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Abstract 

In this paper, we propose novel algorithms for inpainting 

and refinement of diffeomorphisms. We first represent a dif­

feomorphism by its Beltrami coefficient. Then it is possible 

to refine and inpaint the diffeomorphism by processing this 

Beltrami coefficient. With the inpaintedlrefined Beltrami co­

efficient, we construct a new diffeomorphism using the exact 

Beltrami holomorphic flow algorithm proposed in this pa­

per. We apply our algorithms on several practical applica­

tions, which include the inpainting of a highly distorted dif­

feomorphism, the inpainting of image sequences of deform­

ing shapes, the super-resolution of diffeomorphisms and the 

global parameterization of cortical surfaces by combining 

local parameterizations. Experiments show that our algo­

rithm can solve these problems with natural and smooth re­

sults. We demonstrate how our proposed method can be 

widely applied in areas from texture mapping to video pro­

cessing, and from computer graphics to medical imaging. 

1. Introduction 

In computer graphics and medical imaging, a great deal 
of effort is spent on processing surface diffeomorophisms. 
For example, in computer-aided design, fine diffeomor­
phisms are important for high quality texture mapping of 

3D models. In brain imaging, they are crucial for the regis­
tration of cortical surfaces. However, due to noise or highly 
convoluted surfaces like the cortical surface, certain regions 
of the surfaces may not able to get registered at all or result 
in highly distorted and/or overlapping regions. To fix this 
problem, we need to properly restore the missing region us­
ing existing data as much as possible. 

For other situations such as video compression and com­
puter games, the storage allowed is limited for practical 
reason. For example, in video compression, consecutive 
frames may be related by a smoothly varying diffeomor­
phisms, which allows further compression. In computer 
games, it is not practical to store the precise texture maps 
of thousands of in-game objects. To save storage, texture 
maps are often stored in a piecewise linear way with every 
triangle in simplified triangular meshes. This causes un­
natural distortions when objects are zoomed in closely. To 
achieve better visualization, we need to restore the desired 
quality of the texture maps, like the degree of distortion and 
smoothness, from a compact representation as above. 

Motivated by these problems, we are interested in devel­
oping effective algorithms to either 'inpaint' the missing or 
distorted regions of a diffeomorphism, or refine a diffeo­
morphism with low resolution to higher resolution. In this 
paper, we propose a novel approach to solve these prob­
lems. The basic idea is to represent a diffeomorphism by its 
Beltrami coefficient. Then we may inpaint or refine it by in­
terpolating its Beltrami coefficients instead of its coordinate 
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functions. A new diffeomorphism is then constructed from 
the inpainted/refined Beltrami coefficient using the exact 
Beltrami holomorphic flow (BHF) algorithm we propose. 
Compared with other methods, such as direct Iinearlcubic 
interpolation of coordinate functions, our method guaran­
tees smoothness and diffeomorphic property. In the orig­
inal missing region, the restored diffeomorphism follows 
the property of the original diffeomorphism on the non­
occluded region. We apply our algorithms to three practical 
applications, including (i) super-resolution of texture maps 
to sharpen and smoothen surface textures, (ii) parallelizable 
landmark-matching surface mapping to parameterize com­
plicated surfaces efficiently, and (iii) inpainting of image se­
quences of deforming shapes. Experimental results confirm 
the effectiveness and efficacy of our proposed algorithms. 

2. Previous Work 

Image inpainting and super-resolution have been exten­
sively studied. Inpainting refers to the process of recon­
structing lost or deteriorated parts of images. Image super­
resolution aims to produce an aesthetically pleasing high 
resolution image from a low resolution image. Both prob­
lems are related to image interpolation. Recently, differ­
ent approaches for this subject have been proposed. Belah­
midi [2] proposed a PDE-based approach to zoom images 
by solving anisotropic heat diffusion equations. Bertalmio 
et al. [3] proposed to apply Navier-Stokes equations and 
fluid dynamics for image and video inpainting. Shen et al. 
[6] proposed local inpaintings of non-texture images based 
on the classical total variation (TV) denoising model. Later, 
Cha et al. [5] applied the PDE form of the TV energy for 
image zooming. Multiscale approach was also proposed. 
Carey et al. [4] proposed an image interpolation approach 
based on wavelets. Although image interpolation has been 
well-studied, the interpolation of surface diffeomorphisms 
preserving bijectivity has rarely been studied. 

Surface registration has also been widely studied. Gu et 
al. [13] proposed conformal surface registration by mini­
mizing some energy functionals. Levy et al. [9] proposed 
a least square method to obtain conformal maps for texture 
mapping. To obtain a surface registration that matches im­
portant landmark features, Durrleman et al. [7] developed 
a framework using currents, a concept from differential ge­
ometry, to match landmarks within surfaces across subjects, 
for the purpose of inferring the variability of brain structure 
in an image database. Lui et al. [10] proposed to com­
pute shape-based landmark matching registrations between 
brain surfaces using an integral flow method. Leow et al. 
[8] proposed a level-set-based approach for matching dif­
ferent types of features, including points, 2D and 3D curves 
represented as implicit functions. 

This work is mainly based on the representation of dif­
feomorphisms by Beltrami coefficients. Studying diffeo-

Figure I. Illustration of how Beltrami coefficient J-l measures the 

distortion of a quasiconfonnal mapping that maps a small circle to 

an ellipse with dilation K. 

morphisms by Beltrami coefficient was first proposed by 
Lui et al. [12] for medical shape analysis. They further pro­
posed to compute geometric matching surface registration 
by adjusting Beltrami coefficients [11]. 

3. Theoretical Background 

3.1. Quasiconformal Mappings and Beltrami Coef­
ficients 

A surface S with a conformal structure is called a Rie­

mann suiface. Given two Riemann surfaces !vI and N, 
a map I: !'vI -+ N is conformal if it preserves the sur­
face metric up to a multiplicative factor called the confor­

mal factor. A generalization of conformal maps is quasi­

conformal maps, which are orientation-preserving diffeo­
morphisms between Riemann surfaces with bounded con­
formality distortion, in the sense that their first order ap­
proximation takes small circles to small ellipses of bounded 
eccentricity (see Figure 1). 

Mathematically, I: C -+ Cis quasiconformal if it satis­
fies the Beltrami equation �� = J-l( z) �� , for some complex 
valued functions fJ with IlfJlloo < 1 called the Beltrami co­

efficient. In particular, 1 is conformal around a small neigh­
borhood of p if and only if fJ(p) = 0. 1 may be considered 
as a map composed of a translation to 1 (p) together with 
a stretch map S (z) = Z + fJ(p )"2, which is postcomposed 
by a multiplication of Iz(p), which is conformal. All the 
conformal distortion of S(z) is caused by fJ(p). S(z) is the 
map that causes 1 to map small circles to small ellipses. 
The angle of maximal magnification is arg(fJ(p)) /2 with 
magnifying factor 1 + 1 fJ (p) I; the angle of maximal shrink­
age is the orthogonal angle (arg(fJ(p)) - 7r ) /2 with shrink­
ing factor 1 -IfJ(p) I. The distortion or dilation is given by 
K = (1 + IfJ(p)I)/(l -lfJ(p)I). Thus, the Beltrami coeffi­
cient fJ gives us important information about the properties 
of a map. An illustration of a quasi conformal mapping is 
given in Figure 1. 

3.2. Adjusting Diffeomorphisms by Beltrami Holo­
morphic Flow 

Let I: C -+ C be a diffeomorphism. We say that 1 fixes 
0, 1 and 00 if 1(0) = 0, 1(1) = 1 and limz-too I(z) = 00. 
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Suppose f fixes 0, 1 and 00 and satisfies the Beltrami 
equation � = {l?fs . If we set {l(t) = {l + tv, then 
f,,(t)(w) = f(w) + tj(w) + o(t2), where 

j(w) = -� J J v(z)R(f(z), f(w))(fz(Z))2 dxdy, (1) 

with R(z. w) := _1 __ --.!!'--- + w-1. 
, Z-7J) z-1 z 

This formula gives the variation of f with respect to the 
variation of {l. A proof of it is given in [l]. Apparantly, 
the integrand has singularities at z = 0, z = 1 and z = w. 
However, the integrand can be written as 3 terms, where 
each has just a simple pole. Integrating them on 1R2 gives a 
finte answer and does not create singularities. We call this 
formula the Beltrami holomorphic flow (BHF). 

Using BHF, we may adjust any diffeomorphism j"0 to 
any other diffeomorphism f", with Beltrami coefficients {lo 
and {l respectively. When the initial {l = 0, this amounts 
to computing f" from the identity map fO = Id. Setting 
v = {l - {lo, we compute the BHF for f,,(t), where {l(t) = 

{lo + tv. Theoretically, the approximation of f" is given 
by setting t = 1, i.e., f"(w) ::::0 f(w) + j(w, t). However, 
when v is not small enough, we may face the problem of 
overlapping in f,,(l). We will discuss how to choose an 
optimal t in Subsection 4.2. 

3.3. TV Inpainting of of 2D Image Data 

Inpainting can be regarded as a process of interpolating 
data on the occluded region from the known data on its 
neighborhood. To inpaint an occluded 2D image, we can 
fill in the missing region by solving the Perona-Malik diffu­
sion model: 

{ �" = div(g(IVul)Vu) 
uO 

= v 
on D; 
on DC, 

where D is the occluded region, v: DC ---+ 1R is the original 
image with occlusion, u is the inpainted image, and g: 1R ---+ 

1R is an increasing function with g(O) = 0 and g( 00) = 00. 

If we replace 9 by �u' we get the familiar TV inpainting 
model, which is well-known to preserve edges. 

Image inpainting has been extensively studied. However, 
as far as we know, no work has been done on the inpainting 
of 2D/3D diffeomorphisms. In this paper, we extend the 
TV inpainting algorithm to inpaint diffeomorphisms with 
occluded regions. 

4. Our Proposed Algorithms 

In this section, we propose several algorithms to deal 
with the inpainting and refinement of diffeomorphisms us­
ing BHF. Although BHF deals with diffeomorphisms of 2D 
domains, our algorithms can be easily extended to process­
ing surface diffeomorphisms by reparameterization onto 2D 
domains, such as conformal parameterizations [13]. 

4.1. Exact Computation of the Beltrami Holomor­
phic Flow 

Let f: D ---+ D be a diffeomorphism on D = [-1, 1]2 
with f (0) = 0 and f (1) = l. Denote the triangulation of 
D by Tri(D). For the discretized f, its value is known on 
every vertex of D. It is natural to assume that the actual f 
can be well approximated piecewise linearly on each face in 
Tri(D), where the Beltrami coefficient is constant. We may 
also assume that v, the adjustment to {l, is also piecewise 
constant on each face of Tri(D). Then {l (t) = {l + tv is a 
piecewise constant function on D. For every T E Tri(D), 
denote the value of von T as VT, and the value of fz on T 
as fz ,T' The direction of BHF in (I) becomes 

j(w) = L j(w, T), (2) 
TETri(D) 

where 

j(w,T) := -�VTf;'T j('( R(f(z),f(w))dxdy. (3) 
7r JzET 

Note that R(f (z), f (w)) can be written as a sum of 3 sim­
ple fraction terms. Since f (w) is constant in the integral, we 
may pull the factors f ( w) and f ( w) -1 in the last two terms 
out of the integral. Therefore to compute j( w, t, T), it suf­
fices to compute integrals of the form ffzET f(z�-c dx dy 
and sum. Note that f (z) - c is a linear function in the in­
tegral. It turns out that all reciprocals of linear functions 
can be integrated exactly. This allows us to find the exact 
direction given by BHF. 

With exact integration, our algorithm always give the ex­
act derivative of f with respective to the adjustment v in 
{l. The only source of error comes from the discretization 
of f, which is unavoidable for computations on triangular 
meshes. In the next subsection, we discuss the optimal step 
size to take after the direction given by BHF is computed. 

4.2. Adjusting Diffeomorphisms using BHF with 
Adaptive Step Size 

Given a diffeomorphism f: C ---+ C with Beltrami co­
efficient {lo fixing 0, 1 and 00. Suppose we want to adjust 
its Beltrami coefficient to {l on D = [-1, 1]2 . After setting 
v = {l - {lo, {l(t) = {lo + tv and computing j(w) using 
the exact BHF algorithm, it may be tempting to update f by 
setting t = 1 to get the required diffeomorphism. However, 
although exact integration of (1) gives the exact flowing di­
rection of f with respect to the change in {l, the accuracy 
of this first order approximation depends on Ilvlloo' If tis 
too large, overlapping may occur and prevent the algorithm 
from converging. In this subsection, we propose a method 
which allows us to find the optimal step size t. 

After computing j(w) for every vertex in Tri(D) = 

(V, E, F), the new mapping h(w) = f(w) + tj(w) satisfies 
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the Beltrami equation with Beltrami coefficient a(t), which 
is piecewise constant on every T E F. When t is small, 
a(t) is approximately flo + tv. As t gets larger, the approx­
imation gets worse. We propose to adjust 1 with a value 
of t that will not cause overlapping in h and such that a( t) 
is the best approximation to the target Beltrami coefficient 
fl. On every triangle T = {Zl' Z2, Z3 } E F, we compute 
the smallest time tT > 0 such that Jacobian of h on T will 
be zero. As h(zd, h(Z2) and h(Z3 ) move linearly as t in­
creases, the Jacobian of h on T is quadratic in T. Therefore 
tT is a root of this quadratic equation. If the Jacobian is 
positive for all t > 0, we set tT to +00. The threashold 
value of t, tthreshold, is such at the Jacobian of h on at least 
one triangle reaches 0: 

tthreshold := min tT TEF 
(4) 

For the algorithm to work, t must be strictly less than 
tthreshold. We always choose t such that t < tthreshold/2 
and a(t) best approximates fl. Using Newton's method, we 
find the optimal t that minimizes the L2-norm of a(t) - fL: 

toptimal := arg min Ila(t) - fLI12 
(5) 

O<t<tthreshold /2 

One may also want to use other criteria for the closeness of 
approximation other than the L2-norm. In our experiments, 
the above choice of toptimal gives rapid convergence within 
25 iterations most of the time, and toptimal could be much 
larger than 1 towards the end of the algorithm. 

In the next 2 subsections, we make use of the exact BHF 
algorithm discussed thus far on the problems of inpainting 
and super-resizing diffeomorphisms. 

4.3. Beltrami Inpainting of Diffeomorophisms 

In this subsection, we propose an algorithm to inpaint a 
surface diffeomorphism on any region defined by a user. 
Such algorithm is extremely useful in various situations. 
For example, in medical imaging, part of a biological sur­
face (e.g. cortical surface) may not be registered properly 
with another biological surface and shows abnormal distor­
tions, or in video compression, where one stores the most 
important correspondence between 2 frames and fills in the 
occluded parts during playback. 

To inpaint a surface diffeomorphism, we parameterize 
it as a diffeomorphism on C fixing 0, 1 and 00, where 
1 restricted to D = [-1, 1 F corresponds to the surface 
diffeomorphism. We are interested to adjust the value 1 
takes on D. Suppose we want to inpaint a diffeomorphism 
10: C ---+ C on a region neD, and only the value of 10 on 
D\n is known, as if a partial registration is obtained from 
the non-occluded region. Our target is to smoothly recon­
struct the original 10, given that 1 = 10 on D\n. 

We propose to restore 1 by smoothly interpolating the 
Beltrami coefficient fL in the occluded region, while ensur­
ing 1 = 10 on D\n. Let flo be the Beltrami coefficient 

of 10 on D\n. Using existing algorithms on vectorial TV 
inpainting, we define our target Beltrami coefficient fL as 

fL := arg min j'1 ( I (VRe(fL))(X + Hy)12 
/k=/koonD\O Jo ) 1/2 +1(Vlm(fL))(x + Hy)12 dxdy. 

(6) 

After computing the target fL, we iteratively use the exact 
BHF with adaptive time step algorithm to find a diffeomor­
phism 1 minimizing the following energy functional: 

1 = arg m
. 

in J" r IfL(1) - fLI2 dx dy (7) 
f=fnonD\O J D\O 

The resulting map is the diffeomorphism that preserves the 
value of 10 on D\n and smoothly interpolates the Beltrami 
coefficient flo of 10 into n using its value on D\n. This 
may also be considered as the diffeomorphism which ex­
tends 10 into n in the least distorted way. 

In the process of iterating with BHF, it may be possible 
that the condition 1 = 10 on D\n is violated because a 
change in Beltrami coefficient may affect the entire map. 
We solve this problem by setting 1 back to 10 on D\n and 
smoothly interpolating the adjustment of 1 on on into n. 
We summarize the whole algorithm in Algorithm I. 

Algorithm 1 Inpaint a Diffeomorphism 10 into n from its 
Beltrami Coefficient Using BHF 
Require: A diffeomorphism 10: D ---+ D ee where its 

values on n ee is unknown or need to be inpainted, 
represented piecewise linearly on D; 
Compute the target Beltrami coefficient fL according to 
(6); 
Initialize 1 by setting 1 = 10 on D\n and extending it 
into a piecewise linear diffeomorphism on D; 
repeat 

Compute the Beltrami coefficient fL(1) of 1; 
Update 1 using exact BHF with adaptive step for v = 
fL - fL(1); 
Adjust 1 such that 1 = 10 on D\n; 

until 1 converges. 

To obtain a faster convergence, we may adjust 1 to sat­
isfy 1 = 10 on D\n once in a few iterations, or when 
1(on) begins to deviate from 10(on). The results of this 
algorithm and its applications are shown in Section 5. 

4.4. Super-Resolution of Diffeomorphisms 

In this subsection, we propose a novel algorithm by mod­
ifying the inpainting algorithm in Subsection 4.3 to deal 
with the super-resolution of surface diffeomorphisms. In 
computer graphics, it is standard to map textures onto an 
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object (in games or CAD programs) by specifying the po­
sition on the texture every vertex is mapped to. Then every 
face of the object mesh is colored by interpolating this ver­
tex correspondence. This greatly limits the quality of tex­
ture maps by the resolution of triangular meshes. Even with 
bilinear or trilinear filtering, it is still unnatural if an object 
is zoomed in too closely. To solve this problem, our algo­
rithm allows us to refine a diffeomorphism with high detail 
under the same limited vertex correspondence. 

To start with, we assume that the diffeomorphism or tex­
ture mapping is reparameterized as fa, a diffeomorphism on 
C fixing 0, 1 and 00, where we are interested to refine the 
value it takes on D = [-1,1]2 C C. Define SL to be the 
grid point set {.5L,ij = -1-/(-I)+ih+/(-I)jhli,j = 

0,1, ... ,L}, where hL = 2/ L. Suppose only the value of 
fa on a low resolution grid point set SL is available. We 
seek to refine this diffeomorphism by reconstructing fa with 
its Beltrami coefficient interpolated to a fine point set S H, 

where H is divisible by L. 
First we compute the Beltrami coefficient flo of fa on 

every grid element of SL. Then we construct the target Bel­
trami coefficient fL by refining flo using cubic interpolation. 
Using BHF, we construct a diffeomorphism f identical to 
fa on So and minimizes the L2-norm of flU) - fL: 

f = arg min j" (' IfLU) - fLI2 dx dy (8) 
j=joonSL } D\r:l 

This results in a diffeomorphism with smoothly varying dis­
tortions due to the refined Beltrami coefficient fl. 

In the process of iterating with BHF, it may be 
possible that the condition f = fa on SL is violated. 
Noting that each grid element of SL is mapped by f 
onto areas like quadrilaterals, we may fix this condi­
tion by mapping values of f inside each quadrilateral 
{f(.5L,ij, f(.5L,(i+l)j), f(.5L,(i+1)(j+l)), f(.5L,i(j+l))} 
back onto the quadrilateral 
{fa (.5 L,ij, fa (.5 L,(i+1)j), fa (.5 L,(i+l)(j+l)), fa (.5 L,i(j+l))} 
using a bilinear map preserving the diffeomorphic property 
of f. We summarize the while algorithm in Algorithm 2. 

To obtain a faster convergence, we may also adjust f 
to satisfy f = fa on SL only once in a few iterations, or 
when f(SL) begins to deviate mildly from fO(SL). In the 
next section, we show our results by applying algorithms in 
this section on the inpainting and super-resolution of texture 
mappings and diffeomorphisms, on both 2D and 3D exam­
ples and applications in brain imaging. 

5. Results and Discussion 

In this section, we present the results of our BHF inpaint­
ing and refinement algorithms on 2D and 3D examples and 
demonstrate their effectiveness of our proposed algorithms. 
In each application, the complete inpainting or refinement 

Algorithm 2 Refine a Diffeomorphism fa with Known 
Value on a Coarse Grid from its Beltrami Coefficient Us­
ing BHF 
Require: A diffeomorphism fa: D ---+ Dee where only 

its value on a coarse grid S L is known; A finer grid S H 

where its refined values are to be computed, where H is 
divisible by L; 
Compute the Beltrami coefficient flo of fa on SL; 
Smoothly interpolate flo into fL defined on grid elements 
of S H using the cubic method; 
Initialize f as the identity function; 
repeat 

Compute the Beltrami coefficient flU) of f; 
Update f using exact BHF with adaptive step for v = 

fL - flU); 
Adjust f such that f = fa on SL; 

until f converges. 

of diffeomorphisms took place on a laptop with Intel Core 
2 Duo 1.86GHz CPU and 2GB of RAM in less than 2 min­
utes using Matlab, with grid size not exceeding 129 by 129. 

5.1. BHF Inpainting of a Highly Distorted Diffeo­
morphism 

In this subsection, we apply the BHF inpainting algo­
rithm on a diffeomorphism f: [-1, IF ---+ [-1, 1]2, shown 
in Figure 2, with the inpainting region D C [-1, IF high­
lighted. From the plot of its Beltrami coefficient, f is highly 
distorted. The inpainting region lies on its most distorted 
area, making the inpainting problem challenging. 

Applying the BHF inpainting algorithm on D, we restore 
the lost region of f by constructing a diffeomorphism with 
a smoothly inpainted Beltrami coefficient. As shown in 
Figure 3(a), the texture in the inpainting region smoothly 
blends into the surrounding texture, giving a natural dif­
feomorphism with continuous varying distortion. On the 
other hand, the result of inpainting using linear interpolation 
of coordinate functions of f shows only continuation on 3 
sides of D due to the non-convexity of f-1 (D). The texture 
also shows a sudden jump near the boundary of D, giving a 
very unnatural mapping. Indeed, cubic interpolation shows 
an almost identical result. This shows that direct interpo­
lation of coordinate functions cannot guarantee diffeomor­
phism. To reconstruct a diffeomorphism correctly, a careful 
consideration has to be given to the higher order changes 
of the diffeomorphism, which is achieved by smoothly in­
painting the Beltrami coefficient using our algorithm. 

5.2. BHF Inpainting of Image Sequences of Deform­
ing Shapes 

In this subsection, we demonstrate how the BHF inpaint­
ing algorithm can be applied to process image sequences 
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(a) (b) 

(e) Cd) 
Figure 2. A highly distorted diffeomorphism f of [-1,1]2. (a) 

shows the domain of f textured with a regular grid pattern. (b) 

shows how the texture is mapped under f onto [-1, 1]2, with the 

inpainting region highlighted. (c) shows a plot of its Beltrami co­

efficient IL as arrows. (d) shows a plot of the modulus of IL, indi­

cating the high distortion of f. 

(a) (b) 
Figure 3. A comparison of the result of the BHF inpainting algo­

rithm (a) and the failed result using linear interpolation (b), with 

the inpainting region highlighted. 

of deforming shapes, which has many applications in areas 
such as video processing and shape analysis of medical im­
ages over time. In this example, we aim at restoring the 
correspondence of 2 frames in an image sequence of a gin­
gerbread man figure, where the second frame is distorted 
and occluded by unknown foreground object represented by 
a black region (see Figure 4). This is challenging for con­
ventional image inpainting algorithms due to the size of the 
occluded region and the additional distortions. 

First of all, we independently register the top and bottom 
non-occluded regions between the first and second frames. 
As illustrated in Figure 5, this can be done by marking a 

Ca) (b) 
Figure 4. An image sequence of a gingerbread man showing (a) the 

initial frame, and (b) the next frame with distortion and occlusion. 

, ..... � 

:5115: 

Ca) (b) 
Figure 5. The highlighting of feature points and the registration 

between the top and bottom parts of frame 1 and 2. 

number of correspondences between 2 frames in each re­
gion, and registering each region separately using existing 
algorithms [10]. After this, the Beltrami coefficient of the 
registration in the non-occluded regions can be computed. 
Using the BHF inpainting algorithm, we inpaint the Bel­
trami coefficient in the occluded region and construct the 
whole registration between the first and second frames, pre­
serving the already registered top and bottom parts. The fi­
nal dilfeomorphism is shown in Figure 6(a). As can be seen, 
the complete diffeomorpism follows the pattern and geom­
etry of the local registrations, and continues smoothly into 
the middle occluded region. Figure 6(b) shows the com­
plete gingerbread man with the occluded region filled from 
the first frame using the complete diffeomorphism. 

5.3. Super-Resolution of Diffeomorphisms Using 
the BHF Refinement Algorithm 

In this subsection, we apply the BHF refinement algo­
rithm on the super-resolution of diffeomorphisms. In our 
first test, a coarse version of the highly distorted diffeomor­
phism in Subsection 5.1 is used, which is represented with 
17 by 17 points. As shown in Figure 7(a), the use of such 
sparse data causes unnatural jaggy visualization, which is 
similar to a texture mapping onto a coarse triangular mesh. 

Using the BHF refinement algorithm, we refine the 
coarse mapping into a fine diffeomorphism of 129 by 129 
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(a) (b) 
Figure 6. The result of registering frames 1 and 2 using the BHF 

inpainting algorithm. (a) shows the final registration. (b) shows 

the complete gingerbread man with the occluded region filled. 

(a) (b) 
Figure 7. Application of the BHF refinement algorithm on a 2D 

diffeomorphism. (a) shows a coarse diffeomorphism represented 

with 17 by 17 points. (a) shows the refinement result to 129 by 

129 points using the BHF refinement algorithm. 

points by interpolating the original 16 by 16 Beltrami coeffi­
cient on each face to a 128 by 128 version, and reconstruct­
ing a 129 by 129 diffeomorphism, fixing its values on the 
coarse 17 by 17 grid. The result of the refinement is shown 
in Figure 7(b), which is very smooth and almost looks iden­
tical to the original high resolution diffeomorphism. This 
shows that our algorithm can smoothly refine a diffeomor­
phism even only a tiny fraction of data is available. 

Next we demonstrate the effectiveness of the algorithm 
in a real 3D texture mapping example. In this test, initially 
we have a face model represented by a 33 by 33 regular tri­
angular mesh and textured with a highly convoluted texture 
mapping. As we can see in Figure 8(a) and 8(b), the coarse 
triangulation resulted in a poor visualization of the texture. 
Using the BHF refinement algorithm for surfaces, we refine 
this coarse texture map into a fine 129 by 129 texture map 
using only the initial coarse data. The result shown in Fig­
ure 8( c) and 8( d) is very smooth, as if textured using a much 
higher resolution mapping. This illustrates the effectiveness 
of our algorithm to represent texture maps in much higher 
details than the triangular mesh used. 

(a) (b) 

(e) (d) 
Figure 8. Application of the BHF refinement algorithm on 3D tex­

ture mapping. (a) shows a normally visualized texture mapping 

on a coarse 33 by 33 mesh. (b) shows a zoom-in version to illus­

trate its low quality. (c) shows the refined texture mapping on the 

same mesh after BHF refinement. (d) shows a zoom-in version to 

illustrate its fine details. 

5.4. Application in Cortical Surface Parameteriza­
tion 

Finally, we apply the BHF inpainting algorithm to effi­
ciently compute a landmark-matching surface parameteri­
zation of the cortical surface. In brain imaging, it is often 
necessary to map feature landmark lines, such as the sulcal 
and gyral lines highlighted by doctors, onto consistent lo­
cations of a parameter domain, where further analysis takes 
place. On convoluted surfaces such as the cortical surface, 
this involves mapping a large number of landmark curves 
onto consistent locations, making the solution infeasible. 

We demonstrate the use of the BHF inpainting algo­
rithm to solve this problem efficiently. Instead of solving 
the problem with all feature curves at once, we first com­
pute consistent parameterizations of a few landmarks lines 
at a time. As shown in Figure 9, we divide a problem in­
volving 5 feature curves on a cortical surface into 2 sub­
problems involving 2 and 3 feature curves respectively, and 
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(a) (b) 
Figure 9. Breaking down a parameterization problem of the corti­

cal surface into 2 subproblems and solve all problems simultane­

ously. (a) shows the first subproblem involving 3 feature curves. 

(b) shows the second subproblem involving 2 feature curves. 

(a) (b) 
Figure 10. The final result for the large parameterization problem. 

(a) shows a global parameter domain containing 2 local parameter 

domains. (b) shows the global parameterization computed using 

the BHF inpainting algorithm. 

solve each subproblem with existing registration algorithms 
[10]. This breaks down the large problem into easier sub­
problems which can be solved simultaneously. 

After each subproblem is solved, we place the local pa­
rameterizations into a larger parameter domain. Then a 
global parameterization that extends the two local parame­
terizations is computed using the BHF inpainting algorithm, 
as shown in Figure 10. The resulting global parameteriza­
tion is a landmark-matching parameterization that smoothly 
extends the existing local parameterizations. 

6. Conclusion and Future Work 

In this paper, we derived an exact formula for the adjust­
ment of diffeomorphisms using BHF, under the practical as­
sumption that the diffeomorphism is piecewise linear on a 
triangular mesh. Using this algorithm, we further proposed 
2 algorithms for the inpainting and refinement of diffeo­
morphisms. We applied these algorithms on the inpainting 
of a highly distorted diffeomorphism, the inpainting of im­
age sequences of deforming shapes, the super-resolution of 
diffeomorphisms and the global parameterization of corti­
cal surfaces by combining local parameterizations. Results 
show that our algorithms always reproduce fine details from 

diffeomorphisms with very low resolution or missing parts, 
where some other methods failed. This demonstrates the 
great versatility of our proposed algorithms on areas from 
texture mapping to video processing, and from computer 
graphics to medical imaging. In the future, we plan to im­
prove the efficiency of algorithms by implementing them on 
GPUs and propose more application of them. 
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