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1 Introduction

1.1 Motivation

Analysis in finite fields is a useful subject because it interacts with other mathematical
fields. In addition, the finite field case serves as a typical model for the Euclidean case
and possesses structural advantages which enable us to relate our problems to other
well-studied problems in number theory, arithmetic combinatorics, or algebraic geom-
etry. For these reasons, problems in Euclidean harmonic analysis have been recently
reformulated and studied in the finite field setting. For example, see [3–5,9,15,18,23]
and references therein. In this paper we investigate L p − Lr estimates of averaging
operators over algebraic varieties given by a system of homogeneous polynomials in
finite fields. For Euclidean averaging problems, we refer readers to [10,16]. However,
we notice that the settings of finite fields allows us additional flexibility to formulate
and treat these problems over rather general algebraic varieties. In particular, there are
no Euclidean analogues of our results.

1.2 Main Definitions and Setup

We begin with notation and definitions for averaging problems in finite fields. Let F
d
q

be a d-dimensional vector space over a finite field Fq with q elements. Throughout
this paper, we assume that the characteristic of Fq is sufficiently large. We denote by
dm the counting measure on the space F

d
q . The pair (Fd

q , dm) is named as a function

space. We now consider a frequency space, denoted by the pair (Fd
q∗ , dx), where

F
d
q∗ and dx denote the dual space of F

d
q and the normalized counting measure on

F
d
q∗ , respectively. Since F

d
q is isomorphic to F

d
q∗ as an abstract group, we identify F

d
q

with F
d
q∗. For instance, we write (Fd

q , dx) for (Fd
q∗ , dx). This convention helps us to

avoid complicated notation appearing in doing some computations. We shorten both
(Fd

q , dm) and (Fd
q , dx) as just F

d
q if there is no risk of confusion between the function

space (Fd
q , dm) and the frequency space (Fd

q , dx). Let V be an algebraic variety in the
frequency space (Fd

q , dx). We endow V with a normalized surface measure, denoted
by dσ , which can be defined by the relation∫

f (x) dσ(x) = 1

|V |
∑
x∈V

f (x),

where f : (Fd
q , dx) → C and |V | denotes the cardinality of V . Notice that we can

replace dσ(x) by qd |V |−1V (x)dx , where V (x) indicates the characteristic function
on V . Then the convolution function of f and dσ is defined on (Fd

q , dx):

f ∗ dσ(y) =
∫

Fd
q

f (y − x) dσ(x) = 1

|V |
∑
x∈V

f (y − x).

In the finite field setting, the averaging problem is to determine 1 ≤ p, r ≤ ∞ such
that
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‖ f ∗ dσ‖Lr (Fd
q ,dx) ≤ C‖ f ‖L p(Fd

q ,dx) for all f : F
d
q → C, (1.1)

where C > 0 is independent of the function f and the size of the underlying finite
field.

Definition 1.1 We use P(p, r) to indicate that inequality (1.1) holds.

As an analogue of averaging problems in Euclidean space, this problem has first
been addressed by Carbery et al. [3]. They mainly investigated the L p − Lr esti-
mates of the averaging operator over a k-dimensional variety given by a vector-
valued polynomial Pk : F

k
q → F

d
q . In particular, Carbery et al. [3] consider a variety

Vk ⊆ F
d
q , 1 ≤ k ≤ d − 1, which is given by the range of Pk : F

k
q → F

d
q defined by

Pk(t) =
(

t1, t2, . . . , tk, t2
1 + t2

2 + · · · + t2
k , . . . , td−k+1

1 + · · · + td−k+1
k

)

for

t = (t1, t2, . . . , tk) ∈ F
k
q .

Observe that the generalized parabolic variety Vk can be written by

Vk = {x ∈ F
d
q : g1(x) = g2(x) = · · · = gd−k(x) = 0

}
, (1.2)

where g j (x) = x j+1
1 + x j+1

2 + · · · + x j+1
k − xk+ j for j = 1, 2, . . . , d − k.

Namely, the variety Vk is exactly the collection of the common solutions of the d − k
equations: g j (x) = 0 for j = 1, 2, . . . , d − k. It is clear that |Vk | = qk for all
k = 1, 2, . . . , d − 1, because xk+1, . . . , xd ∈ Fq are uniquely determined whenever
we choose x1, x2, . . . , xk ∈ Fq . Applying the Weil Theorem [22], the aforementioned
authors [3] have obtained the sharp Fourier decay estimates on the variety Vk and,
as a consequence, they give the complete solution of the averaging problem over
the variety Vk . Before we present the result of [3], we need to introduce one more
notation:

Definition 1.2 For points P1, . . . , Ps ∈ R
2 of the Euclidean plane, we use

〈P1, . . . , Ps〉 to denote their convex hull.

We use Definitions 1.1 and 1.2 to formulate our main results, in which P(p, r) is
related to belonging the point (1/p, 1/r) to certain convex polygon. We also denote

P0,0 = (0, 0), P0,1 = (0, 1), P1,1 = (1, 1).

For example, it is shown in [3] that for the variety Vk we have

P(p, r) ⇐⇒
(

1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d

2d − k
,

d − k

2d − k

)〉
. (1.3)
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1.3 Goals of This Work

Here we show that bounds of character sums along algebraic varieties can be used to
study more complicated varieties than Vk . In particular, instead of the variety Vk we
study the homogeneous variety Hk defined as

Hk = {x ∈ F
d
q : h1(x) = h2(x) = · · · = hd−k(x) = 0

}
, (1.4)

where

h j (x) = x j+1
1 + x j+1

2 + · · · + x j+1
k − x j+1

k+ j , j = 1, 2, . . . , d − k,

for which the averaging problem becomes much harder.
We note that the variety Hk is more complicated than Vk as it does not contain

any linear variables. On the other hand Hk is a homogeneous variety, which allows us
to use bounds of characters sums over such varieties that are not known for arbitrary
varieties; see [2,19]. It is quite possible that several other varieties can be treated by our
method. For example, one can introduce some coefficients in the polynomials h j (x), of
consider a variety defined only some of the polynomials h j (x), j = 1, 2, . . . , d − k.
We avoid such generalization as they complicated the exposition without bringing
anything substantially new to our arguments. However many of our auxiliary results
are given in more general forms that needed for this work and so are fully ready for
such extensions.

There are two main reasons why it is difficult to find sharp L p − Lr averaging
estimates over Hk :

• First, it is not immediately clear how to find the size of Hk .
• Second, the computation of the Fourier decay estimate on Hk is not easy, in part

because it cannot be obtained by simply applying the Weil theorem [22]. Moreover,
it may be possible that the Fourier decay on Hk is slower than that on Vk , because
the homogeneous variety Hk contains lots of lines which could be key factors to
make Hk flat.

These reasons suggest that the L p − Lr averaging estimates over Vk maybe be much
better than those over Hk . In some cases, it is true but is not always true in the finite
field setting. Indeed, we show here that if k = 2, then Vk and Hk yield the same
L p − Lr averaging estimates. In addition, we conjecture that this also happens for
even k ≥ 4.

To address the above issues, first we establish the absolute irreducibility of Hk . Then
we estimate the Fourier decay via bounds of character sums over the homogeneous
varieties. Although such bounds are readily available from [2,19], the main difficulty
here is to compute the dimension and establish the necessary smoothness condition of
Hk to make sure these bounds apply. These fundamental algebraic-geometric proper-
ties of the variety Hk are established in Propositions 1.9, 1.10 and 1.11.

Besides standard algebraic-geometric methods, we also use several other rather
unusual for this area tools such as bound multiplicative character sums with polyno-
mials and a polynomial analogue of the Zsigmondy Theorem of Flatters and Ward [6].
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We believe that these results, as well as the methods used in their proofs, are of inde-
pendent interest and may have several more applications.

As we have mentioned there are no Euclidean analogues of our results. Formulating
and solving such averaging problems for Euclidean analogues of the varieties Vk , Hk

and others, is a very interesting direction of research.

1.4 Conjecture on the Averaging Problem Over Hk

The L p − Lr averaging estimates over Hk depend on the maximal dimension of
subspaces lying in the variety Hk . Let us denote by dσk the normalized surface measure
on Hk . For a moment, let us assume that |Hk | = (1+o(1))qk for k = 2, 3, . . . , d −1,
which in fact follows from Proposition 1.10 and Lemma 3.5 below.

We recall that for any real U and V , U � V or V � U means that there exists
C > 0 independent of q such that |U | ≤ CV , and U � V is used to indicate that
U � V and V � U . Throughout the paper, the implied constants may depend on
degrees and the number of variables of the polynomials defining algebraic varieties
under consideration, in particular on the integer parameters d, k, s.

Suppose that the following averaging estimate over Hk holds true for 1 ≤ p, r ≤
∞:

‖ f ∗ dσk‖Lr (Fd
q ,dx) � ‖ f ‖L p(Fd

q ,dx) for all f : F
d
q → C.

Testing this inequality with f = δ0 shows that we must have

d

p
≤ k + d − k

r
.

By duality, we conclude that

P(p, r) �⇒
(

1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d

2d − k
,

d − k

2d − k

)〉
, (1.5)

where δ0(x) = 1 if x = (0, . . . , 0) and δ0(x) = 0 otherwise. In fact, this nec-
essary condition for P(p, r) has been observed by the authors in [3]. In addition,
they remarked that if Hk contains an α-dimensional affine subspace �k , then tak-
ing f as the characteristic function on �k yields a further necessary condition
that

1

r
≥ 1

p
− k − α

d − α
.

Notice that this inequality enables us to improve the necessary condition (1.5) only if
α > k/2. More precisely, if α ≤ k/2, then the necessary condition for P(p, r) can be
taken as (1.5). On the other hand, if α > k/2, then the necessary condition (1.5) can
be improved as
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P(p, r) �⇒
(

1

p
,

1

r

)
∈ 〈P0,0, P0,1, P1,1, Qd,k,α, Rd,k,α

〉
, (1.6)

where

Qd,k,α =
(

k2 + αd − 2αk

k(d − α)
,
α(d − k)

k(d − α)

)
,

Rd,k,α =
(

d(k − α)

k(d − α)
,
(d − k)(k − α)

k(d − α)

)
.

Hence, to find a more precise necessary condition for P(p, r), we need to observe
the maximal dimension α of the affine subspaces�k lying in the homogeneous variety
Hk . We have the following result.

Lemma 1.3 Let Hk ⊆ F
d
q be defined as in (1.4). Suppose that k = 2 or max{d −

3, 3} ≤ k ≤ d − 1. In addition, assume that �k ⊆ Hk is an α-dimensional affine
subspace and the characteristic of Fq is sufficiently large.

• If k is even, then α ≤ k/2.
• If k is odd, then α ≤ (k + 1)/2.

Proof First, we prove that α ≤ k/2 for even k. By contradiction, let us assume
that k is even and α > k/2. Since k is even and α is an integer, this implies that
α ≥ (k +2)/2. Without loss of generality, we may assume that |�k | = qα = q(k+2)/2.
Taking α = (k + 2)/2, it follows from (1.6) that

P(p, r) �⇒
(

1

p
,

1

r

)
∈ 〈P0,0, P0,1, P1,1, Qd,k,α, Rd,k,α

〉
,

where

Qd,k,α =
(
(k + 2)d − 4k

k(2d − k − 2)
,
(k + 2)(d − k)

k(2d − k − 2)

)
,

Rd,k,α =
(

d(k − 2)

k(2d − k − 2)
,
(d − k)(k − 2)

k(2d − k − 2)

)
.

However, this contradicts Theorem 1.5 for k = 2 and Theorem 1.7 for even k ≥ 4 (see
Sect. 1.5 below). To see this, notice that if k = 2, then P((2d−2)/d, (2d−2)/(d−2))
holds by Theorem 1.5 but

(
d

2d − 2
,

d − 2

2d − 2

)
/∈ 〈P0,0, P0,1, P1,1, Qd,k,α, Rd,k,α

〉
.

Also observe that if k ≥ 4, then P((2d − k − 1)/(d − 1), (2d − k − 1)/(d − k))
follows by Theorem 1.7 but

(
d − 1

2d − k − 1
,

d − k

2d − k − 1

)
/∈ 〈P0,0, P0,1, P1,1, Qd,k,α, Rd,k,α

〉
.
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Fig. 1 When k ≥ 2 is even, A ∪ B ∪ C ∪ D is region of (1/p, 1/r) of Conjecture 1.4. Theorem 1.5 covers
the conjectured region for k = 2. Furthermore, A ∪ B ∪C indicates the conjectured region in the case when
k ≥ 3 is odd and Hk contains a (k + 1)/2-dimensional affine subspace. The region A corresponds to the
result of Theorem 1.7

By the similar argument, it is not hard to derive that if k is odd, then α ≤ (k + 1)/2.
��

Combining Lemma 1.3 with (1.5) and (1.6), we are lead to the following conjecture
(see Fig. 1).

Conjecture 1.4 Let Hk ⊆ F
d
q be the homogeneous variety defined as in (1.4). Assume

that k = 2 or max{d − 3, 3} ≤ k ≤ d − 1 (we also assume that the characteristic of
Fq is sufficiently large).

• If k is even, we have

P(p, r) ⇐⇒
(

1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d

2d − k
,

d − k

2d − k

)〉
.

• If k is odd and Hk contains a (k + 1)/2-dimensional affine subspace, then

P(p, r) ⇐⇒
(

1

p
,

1

r

)
∈ 〈P0,0, P0,1, P1,1, Sd,k, Td,k

〉
,

where

Sd,k =
(

dk − 2k + d

k(2d − k − 1)
,
(k + 1)(d − k)

k(2d − k − 1)

)
,

Td,k =
(

d(k − 1)

k(2d − k − 1)
,
(d − k)(k − 1)

k(2d − k − 1)

)
.
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When d ≥ 3 is odd and k = d − 1, it is observed in [14] that Conjecture 1.4 holds
true. In the case when d ≥ 4 is even and k = d − 1, Conjecture 1.4 has recently been
established in [13]. Namely, the averaging problem over Hd−1 has been completely
solved where Hd−1 = {x ∈ F

d
q : x2

1 + x2
2 + · · · + x2

d−1 − x2
d = 0} and −1 ∈ Fq is a

square. However, there are no known results on Conjecture 1.4 for d − k ≥ 2.

1.5 Statement of Main Results

Our first result below says that Conjecture 1.4 is true for any integer d ≥ 3 and k = 2
(see Fig. 1).

For each k = 2, 3, . . . , d − 1, let dσk be the normalized surface measure on the
homogeneous variety Hk ⊆ F

d
q given in (1.4).

Theorem 1.5 If d ≥ 3 is an integer and k = 2, then, assuming that the characteristic
of Fq is sufficiently large,

P(p, r) ⇐⇒
(

1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d

2d − 2
,

d − 2

2d − 2

)〉
.

Remark 1.6 As mentioned before, this statement has only been known in [14] for
d = 3 and k = 2. Notice from Theorem 1.5 that the optimal averaging result for the
homogeneous variety H2 is exactly the same as that in (1.3) for the general parabolic
variety V2 defined in (1.2).

Let A
d be the affine d-space F

d
q , where Fq denotes the algebraic closure of the finite

filed Fq with q elements.
For each k = 2, 3, . . . , d − 1, let us consider the algebraic variety

Hk =
{

x ∈ A
d : h1(x) = h2(x) = · · · = hd−k(x) = 0

}
,

where h j , j = 1, . . . , d − k, are the homogeneous polynomials defined as in (1.4).
One interesting point is that the smoothness of Hk depends on the dimension d of A

d .
Indeed, we see from Proposition 1.11 below that the variety Hk is smooth away from
the origin if and only if d − k = 1, 2, 3. In the case when Hk for k ≥ 3 is smooth
away from the origin, we are able to obtain certain L p − Lr averaging estimates on
Hk (see Fig. 1).

Next, we state our averaging results over Hk for k ≥ 3.

Theorem 1.7 If max{d − 3, 3} ≤ k ≤ d − 1, then, assuming that the characteristic
of Fq is sufficiently large,

(
1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d − 1

2d − k − 1
,

d − k

2d − k − 1

)〉
�⇒ P(p, r).

Remark 1.8 The result of Theorem 1.7 is far from the conjectured averaging result,
but if Hk would contain a (k + 1)/2-dimensional affine subspace, it gives a sharp
L p − Lr estimate for p = (2d − k − 1)/(d − 1).
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Our work has been mainly motivated by the character sum estimates on abstractly
given homogeneous varieties due to authors in [19]. To prove our main results, we
first derive a useful result about averaging on general homogeneous varieties with
abstract algebraic structures. Then our main results follow by applying it to our variety
Hk . To do this, we make the following three key observations on Hk ⊆ F

d
q for

k = 2, 3, . . . , d − 1.

Proposition 1.9 Suppose that the characteristic of Fq is sufficiently large. Then, for
every k = 2, . . . , d − 1, the algebraic variety Hk ⊆ A

d is not contained in any
hyperplane in A

d .

Proposition 1.10 Suppose that the characteristic of Fq is sufficiently large. Then for
every k = 2, . . . , d − 1, the algebraic variety Hk ⊆ A

d is absolutely irreducible and
dim Hk = k.

That is, Propositions 1.9 and 1.10 assert that Hk is a complete intersection.

Proposition 1.11 Suppose that the characteristic of Fq is sufficiently large. Then for
every k = 2, . . . , d − 1, the algebraic variety Hk ⊆ A

d is smooth away from the
origin if and only if d − k = 1, 2, 3.

Furthermore, we note that the smoothness condition on H2 ⊆ F
d
q is not necessary

in completing the proof of Theorem 1.5. Therefore, the conclusion of Theorem 1.5
holds true for any d and k = 2, and Conjecture 1.4 for k = 2 is established. On the
contrary, we use the smooth condition on Hk ⊆ F

d
q for k ≥ 3 in proving Theorem 1.7.

Thus, by Proposition 1.11, the conditions that d − k = 1, 2, 3 and k ≥ 3 are imposed
to the statement of Theorem 1.7.

1.6 Overview of this Paper

In the remaining parts of this paper, we concentrate on proving Theorems 1.5 and 1.7
which are our main results. Instead of proving directly main theorems, we derive them
by means of working on more general homogeneous varieties with specific geometric
structures.

To this end, in Sect. 2 we collect facts about the multiplicative character sums
and the existence of a primitive prime divisor of a family of shifted monomials. In
particular, we make use of a polynomial analogue of the Zsigmondy theorem which
is due to Flatters and Ward [6].

Section 3 is devoted to setting up notation and basic concepts essential in defining
abstract varieties in algebraic geometry.

In Sect. 4, we derive a result for averaging problems over general homogeneous
varieties, where we adapt the standard analysis technique in [3] together with the
results on character sums in [19]; see Lemma 4.2 below. In fact, this result generalizes
our main results related to Hk .

In Sect. 5, we show that Lemma 4.2 applies to the variety Hk and complete the
proofs of our main results, that is, Theorems 1.5 and 1.7.

We note that our main tool are bounds of character sums along algebraic varieties,
which we interpret as results about the decay of Fourier coefficients.
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2 Multiplicative Character Sums and Roots of Some Polynomials

2.1 Root of Shifted Monomials

We need the following simple observation, which immediately follows from the Taylor
formula (which applies if the characteristic is large enough).

Lemma 2.1 For any fixed integer s ≥ 1, if the characteristic of Fq is sufficiently large
then for any a ∈ F

∗
q , the polynomial ts + a ∈ Fq [t] has no multiple roots.

Lemma 2.2 For any fixed integer s ≥ 1, if the characteristic of Fq is sufficiently large
then the polynomial ts + 1 ∈ Fq [t] has at least one root which is not a root of the
polynomials t j + 1 ∈ Fq [t], j = 1, . . . , s − 1.

Proof By a result of Flatters and Ward [6, Theorem 2.6], if the characteristic of Fq is
large enough then t2s −1 has an irreducible factor q(t) ∈ Fq [t] that does not divide any
of the polynomials t j − 1 ∈ Fq [t], j = 1, . . . , 2s − 1. In particular, q(t) is relatively
prime with t s − 1 and thus is a divisor of

t s + 1 = t2s − 1

t s − 1
.

Furthermore, q(t) is relatively prime to

t j + 1 = t2 j − 1

t j − 1
, j = 1, . . . , s − 1,

which concludes the proof. ��

2.2 Multiplicative Character Sums with Polynomials

We also need the following result due to Wan [21, Corollary 2.3] that follows almost
instantly from the Weil bound in the form given in [11, Theorem 11.23].

Lemma 2.3 Let g1(t), . . . , gs(t) be s monic pairwise prime polynomials in Fq [t].
Denote by χ1, . . . , χs nontrivial multiplicative characters of Fq with order d1, . . . , ds,
respectively. If for some i = 1, 2, . . . , s, the polynomial gi (t) is not of the form q(t)di

with q(t) ∈ Fq [t], then we have∣∣∣∣∣∣
∑
t∈Fq

χ1(g1(t)) · · ·χs(gs(t))

∣∣∣∣∣∣ � q
1
2 .

Lemma 2.4 For any fixed integer s ≥ 1, if the characteristic of Fq is sufficiently large,
then for any multiplicative characters χ j , j = 1, 2, . . . , s, among which at least one
is nontrivial, we have ∣∣∣∣∣∣

∑
t∈Fq

s∏
j=1

χ j (t
j+1 + 1)

∣∣∣∣∣∣ � q
1
2 .
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Proof After ignoring all trivial characters, it suffices to prove that for some positive
integer m ≤ s, we have

∣∣∣∣∣∣
∑
t∈Fq

χ̃1(t
s1+1 + 1) · · · χ̃m(t

sm+1 + 1)

∣∣∣∣∣∣ � q
1
2 , (2.1)

where 1 ≤ s1 < s2 < · · · < sm ≤ s and χ̃1, . . . , χ̃m denote nontrivial multiplicative
characters of Fq . Factoring the polynomials t si +1 + 1, i = 1, . . . ,m, into irreducible
factors over Fq and using the multiplicativity, we see from Lemma 2.1 that

∑
t∈Fq

χ̃1(t
s1+1 + 1) · · · χ̃m(t

sm+1 + 1) =
∑
t∈Fq

η1 (q1(t)) · · · ηu(qu(t))

for some multiplicative characters ηi and monic pairwise prime polynomials qi , i =
1, 2, . . . , u.

Furthermore, by Lemma 2.2 we have ηi0 = χ̃i0 for at least one i0 ∈ {1, . . . , u}, and
thus ηi0 is a nontrivial character. Now using Lemma 2.3 we complete the proof. ��

3 Algebraic Properties of General Homogeneous Varieties

3.1 Preliminaries

In this section, we review known facts on general varieties generated by a system of
s−homogeneous polynomials in Fq [x1, x2, . . . , xd ]. We begin by setting up notation.

Let 2 ≤ s ≤ d−1 be an integer. Assume we are given s−homogeneous polynomials
in d variables over Fq of degree at least two each, which we write as

f j (x) ∈ Fq [x1, x2, . . . , xd ], deg f j ≥ 2, j = 1, . . . , s,

where x = (x1, x2, . . . , xd). Now, define the closed algebraic set

HA = {x ∈ A
d : f1(x) = f2(x) = · · · = fs(x) = 0

}
. (3.1)

Let HA be the collection of points in HA with coordinates in Fq :

HA = {x ∈ F
d
q : f1(x) = f2(x) = · · · = fs(x) = 0

}
. (3.2)

We also use the standard notation P
d−1 for the (d − 1)-dimensional projective space

over Fq , which can be considered as the collection of all one-dimensional subspaces
of the vector space A

d . For P = [a1 : a2 : · · · : ad ] ∈ P
d−1 and a polynomial

f ∈ Fq [x1, . . . , xd ], recall that f (P) = 0 means that f (λa1, . . . , λad) = 0 for all
λ �= 0. Like the algebraic subset HA of the affine space A

d , we define the projective
algebraic set
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HP = {P ∈ P
d−1 : f1(P) = f2(P) = · · · = fs(P) = 0}.

Let us recall an affine cone over a projective subset in P
d−1. Denote by π :

A
d\{(0, . . . , 0)} → P

d−1 the projection map defined by

π(x1, . . . , xd) = [x1 : · · · : xd ].

Then the affine cone over Y ⊆ P
d−1 is defined by

C(Y ) = π−1(Y ) ∪ {(0, . . . , 0)} ⊆ A
d .

Notice that HA is the affine cone over the projective variety HP.

Definition 3.1 We say that a homogeneous variety HA ⊆ F
d
q defined as in (3.2) is a

complete intersection if the following two conditions hold:

• HA ⊆ A
d is an affine cone over a projective variety HP which is not contained in

a hyperplane,
• HA is an absolutely irreducible variety of dimension d−s (or dim HP = d−1−s).

Definition 3.2 We say that a homogeneous variety HA ⊆ F
d
q defined as in (3.2) is

smooth if HA is smooth away from the origin.

3.2 Character Sums and Fourier Coefficients

It has been observed in [19] that if HA is a smooth homogeneous variety, which is
a complete intersection, then HA ∩ �(m) can have at most isolated singularities in
P

d−1 where

�(m) = {x ∈ A
d : m · x = 0

}

for m �= (0, . . . , 0), where m · x denotes the inner products of the vectors m and x .
In turn, based on this observation, the following bound of character sum over HA

in given in [19, Theorem 1].

Lemma 3.3 Let HA ⊆ F
d
q be defined as in (3.2). Suppose that HA is a smooth

homogeneous variety, which is a complete intersection, and the characteristic of Fq

is sufficiently large. Then we have for all m ∈ F
d
q\{(0, . . . , 0)}

∣∣∣∣∣∣
∑

x∈HA

ψ(m · x)

∣∣∣∣∣∣ �
{

q(d−s+1)/2 if d − s ≥ 3,
q if d − s = 2,

where ψ denotes a nontrivial additive character of Fq .

Here, we point out that the proof of Lemma 3.3 for d−s = 2 is given in [19] without
using the smoothness assumption on HA. Therefore, the smoothness condition on HA

can be relaxed for d − s = 2. Indeed, the following bound follows immediately from
a result of Cochrane [2, Theorem 4.3.5].
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Lemma 3.4 If HA ⊆ F
d
q is a homogeneous variety which is a complete intersection

given by (3.2) of dimension dim HA = d − s, where HA is given by (3.1), then

∣∣∣∣∣∣
∑

x∈HA

ψ(m · x)

∣∣∣∣∣∣ � qd−s−1

for all m ∈ F
d
q\{(0, . . . , 0)}.

The following estimate on the cardinality of HA due to Chatzidakis, van den
Dries and Macintyre [1, Proposition 3.3] gives an extension of the result of Lang
and Weil [17].

Lemma 3.5 Suppose that V ⊆ A
d is an algebraic variety with ν absolutely irre-

ducible components and of dimension e defined by polynomials over Fq and let
V = {x ∈ V ∩ F

d
q}. Then

|V | − νqe � qe−1/2.

It is clear from Lemma 3.5 that |HA| = (1 + o(1))qd−s if HA is a homogeneous
variety, given by (3.2) which is a complete intersection in F

d
q .

Now, we endow a homogeneous variety HA with the normalized surface measure
dσH . Recall that if f : (Fd

q , dx) → C, then

∫
f (x) dσH (x) = 1

|HA|
∑

x∈HA

f (x).

The following decay estimates of the Fourier coefficients

(dσH )
∨(m) = 1

|HA|
∑

x∈HA

ψ(m · x), m ∈ F
d
q ,

on HA follow immediately from Lemmas 3.4 and 3.3.

Lemma 3.6 Let dσH be the normalized surface measure on the homogeneous variety
HA ⊆ F

d
q given by (3.2), which is a complete intersection. If the characteristic of Fq

is sufficiently large, then:

(i) If d − s = 2, then we have

|(dσH )
∨(m)| � q−1

for all m ∈ F
d
q\{(0, . . . , 0)}.

(ii) If HA is smooth and d − s ≥ 3, then

|(dσH )
∨(m)| � q−(d−s−1)/2

for all m ∈ F
d
q\{(0, . . . , 0)}.
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4 Fourier Coefficients and L p − Lr Averaging Estimates over HA

4.1 Estimates for Varieties with Given Rate of Decay of Fourier Coefficients

First we need the following general result which can be obtained by adapting the
arguments in [3]. For the sake of completeness, we provide the proof in full detail.

Lemma 4.1 Let dσH be the normalized surface measure on an affine homogeneous
variety HA ⊆ F

d
q given by (3.2), which is a complete intersection. If (dσ)∨(m) �

q−ϑ/2 for all m ∈ F
d
q\{(0, . . . , 0)} and for some fixed ϑ > 0, then P(p, r) holds with

p = 2s + ϑ

s + ϑ
and r = 2s + ϑ

s
.

Proof We must show that

‖ f ∗ dσH ‖Lr (Fd
q ,dx) � ‖ f ‖L p(Fd

q ,dx)

for all function f : (Fd
q , dx) → C with the above values of p and r .

Define a function K on (Fd
q , dm) by K = (dσH )

∨ − δ0. Observe that dσH (x) =
K̂ (x)+ δ̂0(x) = K̂ (x)+ 1 for x ∈ (Fd

q , dx), where for a function F on (Fd
q , dm) we

define

F̂(x) =
∑

m∈Fd
q

F(m)ψ(−m · x).

and, as before, m · x denotes the inner products of m and x . Since ϑ > 0 and dx is the
normalized counting measure on F

d
q , it follows from Young’s inequality (see [8,12])

that

‖ f ∗ 1‖Lr (Fd
q ,dx) � ‖ f ‖L p(Fd

q ,dx).

Thus, it suffices to prove that

‖ f ∗ K̂‖Lr (Fd
q ,dx) � ‖ f ‖L p(Fd

q ,dx) (4.1)

for all functions f : (Fd
q , dx) → C.

Notice that (4.1) can be obtained by interpolating

‖ f ∗ K̂‖L2(Fd
q ,dx) � q−ϑ/2‖ f ‖L2(Fd

q ,dx) (4.2)

and
‖ f ∗ K̂‖L∞(Fd

q ,dx) � qs‖ f ‖L1(Fd
q ,dx). (4.3)

It remains to prove (4.2) and (4.3). By the definition of K and the assumption that
(dσH )

∨(m) � q−ϑ/2 for m �= (0, . . . , 0), we see that
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max
m∈Fd

q

|K (m)| � q−ϑ/2.

Therefore, (4.2) follows by applying the Plancherel theorem (see [8,12]):

‖ f ∗ K̂‖L2(Fd
q ,dx) = ‖ f ∨K‖L2(Fd

q ,dm)

� q−ϑ/2‖ f ∨‖L2(Fd
q ,dm) = q−ϑ/2‖ f ‖L2(Fd

q ,dx).

To prove (4.3), notice that |HA| = (1 + o(1))qd−s , because HA is a complete inter-
section. From Young’s inequality and the observation that ‖K̂‖L∞(Fd

q ,dx) � qs , we
obtain (4.3):

‖ f ∗ K̂‖L∞(Fd
q ,dx) ≤ ‖K̂‖L∞(Fd

q ,dx)‖ f ‖L1(Fd
q ,dx) � qs‖ f ‖L1(Fd

q ,dx).

Thus, the proof of Lemma 4.1 is complete. ��

4.2 Main Estimates

As a direct application of the Fourier decay estimates in Lemma 3.6, we can now derive
averaging results related to general homogeneous variety HA, which is a complete
intersection. Applying Lemma 4.1 with Lemma 3.6 yields the result below.

Lemma 4.2 Let dσH be the normalized surface measure on a homogeneous variety
HA ⊆ F

d
q , given by (3.2), which is a complete intersection. If the characteristic of Fq

is sufficiently large, then:

(i) If d − s = 2, then

P(p, r) ⇐⇒
(

1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d

2d − 2
,

d − 2

2d − 2

)〉
.

(ii) If HA is a smooth and d − s ≥ 3, then

(
1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d − 1

d + s − 1
,

s

d + s − 1

)〉
�⇒ P(p, r).

Proof To prove (i), let us assume that d − s = 2. Then |HA| = (1 + o(1))qd−s = q2,
because HA is a complete intersection. Now, suppose that P(p, r). In particular, we
see that

q−(d+2r−2)/r � ‖δ0 ∗ dσH ‖Lr (Fd
q ,dx) � ‖δ0‖L p(Fd

q ,dx) = q−d/p.

It therefore follows that

−d − 2r + 2

r
≤ −d

p
.
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By duality, we also have

−d − 2p∗ + 2

p∗ ≤ −d

r∗ ,

where

p∗ = p

p − 1
and r∗ = r

r − 1

denote the Hölder conjugates of p and r , respectively. In conclusion,

(
1

p
,

1

r

)
∈
〈

P0,0, P0,1, P1,1,

(
d

2d − 2
,

d − 2

2d − 2

)〉
. (4.4)

Conversely, we now assume that the inclusion (4.4) holds. If 1 ≤ r ≤ p ≤ ∞,
then it is clear that P(p, r), because both dσH and (Fd

q , dx) have total mass 1. By the
interpolation theorem, it therefore suffices to prove that

P

(
2d − 2

d
,

2d − 2

d − 2

)

holds. Since d − s = 2, applying Lemma 4.1 with Lemma 3.6 (i) yields the above
property, and the proof of Lemma 4.2 (i) is complete.

In order to prove (ii), it is enough to show that

P

(
d + s − 1

d − 1
,

d + s − 1

s

)

holds. However, this follows immediately by using Lemma 4.1 together with
Lemma 3.6 (ii). ��
Remark 4.3 Even if Lemma 4.2 provides us of powerful averaging results on general
homogeneous varieties, applying it in practice may not be simple, because it contains
certain abstract hypotheses.

5 Proofs of Main Results

5.1 Preliminaries

In this section, we complete the proofs of Theorems 1.5 and 1.7 which are considered
as main theorems in this paper. We complete the proofs by showing that Lemma 4.2
is a general version of both Theorems 1.5 and 1.7. To do this, we begin by recalling
from (1.4) that for each k = 2, 3, . . . , d − 1, our homogeneous variety Hk is exactly
the common solutions in F

d
q of a system of the (d − k) equations
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h1(x) = x2
1 + x2

2 + · · · + x2
k − x2

k+1 = 0,
...

h j (x) = x j+1
1 + x j+1

2 + · · · + x j+1
k − x j+1

k+ j = 0,
...

hd−k(x) = xd−k+1
1 + xd−k+1

2 + · · · + xd−k+1
k − xd−k+1

d = 0,

,

(5.1)

where j = 1, 2, . . . , (d − k). Let s = d − k which is the number of homogeneous
equations h j defining Hk . Then it is clear that Hk is an affine cone over its corre-
sponding projective variety determined by s-homogeneous polynomials h j . Thus, if
we are able to show that the conclusions of Propositions 1.9 and 1.10 hold for k = 2
then Theorem 1.5 follows from Lemma 4.2 (i). Furthermore, if all Propositions 1.9–
1.11 hold true for k ≥ 3, then Theorem 1.7 follows from Lemma 4.2 (ii) where the
smoothness condition on Hk is essential. In summary, to prove both Theorems 1.5 and
1.7, it suffices to justify Propositions 1.9–1.11. In the following subsections, we give
the complete proofs of Propositions 1.9–1.11.

5.2 Proof of Proposition 1.9

Since any hyperplane in A
d is a subspace with dimension d − 1, it suffices to prove

that there exists d linearly independent points {P1, P2, . . . , Pd} ⊆ Hk . Now fix k =
2, 3, . . . , (d−1). For each j = 1, 2, . . . , d−k, choose a βk+ j ∈ A such that β j+1

k+ j = 1
andβk+ j �= 1. Since A is an algebraic closure and the characteristic of Fq is sufficiently
large, the βk+ j always exists. Denote by Ik×k the k ×k identity matrix. We also define
1k×(d−k) as the k × (d − k) matrix whose all entries are 1. Also define the following
(d − k)× k matrix C(d−k)×k and the (d − k)× (d − k) matrix D(d−k)×(d−k):

C(d−k)×k =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 0 1
...
...
...
...
...

0 0 · · · 0 1
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦
,

D(d−k)×(d−k) =

⎡
⎢⎢⎢⎢⎢⎣

βk+1 1 · · · 1 1
1 βk+2 1 · · · 1
...

...
...

...
...

1 · · · 1 βd−1 1
1 1 · · · 1 βd

⎤
⎥⎥⎥⎥⎥⎦
.

Now consider the d × d matrix Md×d defined by

Md×d =

⎡
⎢⎢⎢⎣

P1
P2
...

Pd

⎤
⎥⎥⎥⎦ =

[
Ik×k 1k×(d−k)

C(d−k)×k D(d−k)×(d−k)

]
.
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Note that all P1, P2, . . . , Pd are solutions of a system of equations (5.1). Hence,
it follows that {P1, P2, . . . , Pd} ⊆ Hk for any k = 2, 3, . . . , (d − 1). Moreover,
since βk+ j − 1 �= 0 for all j = 1, 2, . . . , d − k, it follows from simple Gauss
elimination that the rank of the matrix Md×d is exactly d, which completes the proof of
Proposition 1.9.

5.3 Proof of Proposition 1.10

Recall from (5.1) that Hk ⊆ A
d is given by a system of (d−k)homogeneous equations.

For each j = 1, 2, . . . , d − k, define an algebraic set

H j
k = {x ∈ A

d : h j (x) = 0
}
,

where h j is defined by (5.1). By the definition of Hk , it follows that

Hk =
d−k⋂
j=1

H j
k . (5.2)

We need the following claim.

Lemma 5.1 For each n ∈ {1, 2, . . . , (d − k − 1)}, we have

⎛
⎝ n⋂

j=1

H j
k

⎞
⎠⋂Hn+1

k �= ∅

and there exists α ∈ A
d such that

α ∈
n⋂

j=1

H j
k and α /∈ Hn+1

k .

Proof The first part is trivial. For the second part of this claim, fix n ∈ {1, 2, . . . , (d −
k − 1)} and let l ∈ Fq with ln+2 �= 1. Now, choose an α = (α1, α2, . . . , αd) ∈ A

d

whose coordinates satisfy that

α j =
⎧⎨
⎩

0 if j = 2, 3, . . . , k,
l if j = k + n + 1,
1 otherwise.

Then it is straightforward to check that α ∈⋂n
j=1 H j

k and α /∈ Hn+1
k and the result

follows. ��
To compute the dimension of Hk , we apply the following result; see [7, p. 55] for

a proof.
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Lemma 5.2 Let V ⊆A
d be an irreducible algebraic set, and let f ∈Fq [x1, x2, . . . , xd ]

be a nonconstant polynomial which does not vanish identically on V . In addition, let
us define Z( f ) = {x ∈ A

d : f (x) = 0}. If V ∩ Z( f ) �= ∅, then we have

dim(V ∩ Z( f )) = dim V − 1.

We are ready to prove Proposition 1.10. It is not hard to see that H1
k , k =

2, 3, . . . , d − 1, is absolutely irreducible, because it is the same as the absolute irre-
ducibility of the polynomial

F(x1, x2, . . . , xk+1) = x2
1 + x2

2 + · · · + x2
k − x2

k+1.

Assume F = RH . Clearly, we see degx1 R = degx1 H = 1. Write

R = (x1 + g(x2, . . . , xk+1)
)(

x1 + h(x2, . . . , xk+1)
)
.

We see that we should have g = −h and so x2
2 +· · ·+x2

k −x2
k+1 = −g2, which is easy

to rule out for k ≥ 2 (for example, by specializing x3 = · · · = xk = 0, xk+1 = 1).

Since H1
k , k = 2, 3, . . . , d − 1, is absolutely irreducible, it follows from the Affine

Jacobian criterion that dim H1
k = d − 1 (see Lemma 5.4 below). Notice that this

completes the proof of Proposition 1.10 in the case when k = d −1 with k ≥ 2. Thus,
we may assume that d − k ≥ 2. Observe by induction that Proposition 1.10 is a direct
result from the following statement.

Lemma 5.3 Assume that the characteristic of Fq is sufficiently large. Let n ∈
{1, 2, . . . , (d − k − 1)} with k = 2, 3, . . . , d − 2. Suppose that

⋂n
j=1 H j

k is absolutely

irreducible with dimension d − n. Then
⋂n+1

j=1 H j
k is also absolutely irreducible with

dimension d − n − 1.

Proof From Lemmas 5.1 and 5.2, it is clear that

dim
n+1⋂
j=1

H j
k = d − n − 1. (5.3)

Thus, it remains to prove that
⋂n+1

j=1 H j
k is absolutely irreducible. Assume that⋂n+1

j=1 H j
k has ν absolutely irreducible components in Fq . By (5.3) and Lemma 3.5 to

show that ν = 1, it is enough to prove that

N (k, n) =
∣∣∣∣∣∣
n+1⋂
j=1

H j
k

∣∣∣∣∣∣ = (1 + o(1))qd−n−1, (5.4)
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where H j
k = {

x ∈ F
d
q : x j+1

1 + · · · + x j+1
k − x j+1

k+ j = 0
}
. Notice that N (k, n) is the

number of common solutions in F
d
q of the following equations

x2
1 + x2

2 + · · · + x2
k − x2

k+1 = 0,
...

x j+1
1 + x j+1

2 + · · · + x j+1
k − x j+1

k+ j = 0,
...

xn+2
1 + xn+2

2 + · · · + xn+2
k − xn+2

k+n+1 = 0.

For each j = 1, 2, . . . , n + 1, define

N j (x1, x2, . . . , xk) =
∣∣∣
{

xk+ j ∈ Fq : x j+1
k+ j = x j+1

1 + · · · + x j+1
k

}∣∣∣ .

Since xk+n+2, . . . , xd ∈ Fq are free variables and xk+1, . . . , xk+n+1 ∈ Fq depend
only on x1, . . . , xk , we can write

N (k, n) =
∑

x1,...,xk∈Fq

⎛
⎝n+1∏

j=1

N j (x1, . . . , xk)

⎞
⎠ qd−k−n−1.

In order to prove (5.4), it therefore suffices to show that

∑
x1,...,xk∈Fq

⎛
⎝n+1∏

j=1

N j (x1, . . . , xk)

⎞
⎠ = (1 + o(1))qk . (5.5)

For each j = 1, 2, . . . , n + 1, let d j = gcd( j + 1, q − 1) and denote by χ j the
multiplicative character of order d j . Then, from the orthogonality of multiplicative
characters it follows that

N j (x1, . . . , xk) =
d j −1∑
i j =0

χ
i j
j

(
x j+1

1 + · · · + x j+1
k

);

see [11, Sect. 3.1]. Hence, the left hand side of (5.5) is written by

∑
x1,...,xk∈Fq

⎛
⎝n+1∏

j=1

N j (x1, . . . , xk)

⎞
⎠

=
d1−1∑
i1=0

. . .

dn+1−1∑
in+1=0

∑
x1,...,xk∈Fq

n+1∏
j=1

χ
i j
j

(
x j+1

1 + · · · + x j+1
k

)
.
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When (i1, . . . in+1) = (0, . . . , 0), the sum over x1, . . . , xk is qk , where we use the
usual convention that χ0(0) = 1 for the trivial multiplicative character χ0. Thus, to
establish (5.5), it is enough to prove that for each (i1, . . . , in+1) �= (0, . . . , 0) with
i j = 0, 1, . . . , d j − 1,

∑
x2,...,xk∈Fq

∣∣∣∣∣∣
∑

x1∈Fq

χ
i1
1

(
x2

1 + · · · + x2
k

) · · ·χ in+1
n+1

(
xn+2

1 + · · · + xn+2
k

)
∣∣∣∣∣∣ = o(qk).

Now, we define the sets B,G ⊆ F
k−1
q (of “bad” and “good” vectors (x2, . . . , xk) ∈

F
k−1
q ) by

B =
{
(x2, . . . , xk) ∈ F

k−1
q :

x j+1
2 + · · · + x j+1

k = 0 for some j = 1, 2, . . . , n + 1
}
,

and

G = F
k−1
q \B.

For each fixed x = (x2, . . . , xk) ∈ G, define

A j (x) = x j+1
2 + · · · + x j+1

k for j = 1, 2, . . . , n + 1.

Note that A j (x) �= 0 for x ∈ G and all j = 1, 2, . . . , n + 1.
Since |B| ≤ (n + 1)(n + 2)qk−2, it suffices to prove that for each (i1, . . . , in+1) �=

(0, . . . , 0) with i j = 0, 1, . . . , d j − 1,

∑
x=(x2,...,xk )∈G

∣∣∣∣∣∣
∑

x1∈Fq

n+1∏
j=1

χ
i j
j (x

j+1
1 + A j (x))

∣∣∣∣∣∣

=
∑

x=(x2,...,xk )∈G

∣∣∣∣∣∣
∑
t∈Fq

n+1∏
j=1

χ
i j
j (t

j+1 + A j (x))

∣∣∣∣∣∣ = o(qk). (5.6)

From the definition of χ j and the fact that (i1, . . . , in+1) �= (0, . . . , 0), notice that χ
i j
j

is a nontrivial character for some j = 1, . . . , n + 1. If χ
i j
j is a trivial character, then

the term χ
i j
j (t

j+1 + A j (x)) can be replaced by 1. Thus, it suffices to prove (5.6) under

the assumption that all χ
i j
j are not-trivial characters.

We now consider the cases k = 2 and k ≥ 3 separately.
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• If k = 2, we must show that

∑
a∈G

∣∣∣∣∣∣
∑
t∈Fq

n+1∏
j=1

χ
i j
j (t

j+1 + a j+1)

∣∣∣∣∣∣ = o(q2),

for all (i1, . . . , in+1) �= (0, . . . , 0)with i j = 0, 1, . . . , d j −1. Recall that if a ∈ G,
then a �= 0, thus

∣∣∣∣∣∣
∑
t∈Fq

n+1∏
j=1

χ
i j
j (t

j+1 + a j+1)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
t∈Fq

n+1∏
j=1

χ
i j
j (t

j+1 + 1)

∣∣∣∣∣∣

and recalling Lemma 2.4 we obtain the desired estimate.
• If k ≥ 3, then it is easy to show that if the characteristic of Fq is sufficiently large,

then for all but O(qk−2) choices of x = (x2, . . . , xk) ∈ G, the polynomials

t j+1 + A j (x) ∈ Fq [t], j = 1, . . . , n + 1

have no pairwise common roots. Indeed, assume k ≥ 3. Let i1, i2 ∈ {2, 3, . . . ,
n + 2} with i1 �= i2. Notice that if t i1 − A and t i2 − B have a common root
then Ai2 = Bi1 . For our expressions for A and B in x2, . . . , xk (assuming that
k ≥ 3) one can easily show that this leads to a nontrivial equation and thus has
O(qk−2) solutions. For such (x2, . . . , xk) ∈ G, the inner sum over t ∈ Fq in (5.6)
is trivially estimated as q, and for the remaining choices of (x2, . . . , xk) ∈ G,
we apply Lemmas 2.1 and 2.3 to estimate the inner sum over t ∈ Fq in (5.6).
In conclusion, the left hand side of (5.6) is bounded by O(qk−1/2).

This establishes (5.6) for every k ≥ 2 and concludes the proof. ��
As we have mentioned, Lemma 5.3 implies Proposition 1.10.

5.4 Proof of Proposition 1.11

The proof is based on the Affine Jacobian criterion below (see [7, Prop. 4.4.8]).

Lemma 5.4 Let V ⊆ A
d be an irreducible algebraic set given by a system of s-

polynomial equations g j (x) = 0, j = 1, 2, . . . , s. Suppose that v ∈ V . Then V is
smooth at v if and only if the rank of the s × d Jacobian matrix satisfies

rank

[
∂g j

∂xi
(v)

]
s×d

≥ d − dim V .

Now, since d − k is the number of the polynomials h j in (5.1) defining Hk which is
absolutely irreducible with dimension k by Proposition 1.10, we see from Lemma 5.4
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that Hk is smooth away from the origin if and only if

rank

[
∂h j

∂xi
(x)

]
(d−k)×d

= d − k

for all x ∈ Hk\{(0, . . . , 0)}. Since we have assumed that the characteristic of Fq is
sufficiently large, it is clear from the Gauss elimination that

rank

[
∂h j

∂xi
(x)

]
(d−k)×d

= rank Jk,d(x),

where Jk,d(x) denotes the (d − k)× d matrix given by the concatenation

Jk,d(x) = [Wk,d(x) ‖ Dk,d(x)]

of the Wandermonde

Wk,d(x) =
[
x j

i

]
(d−k)×k

,

and the diagonal matrix

Dk,d(x) =

⎡
⎢⎢⎢⎣

−xk+1 0 0 · · · 0
0 −x2

k+2 0 · · · 0
...

...
...
...

...

0 0 0 0 −xd−k
d

⎤
⎥⎥⎥⎦ .

In order to complete the proof of Proposition 1.11, it therefore suffices to prove the
following two statements:

(A1) if d − k ≥ 4 and k ≥ 2, then there exists x ∈ Hk\{(0, . . . , 0)} with
rank Jk,d(x) < d − k;

(A2) if d − k = 1, 2, 3 and k ≥ 2, then rank Jk,d(x) = d − k for all x ∈
Hk\{(0, . . . , 0)}.

First, let us prove (A1). Suppose that k ≥ 2 is an even integer. For each l =
1, 2, . . . , d − k, choose an αl ∈ Fq with αl+1

l = k · 1, and define

xk+l =
{

0 for l ≥ 2 even,
αl for l ≥ 1 odd.

Letting x = (1,−1, . . . , 1,−1, xk+1, . . . , xd), it is easy to check that x ∈
Hk\{(0, . . . , 0)}. Since d − k ≥ 4, the matrix Jk,d(x) has at least four rows, and
its second row and fourth row are exactly same. Thus, the rank of Jk,d(x)must be less
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than d − k. Next, assume that k ≥ 3 is an odd integer. For each l = 1, 2, . . . , d − k,
select a βl ∈ Fq with βl+1

l = (k − 1) · 1, and define

xk+l =
{

0 for l ≥ 0 even,
βl for l ≥ 1 odd.

Taking x =(1,−1, . . . , 1,−1, 0, xk+1, . . . , xd), we also see that x ∈ Hk\{(0, . . . , 0)},
and the second row and the fourth row of Jk,d(x) are same. Thus, the rank of Jk,d(x)
is less than d − k, which completes the proof of the statement (A1).

Now, we prove the statement (A2). If d − k = 1 and k ≥ 2, then (A2) is clearly
true, because

Jk,d(x) = [x1 x2 · · · xd−1 −xd
] �= [0 0 · · · 0 0

]

for x �= (0, . . . , 0). Assume that d − k = 2 and k ≥ 2. We must show that

rank Jk,d(x) = rank

[
x1 x2 · · · xd−2 −xd−1 0
x2

1 x2
2 · · · x2

d−2 0 −x2
d

]
= 2

for all x ∈ Hk\{(0, . . . , 0)}, where

Hk =
{

x ∈ A
d : x2

1 + · · · + x2
d−2 − x2

d−1 = x3
1 + · · · + x3

d−2 − x3
d = 0

}
.

Notice that if x = (x1, . . . , xd) ∈ Hk\{(0, . . . , 0)}, then x j �= 0 for some j =
1, 2, . . . , d − 2. Without loss of generality, we therefore assume that x1 �= 0. Letting
u j = x j/x1 for j = 2, 3, . . . , d, it is enough to show that

rank

[
1 u2 · · · ud−2 −ud−1 0
1 u2

2 · · · u2
d−2 0 −u2

d

]
= 2, (5.7)

where (u2, u3, . . . , ud) ∈ A
d−1 satisfies

{
1 + u2

2 + · · · + u2
d−2 − u2

d−1 = 0
1 + u3

2 + · · · + u3
d−2 − u3

d = 0
. (5.8)

Notice that if ud−1, ud �= 0, then (5.7) holds, because

rank

[−ud−1 0
0 −u2

d

]
= 2.

If u j = 0 or 1 for all j = 2, 3, . . . , d − 2, then we see from (5.8) that ud−1, ud �= 0
and so there is nothing to prove. On the other hand, if u j �= 0, 1 for some j =
2, 3, . . . , (d − 2) then

det

[
1 u j

1 u2
j

]
= u j (u j − 1) �= 0 or rank

[
1 u j

1 u2
j

]
= 2.

123



Averaging Operators Over Homogeneous Varieties

Thus (5.7) is also true and we completes the proof of the statement (A2) in the case
when d − k = 2 and k ≥ 2. Finally let us prove the statement (A2) when d − k = 3
and k ≥ 2. Following the previous arguments, our task is to show that

rank

⎡
⎣1 u2 · · · ud−3 −ud−2 0 0

1 u2
2 · · · u2

d−3 0 −u2
d−1 0

1 u3
2 · · · u3

d−3 0 0 −u3
d

⎤
⎦ = 3, (5.9)

where (u2, u3, . . . , ud) ∈ A
d−1 satisfies

⎧⎨
⎩

1 + u2
2 + · · · + u2

d−3 − u2
d−2 = 0,

1 + u3
2 + · · · + u3

d−3 − u3
d−1 = 0,

1 + u4
2 + · · · + u4

d−3 − u4
d = 0.

(5.10)

Case 1: Suppose that u j = 0 or 1 for all j = 2, 3, . . . , d − 3. Then it follows
from (5.10) that ud−2, ud−1, ud �= 0, which implies that

det

⎡
⎣−ud−2 0 0

0 −u2
d−1 0

0 0 −u3
d

⎤
⎦ �= 0

hence

rank

⎡
⎣−ud−2 0 0

0 u2
d−1 0

0 0 −u3
d

⎤
⎦ = 3.

Thus (5.9) also follows.
Case 2: Suppose that ui , u j �= 0, 1 with ui �= u j for some i, j = 2, 3, . . . , d − 3.

Then it follows that

det

⎡
⎣

1 ui u j

1 u2
i u2

j
1 u3

i u3
j

⎤
⎦ = ui u j (ui − 1)(u j − 1)(u j − ui ) �= 0.

Thus

rank

⎡
⎣

1 ui u j

1 u2
i u2

j
1 u3

i u3
j

⎤
⎦ = 3,

which implies (5.9).
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Case 3: Suppose that u j �= 0, 1 for some j = 2, 3, . . . , d − 3, and ui = u j if
ui �= 0, 1 for i = 2, 3, . . . , d − 3. Let

a = |{l ∈ {2, 3, . . . , d − 3} : ul = 1}|,
b = |{l ∈ {2, 3, . . . , d − 3} : ul �= 0, 1}|.

Then a ≥ 0 and b ≥ 1 are integers. Thus (5.10) is same as

(1 + a)1 + bu2
j − u2

d−2 = 0,
(1 + a)1 + bu3

j − u3
d−1 = 0,

(1 + a)1 + bu4
j − u4

d = 0,
(5.11)

where (1 + a) ∈ N.
We now claim that either ud−2 �= 0 or ud �= 0. To see this, assume that ud−2, ud =

0. Then from (5.11) we see that (1 + a)1 + bu2
j = 0 = (1 + a)1 + bu4

j . This implies

that bu2
j (u j − 1)(u j + 1) = 0. Thus we conclude that u j = −1, because u j �= 0, 1

and b ∈ {1, . . . , d − 4} (assuming that the characteristic of Fq is sufficiently large).
However, since (1+a)1+b(−1)2 = (1+a +b)1 �= 0, it is impossible that u j = −1
(again assuming that the characteristic of Fq is sufficiently large) and the claim is
justified.

If ud−2 �= 0, then (5.9) follows by the observation that

det

⎡
⎣

1 u j −ud−2

1 u2
j 0

1 u3
j 0

⎤
⎦ = −ud−2u2

j (u j − 1) �= 0.

On the other hand, if ud �= 0, then (5.9) also follows by the observation that

det

⎡
⎣

1 u j 0
1 u2

j 0
1 u3

j −u3
d

⎤
⎦ = −u3

du j (u j − 1) �= 0.

By Case 1, Case 2 and Case 3, we establish the statement (A2) in the case when
d − k = 3 and k ≥ 2. This concludes the proof of Proposition 1.11.
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