

eu(vi )li j eu(v j ) E
2

2 sinh−1 eu(vi ) sinh(
li j
2 )e

u(v j ) H
2 .
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(a)

(b)

Fig. 6 Discrete metric and conformal deformation in Euclidean and hyperbolic cases: a the Euclidean
and hyperbolic triangles and b the discrete conformal deformation by the discrete Yamabe flow. a discrete
Euclidean and hyperbolic metric. b discrete conformal deformation Li j = eui+u j li j

See Fig. 6(b). Note that the definition of discrete hyperbolic conformality was due
to Springborn et al. [8].

Definition 4.4 (Discrete Local Isothermal Chart) Let M be a triangular mesh. A mesh
Mα is called a submesh of M if every vertices, edges and faces of Mα belong to M . A
discrete local isothermal chart (Mα, φα) : Mα → C is a discrete conformal mapping
from Mα to a mesh φα(Mα) embedded in C.

Since the triangular meshes are considered as the discrete approximations of smooth
surfaces, we can assume that the triangular meshes are covered by a collection of dis-
crete local charts.

Definition 4.5 (Discrete Beltrami Differential) A discrete Beltrami differential {μα}
is an assignment to each discrete local isothermal chart (Mα, φα) on Mα of an L∞
complex-valued functionμα defined on every vertices of φα(Mα)with |μα| < 1, such
that:

μα(vi )+ μα(v j )

2

zα(v j )− zα(vi )

zα(v j )− zα(vi )
= μβ(vi )+ μβ(v j )

2

zβ(v j )− zβ(vi )

zβ(v j )− zβ(vi )
, (6)

where [vi , v j ] is any edge in the domain which is also covered by another chart
(Mβ, φβ).
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By letting μαi j = μα(vi )+μα(v j )

2 , μβi j = μβ(vi )+μβ(v j )

2 , dzαi j = zα(v j ) − zα(vi ) and

dzβi j = zβ(v j )− zβ(vi ), Eq. (6) can be simplified as

μαi j

d z̄αi j

dzαi j
= μβi j

d z̄βi j

dzβi j

,

which is the discrete analog of Eq. (1).

Definition 4.6 (Discrete Quasiconformal Mapping between Triangular Meshes) Let
{μα} be a given discrete Beltrami differential. A mapping f : (M1, l) → (M2, L)
between meshes M1 and M2 is a discrete quasiconformal mapping, if with respect to
a new metric l̃ on M1, the mapping f : (M1, l̃) → (M2, L) is discrete conformal,
where

l̃i j := li j
|dzi j + μi j d z̄i j |
|dzi j | ,

(
dzi j = z(v j )− z(vi ), μi j = μi + μ j

2

)
, (7)

for any local isothermal coordinates z of M1. l̃ is called the discrete auxiliary metric
associated with {μα}.

Note that the definition is well-defined. Suppose an edge [vi , v j ] is covered by both
charts zα and zβ , we have

li j
|dzαi j + μαi j d z̄αi j |
|dzαi j |

= li j

∣∣∣∣∣1+ μαi j

d z̄αi j

dzαi j

∣∣∣∣∣ = li j

∣∣∣∣∣1+ μβi j

d z̄βi j

dzβi j

∣∣∣∣∣

= li j

∣∣∣dzβi j + μβi j d z̄βi j

∣∣∣∣∣∣dzβi j

∣∣∣ .

The following analogous theorem of Theorem 3.6 is observed immediately from
the above definitions of discrete QC mappings and discrete auxiliary metric.

Theorem 4.7 (Discrete Auxiliary Metric Associated with a Beltrami Differential)
Suppose (M1, l) and (M2, L) are two metric triangular meshes, f : M1 → M2 is a
QC mapping, its Beltrami differential is {μα}. Under the auxiliary metric l̃ associated
with {μα}, the mapping f : (M1, l̃)→ (M2, L) is discrete conformal.

Theorem 4.7 will be used for the computation of discrete QC mappings in Sect. 5.

5 Algorithm of discrete quasiconformal mapping

In this section, we describe in detail the numerical algorithm to compute the discrete
QC mapping associated with a given Beltrami differential. Based on Theorem 4.7,
the algorithm consists of two main steps: (1) Compute the discrete auxiliary metric
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associated with the prescribed Beltrami differential; (2) Under the discrete auxil-
iary metric, compute the conformal parameterization using the discrete Yamabe flow
method. Here, the algorithm to compute discrete QC mapping is called the discrete
Quasi-Yamabe flow. Note that in this work, our QC mapping algorithm is based on
the discrete Yamabe flow method. In general, our algorithm can be implemented with
any conformal mapping methods.

5.1 Computation of auxiliary metric

The first step of our algorithm is to compute the auxiliary metric associated with a
given Beltrami differential. The formula for computing the auxiliary metric is given
in Eq. (7). The detailed computational algorithm can be summarized as follows:

Algorithm : Auxiliary Metric for Both E
2 and H

2 Background Geometry

Input : Triangular mesh M = (V, E, F) with conformal parameterization z : V →
C, and
discrete Beltrami differential μ : V → C defined on the conformal structure.

Output : Discrete auxiliary metric l̃i j for all edges [vi , v j ] ∈ E .

For all Edge [vi , v j ] ∈ E do

1. Compute the edge length li j using the induced Euclidean metric;
2. Compute the derivative of conformal coordinates on [vi , v j ], dzi j ← z(v j ) −

z(vi );
3. Compute the Beltrami coefficient on [vi , v j ], μi j ← 1

2 (μ(vi )+ μ(v j ));

4. Compute the scalar of metric λi j ← |dzi j+μi j d ¯zi j |
|dzi j | ;

5. Compute the new auxiliary metric l̃i j ← λi j li j .

End for
The computing procedure is unified for any Riemann surface. It is formulated as a

scalar function for the original Euclidean metric from the given Beltrami differential
μ and conformal chart z.

5.2 Conformal parameterization under auxiliary metric

After the discrete auxiliary metric is computed, we can then compute the discrete QC
mapping simply by computing the discrete conformal mapping under the new metric.
In general, we can apply any existing conformal mapping algorithms to compute the
conformal mapping under the new auxiliary metric. Here, we will use the discrete
Yamabe flow method to compute the conformal mapping. The discrete Yamabe flow
iteratively and conformally deforms the metric on the source surface to a uniformiza-
tion metric , which induces constant Gaussian curvature.

On a triangular mesh M , the discrete Gaussian curvature is defined as angle defi-
cient. Suppose [vi , v j , vk] is a face in M , θ jk

i represents the corner angle at vi on the
face. The discrete Gaussian curvature of vi is defined as
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Ki =
{

2π −∑
jk θ

jk
i vi 
∈ ∂M

π −∑
jk θ

jk
i vi ∈ ∂M

.

Now, suppose the discrete conformal deformation under the discrete Yamabe flow
is given by the discrete conformal factor u : V → R (See Definition 4.5). Let K̄i

denote the target curvature at vi . The discrete Yamabe flow has the following formula:

dui

dt
= K̄i − Ki .

The discrete Yamabe flow is the negative gradient flow of the Yamabe energy. Let
u = (u1, u2, . . . , un) and u0 = (0, 0, . . . , 0). The discrete Yamabe energy has the
form:

E(u) =
u∫

u0

n∑
i=1

(K̄i − Ki )dui .

The Hessian matrix H = (hi j ) of E can be computed explicitly. Let [vi , v j ] be
an edge, connecting two faces [vi , v j , vk] and [v j , vi , vl ], then the Hessian matrix
satisfies

hi j = ∂θ
jk

i

∂u j
+ ∂θ

l j
i

∂u j
, i 
= j and hii =

∑
j,k

∂θ
jk

i

∂ui
,

where the summation goes through all faces surrounding vi , [vi , v j , vk]. Here,

∂θi

∂ui
=

{− cot θ j − cot θk E
2

− 2ci c j ck−c2
j−c2

k+ci c j+ci ck−c j−ck

A(c j+1)(ck+1) H
2 and

∂θi

∂u j
=

{
cot θk E

2

ci+c j−ck−1
A(ck+1) H

2 ,

(8)

where in H
2 case, ck = cosh(Li j ) and A = sin(θk) sinh(L jk) sinh(Lki ).

Using the Newton’s method, the discrete Yamabe flow now reads as follows

un+1 = un + δn,

where Hδn = K̄ − K n . Note that the Hessian H = (hi j ) is sparse. The entry hi j

is non-zero if and only if vi and v j are adjacent to each other. In this work, we use
the conjugate gradient method to solve the linear system for δn . After computing the
discrete metric of the mesh, we can embed the mesh onto E

2 or H
2. Basically, we can

isometrically flatten triangle by triangle using the Euclidean or hyperbolic cosine law.
For more details about the discrete Yamabe flow, we refer readers to [60].

The discrete conformal complex structure for a triangular mesh is computed by the
discrete Yamabe flow. The quasiconformality of the desired discrete QC mapping is
determined by the given discrete Beltrami differential μ, with respect to each vertex.
The proposed auxiliary metric, inducing the quasiconformality, is obtained from the
Beltrami differential and the original conformal structure. The resulting conformal
mapping of the discrete Yamabe flow under the new auxiliary metric is a discrete
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QC mapping of the original mesh, associated with the predefined discrete Beltrami
differential. The numerical convergency proof is described in Sect. 6. The proposed
method here to compute QC mapping under the new auxiliary metric is called discrete
Quasi-Yamabe flow method.

6 Convergency of discrete Quasi-Yamabe flow

We now study the numerical convergency of our proposed discrete Quasi-Yamabe
flow method. The convergence of metric under the discrete Yamabe flow is discussed
in [16].

Firstly, the convexity of the Yamabe energy can be obtained by carefully examining
the positive definiteness of the Hessian matrix H = (hi j ). The computational details
are shown in Eq. (8).

Theorem 6.1 The discrete Yamabe energy is locally convex on the space of
∑

i ui = 0
in the Euclidean case. The discrete Yamabe energy is locally convex in the hyperbolic
case.

Proof The local convexity of the Euclidean Yamabe energy is due to the fact that the
Hessian matrix H = (hi j ) of E(u) is semi-positive definite. Clearly, the summation
of each row is zero and only the diagonal elements are positive. Furthermore, since the
matrix is positive definite on the linear space

∑
i ui = 0, it follows that H is locally

strictly convex on the planes. For details, please see [46].
We now prove the local convexity of the hyperbolic Yamabe energy. This fact was

also known to Springborn et al. [8]. We prove the Hessian matrix of the hyperbolic
Yamabe energy is positive definite. Let l1, l2, l3 be the lengths of a hyperbolic triangle.
Make conformal change to produce a new hyperbolic triangle of lengths L1, L2, L3,
so that sinh(Li/2) = sinh(li/2)eu j+uk , {i, j, k} = {1, 2, 3}. Let θi represent the corner
angle at the vertex vi , H = [ ∂θi

∂u j
] be the matrix.

Fact 1 : det (H) 
= 0 for all u’s. Indeed, the mapping from (u1, u2, u3)→ (θ1, θ2, θ3)

is a diffeomorphism.
Fact 2 : For any (l1, l2, l3) in the set of all u = (u1, u2, u3) such that
Li/2 = 2 sinh−1(sinh(li/2)eu j+uk ) satisfies triangular inequalities: L1 + L2 > L3,
L1 + L3 > L2 and L2 + L3 > L1, which form a connected set � in R

3.
Fact 3 : Since � is connected and H is symmetric in � so that det (H) 
= 0, the
signature of H is a constant.
Fact 4 :Choose those u1, u2, u3 so that L1 = L2 = L3, we see easily by computation
that the Hessian H is positive definite.

Thus, H is positive definite over all �.
Now to prove Fact 2 : Introduce a new variable ti = eu j+uk . The mapping u �→ t

is a diffeomorphism. Thus, it suffices to prove that the set

�1 = {(t1, t2, t3) ∈ R
3
>0|Li = 2 sinh−1(ti sinh(

ai

2
))

satisfy the triangle inequality}
is connected. Fix t2, t3, we will show that the set of all t such that
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| sinh−1
(

t2 sinh(
a2

2
)
)
− sinh−1

(
t3 sinh(

a3

2
)
)
| < sinh−1

(
t2 sinh(

a2

2
)
)

+ sinh−1
(

t3 sinh(
a3

2
)
)

is connected. This is obvious since f (t)= sinh−1 (t) is a strictly increasing function
in t .

The discrete Yamabe energy can be optimized using Newton’s method directly.
Given the mesh M , a conformal factor vector u is admissible, if the deformed metric
satisfies the triangle inequality on each face. The space of all admissible conformal
factors is not convex in either Euclidean or Hyperbolic case. In practice, the step length
in Newton’s method needs to be adjusted. Also, the triangle inequality is a require-
ment for a legitimate triangulation mesh. During the discrete Yamabe flow, the triangle
inequality might fail to hold (which rarely occurs in practice, except for very irregular
meshes). If such case occurs, one can do surgery changes by edge swapping to remove
the singularity. After finitely many such surgery operations on the triangulation mesh,
there will be no singularity developed in the normalized discrete Yamabe flow. We
can then prove the the discrete Quasi-Yamabe flow starting from the auxiliary metric
converges exponentially fast to the constant curvature metric.

Theorem 6.2 If no singularity develops in the discrete Quasi-Yamabe flow after fi-
nitely many of surgery operations, the discrete auxiliary metric converges expo-
nentially fast to a discrete uniformization metric with constant curvature as time
approaches infinity. In other words,

|Ki (t)− K̄i | ≤ c1e−c2t

for some constants c1 and c2, and Ki (t) is the discrete curvature at vertex vi at time t.

Proof The solution u(t) = (u1(t), . . . , uN (t)) of the discrete Yamabe flow exists for
all time so that there are no singularities forming at time equal to infinity. This means
that ui (t)’s are in some compact interval in R>0 and also all inner angles θ i j

i (t) are in

some compact interval inside the interval (0, π). The matrix (hi j ) = ( ∂θi
∂u j
) has prop-

erties that the sum of entries in every row is zero and the diagonal entries are negative.
(hi j ) is symmetric and semi-negative definite. This implies that there is a positive
constant λ so that the eigenvalues of (hi j ) considered as a bilinear form restricted to
the subspace {w ∈ R

N |w1 + · · · + wN = 0} is always bounded by −λ for all time
t ∈ [0,∞), i.e.,

∑
i, j

hi jwiw j ≤ −λ
∑

i

w2
i , when

N∑
i=1

wi = 0.

Note that

d Ki (t)

dt
= d

dt

⎛
⎝2π−

∑
j,k

θ
jk

i

⎞
⎠=−∑

j,k

dθ jk
i

dt
=−

∑
j

∂θi

∂u j

du j

dt
=

∑
j

∂θi

∂u j
(K j− K̄ j ).
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Fig. 7 The exponential convergence of the discrete Yamabe flow method. The curvature approximate error
at each iteration is plotted for two human faces respectively

Now, consider G(t) =∑N
i=1(Ki (t)− K̄i )

2. Its derivative can be calculated as

G ′(t) = 2
∑
i, j

hi j (Ki − K̄i )(Ki − K̄i ).

We have, G ′(t) ≤ −λG(t). Thus, G(t) ≤ Ce−λt , and so

|Ki (t)− K̄i | ≤ c1e−c2t .

Figure 7 shows the exponential convergence of the discrete Yamabe flow method.
The curvature approximate error maxi |Ki − K̄i | at each iteration of two different real
human faces is plotted on the left and right respectively.

Theorem 6.3 Let f : (S1, g1) → (S2, g2) be a QC mapping with Beltrami differ-

ential μ d̄z
dz , with S1 and S2 are both of disk topology. Suppose f̃h is a discrete QC

mapping associated with {μα} given by μ d̄z
dz on a triangulation mesh with regular

tessellation and mesh grid size h, which approximates f . Then f̃h → f as h→ 0.

Proof The proof that a discrete conformal mapping converges to a continuous confor-
mal mapping under regular triangulation mesh was given by Bucking [11]. Therefore,
the discrete mapping f̃h converges to the conformal mapping f AM : (S1, g̃1) →
(S2, g2) under the auxiliary metric g̃1 associated with μ d̄z

dz on S1. By Theorem 3.6,
the conformal mapping f AM : (S1, g̃1) → (S2, g2) is in fact a QC mapping f :
(S1, g1) → (S2, g2) with Beltrami differential μ d̄z

dz under the original metric g1 on
S1. Thus, f̃h → f as h→ 0.

7 Experimental results

We implement our algorithm using generic C++ on Windows platform. The linear
systems are solved using the conjugate gradient method. The experiments are carried
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Table 2 Computational time

Figure 1 9 10 12 13 14 15

Vertices# 20184 20184 25220 15306 13515 10000 2057

Faces# 39984 39984 49982 29990 26304 20000 4118

Time(s) 101 99 131 87 108 25 31

out on a laptop with 2.0 GHZ CPU, 3.00G RAM. The human face surfaces are cap-
tured using phase shifting structured light method. Computational time is reported in
Table 2.

7.1 Quasiconformal mappings for topological disks

Figure 1 shows the QC mapping for a real human face surface, which is a topolog-
ical disk and is acquired from a 3D scanner. The Yamabe flow conformally maps
the surface onto a planar unit disk D, as shown in frame (c). We chose the Beltrami
coefficients as μ(z) = 0.5z, z ∈ D. The QC mapping using the auxiliary metric based
on Quasi-Yamabe flow is given in frame (f). We also demonstrate the concept of the
chain rule of conformal and QC mappings on the topological disk surface, as shown
in Figs. 4 and 5. The Möbius transformation is given by

z→ z − z0

1− z̄0z
,

where z0 is the point which will be moved the origin of the unite disk. The Beltrami
coefficients are also chosen to be μ(z) = 0.5z, z ∈ D. Figure 8 illustrates the mesh
deformation during the conformal and QC mappings on the topological disk, which
includes 39,984 triangular faces.

7.2 Quasiconformal mappings for topological quadrilaterals

Figure 9 shows the experimental results for QC mappings of the human face surface,
which is a topological quadrilateral with four fixed corners. The original face is shown
in the top left corner. Four corner vertices are selected on the boundary, shown as
p0, p1, p2, p3. We set the target curvature to be π

2 for those four corner vertices, and
zero for all vertices everywhere else (including boundary and interior vertices). The
Yamabe flow conformally maps the surface onto a planar rectangle, as shown in frames
(a) and (b). The corner vertices are mapped to the rectangle corners. We set the left
lower corner to be the origin, the edges to be parallel to the axes, the width to be 1.
Then the height h gives us the conformal module of the original face surface with four
fixed corners. This provides us the conformal parameter z of the surface.

In frames (c–e), we set different Beltrami coefficients. The image of the QC map-
ping is shown on the left, the circle packing texture mapping is shown on the right. The
Beltrami coefficient is set to be μ = z−z0

2
√

1+h2 , with different values of z0 for different
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(a) 3D face (b) C-mapping (c) QC-mapping

Fig. 8 Meshing deformation during conformal and quasiconformal mappings for a topological disk.
The conformal parameter domain is a planar unit disk. The Beltrami coefficients for QC-mapping are
μ(z) = 0.5z, z ∈ D. The second row shows the zoomed-in triangles

cases. It is obvious that, the conformal module of the surface changes with different
Beltrami coefficients.

7.3 Composition of quasiconformal mappings

In the following experiment, we test the accuracy of our algorithm by computing the
composed QC mappings using different approaches, and comparing their difference.
If our method is accurate, the difference between the results obtained from the two
approaches should be small.

Let f : S → D1 be a QC mapping with Beltrami coefficient μ f , g : D1 → D2
be a conformal mapping with Beltrami coefficient μg . Then the composed mapping
g ◦ f : S→ D2 should have the Beltrami coefficient in Eq. (4). As shown in Fig. 10,
in our experiment, the original surface is a human face surface with four corner points
(a topological quadrilateral), then we compute its conformal parameter domain, as
shown in (a) and (b). Then we set the Beltrami coefficient μ f to be 0.15+ i0.15, and
use our method to compute a QC mapping f : S → D1. The mapping result of f is
shown in (c). We setμg = 0.15+ i0.15, and compute the QC mapping g : D1 → D2,
as shown in (d).

We use the formula in Eq. (4) to compute the Beltrami coefficient for the composed
mapping μg◦ f = 0.34+ i0.12. We then solve the Beltrami equation hz̄ = μg◦ f hz to
get a QC mapping h : S → D2, as shown in (e). In theory, h should coincide with
g ◦ f . Our experimental result shows that h is consistent with g ◦ f . By comparing
the results in (d) and (e), we can see the results of g ◦ f and h are almost identical. We
further measure the deviation between them numerically, using the following formula,
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(a) (b)

(c) (d) (e)

Fig. 9 Conformal and quasiconformal mappings for a topological quadrilateral. The conformal parameter
domain is a rectangle with unit width and h height. For all other rows μ = z−z0

2
√

1+h2
with different z0’s

d( f, g) = 1

diag(S)A

∫
S

| f (p)− g(p)|dp,

where A is the area of S, diag(S) is the diagonal of the bounding box of S. The
distance is the L1 norm between f and g, normalized by the diagonal of surface. In
our experiment, the distance is 0.000044, which is very small. This shows that our QC
mapping method is accurate. Figure 11 shows the histogram of the real part, imagi-
nary part and argument of μ f , μg and μ f ◦g . (a), (b) and (c) shows the histograms of
the real part, imaginary part and argument of the Beltrami coefficient μ f of f com-
puted by our method. The histograms show that Real(μ f ) = 0.15, Imag(μ f ) = 0.15
and arg(μ f ) = 0.7854 on almost all vertices, which agree with the exact solution,
μg = 0.15+ i0.15. (d), (e) and (f) shows the histograms of the Beltrami coefficientμg

of g. (g), (h) and (i) shows the histogram of the real part, imaginary part and argument
of the Beltrami coefficient μ f ◦g of the composition mapping g ◦ f . The histograms

123



Beltrami equation on Riemann surfaces 695

(a) (b)

(e)(d)(c)

Fig. 10 Composition of quasiconformal mappings for a topological quadrilateral: μ f = 0.15 + 0.15i ,
μg = 0.15+ 0.15i , and h = g ◦ f , μh = μg◦ f = 0.35+ 0.12i computed by Eq. (4)

show that Real(μg◦ f ) = 0.35, Imag(μg◦ f ) = 0.12 and arg(μg◦ f ) = 0.34 on almost
all vertices, which agree with the exact solution.

7.4 Quasiconformal mappings for topological annuli

Figures 12 and 13 show the QC mappings for genus zero surfaces with multiply holes.
In Fig. 12, the human face surface is sliced open along the lip of the mouth which results
in a doubly-connected open surface. Again, we set different Beltrami coefficients and
compute the associated discrete auxiliary metrics. Using the discrete Yamabe flow,
we conformally map the surface onto the annulus with respect to different auxiliary
metrics. The target curvature is set to be zero in the interior and constant along the
boundaries. The radius of the inner circles are different with different Beltrami coef-
ficients, indicating a change in the conformal module. Figure 13 shows the similar
results for the genus zero human face surface with three slices (topological disk with
3 holes).

7.5 Quasiconformal mappings for genus one surfaces

We test our algorithm for genus one closed surface as shown in Fig. 14. We first set
μ to be zero, and compute a conformal flat metric using the curvature flow. Then
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Fig. 11 Histogram of the real part, imaginary part and argument of the Beltrami coefficients

we compute a homology basis, {a, b} as shown in the leftmost frame of the top row.
We then embed a finite portion of the universal covering space of the Kitten model
(as shown in Fig. 14) using the flat metric, shown in the right frame of the first row.
The red rectangle shows the fundamental polygon, which is a parallelogram, with two
adjacent edges za and zb. The lattice � is formed by the translations generated by za

and zb,

� = {mza + nzb|m, n ∈ Z}.

The Kitten surface can be represented as the quotient space M = R
2

�
. This gives the

conformal parameter domain of the surface. The rightmost frame of the first row illus-
trates the circle packing texture mapping induced by the conformal parameterization.
In the second and the third row, we set different Beltrami coefficients. μ(z) are con-
stants for the second row. For the last row, the Beltrami coefficient is defined in a more
complicated way. Because μ is defined on the Kitten surface, then it must satisfy the
following consistency condition μ(z) = μ(z +mza + nzb). Given a point z ∈ C, we
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(a) (b)

(d)(c)

Fig. 12 Conformal and quasiconformal mappings for a topological annulus

(a) (b)

(e)(d)(c)

Fig. 13 Conformal and quasiconformal mappings for multiply connected domain
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(a) (b)

(c) (d) (e)

Fig. 14 Conformal and quasiconformal mappings for a genus one surface. The homology basis is {a, b}

can find a pair of real numbers α, β ∈ [0, 1), such that z ≡ αza + βzb(mod �). Then
μ is defined as μ(z) = 1

4 (cos 2πα+ i cos 2πβ), which satisfies the above consistency
condition.

7.6 Quasiconformal mappings for high genus surfaces

Our method can compute QC mappings for high genus surfaces, as shown in Fig. 15.
We use hyperbolic Yamabe flow to compute the hyperbolic metric of the surface, then
the homology basis {a1, b1, a2, b2}. We flatten a fundamental domain, compute the
Fuchsian group generators, and flatten a finite portion of the universal covering space
of the surface. Details can be found in [25,35]. This gives a conformal atlas of the
surface. Because of the difference between hyperbolic metric and Euclidean metric,
the texture mappings have seams in Fig. 15 along the homology basis. Also, the funda-
mental domains are color encoded in Fig. 15. Each connected domain sharing the same
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(a) (b)

(e)(d)(c)

Fig. 15 Conformal and quasiconformal mappings for a genus two surface. The homology basis is
{a1, b1, a2, b2}

color represents one fundamental domain. Suppose z and w are two local parameters,
differ by a Möbius transformation, then μ should satisfy the following consistency
relation (See Definition 4.5):

μ(w)
w̄z

wz
= μ(z).

For example, let p ∈ S is a point on ak p ∈ ak , it has two parameters z p ∈ a+k and
wp ∈ a−k , wp = αk(z p). Then μ(z p) and μ(wp) should satisfy the above consistent
constraint. In our experiments, we find a n-ring neighbor (n = 4) of ak, bk , denoted
as R, then define μ(vi ) = z0 for all vertices vi not in R, μ(vi ) = 0, for vi in ak or bk .
μ is extended to other vertices as a complex valued harmonic function, �μ(vi ) = 0,
vi 
∈ R ∪ ak ∪ bk , where � is the Laplace–Beltrami operator of the original surface.
This will ensure the consistency relation holds for μ. In Fig. 15, z0 is 0.2 + i0.2 for
the left frame of second row, 0.3 for the right frame of the second row, and z0 = z
for the last row. From the figure, we can see the deformation of the conformal structure
of the surface (shape of the fundamental domain)with different Beltrami coefficients.
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Table 3 Convergence Error of Mappings (Ez ) and Beltrami Coefficients (Eμ): computing quasiconformal
mappings for n × n grid meshes under different diffeomorphism transformations F with explicit Beltrami
coefficients μ

Function Error n = 10 n = 50 n = 100 n = 150 n = 200 Conv. order

F1 Ez 0.000272 0.000012 0.000006 0.000006 0.000006 1.1396

Eμ 0.023638 0.004041 0.002342 0.001798 0.001956 0.85094

F2 Ez 0.000537 0.000022 0.000009 0.000007 0.000007 1.3452

Eμ 0.043494 0.007989 0.004008 0.002554 0.001994 1.0162

F3 Ez 0.008977 0.000223 0.000056 0.000026 0.000015 2.0106

Eμ 0.073561 0.012608 0.006268 0.004174 0.003148 1.055

F4 Ez 0.001249 0.00005 0.000013 0.000006 0.000004 1.9343

Eμ 0.081640 0.017682 0.008950 0.005994 0.004484 0.97429

The results show that our method can be applied effectively on general Riemann
surfaces of high genus.

7.7 Numerical convergency analysis

We test the Quasi-Yamabe method on 4 diffeomorphisms with explicit formula and
known Beltrami coefficients. These diffeomorphisms map the unit square to rectan-
gles. For example,

F1 = [ f (x), f (y)], f (x) = π×x+cos(x×π/2)
π+1 ,

F2(x, y) = [ f (x), g(y)], f (x) = π×x+sin(x×π/2)
π+1 , g(y) = π×y+cos(y×π/2)

π+1 .

Table 3 shows the error in the coordinates Ez and the error in the Beltrami coeffi-
cients Eμ, under the approximation of different meshes n×n with grid sizes h = 1/n.
Specifically, Ez and Eμ are defined as: Ez = max{|Fi − Fh

i |} and Eμ = max{|μFi

− μFh
i |}, where Fh

i is the approximation of Fi with mesh size h. Ez and Eμ both
get smaller as the mesh grid size reduces. It illustrates that the discrete QC mapping
converges to the continuous solution as h → 0. We also computed the order of con-
vergence by calculating the linear slope of log(Ez) and log(Eμ) vs log(h). The order
of convergence for Ez is greater than 1 in all cases, whereas the order of convergence
for Eμ is greater than 0.5.

8 Conclusion

Many surface mappings are QC in the real world. According to QC Teichmüller theory,
in general, there exists a one-to-one mapping between the QC mappings and the Beltra-
mi coefficients. This work introduces a novel method to compute the quasiconformal
mapping from the Beltrami differentials using the auxiliary metric method for general
Riemann surfaces. The auxiliary metric is constructed from the Beltrami differential,
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such that the desired QC mapping becomes a conformal one under the auxiliary met-
ric. We present the discrete analogue of QC geometry on discrete triangular meshes
using the discrete auxiliary metric. The discrete QC mapping is computed based on
the discrete Quasi-Yamabe flow. Experimental results demonstrate the generality and
accuracy of the proposed algorithm. The convergency of the QC mapping to the con-
tinuous solution as mesh grid size approaches to 0 is verified both theoretically and
numerically. To the best of our knowledge, it is the first work to present the solution
of surface QC mapping by solving the Beltrami equation using the auxiliary metric
idea. This can also be applied to all conformal mapping methods.
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