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Abstract In the past decades, many methods for computing conformal mesh parameteri-
zations have been developed in response to demand of numerous applications in the field
of geometry processing. Spectral conformal parameterization (SCP) (Mullen et al. in Pro-
ceedings of the symposium on geometry processing, SGP ’08. Eurographics Association,
Aire-la-Ville, Switzerland, pp 1487–1494, 2008) is one of these methods used to com-
pute a quality conformal parameterization based on the spectral techniques. SCP focuses
on a generalized eigenvalue problem (GEP) LC f = λBf whose eigenvector(s) associated
with the smallest positive eigenvalue(s) provide the conformal parameterization result. This
paper is devoted to studying a novel eigensolver for this GEP. Based on structures of the
matrix pair (LC , B), we show that this GEP can be transformed into a small-scale com-
pressed and deflated standard eigenvalue problem with a symmetric positive definite skew-
Hamiltonian operator. We then propose a symmetric skew-Hamiltonian isotropic Lanczos
algorithm (SHILA) to solve the reduced problem. Numerical experiments show that our
compressed deflating technique can exclude the impact of convergence from the kernel of
LC and transform the original problem to a more robust system. The novel SHILA method
can effectively avoid the disturbance of duplicate eigenvalues. As a result, based on the spec-
tral model of SCP, our numerical eigensolver can compute the conformal parameterization
accurately and efficiently.
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1 Introduction

Matrix computation is a fundamental tool in digital geometry processing. Many interesting
and challenging problems in computational geometry are eventually confronted with the dif-
ficulty of how to solve the corresponding problems within the context of matrix computation,
such as linear systems, eigenvalue problems, optimization problems, and so on. Certainly,
there have been many excellent theoretical investigations as well as numerical algorithms for
these subjects, and numerous well-developed libraries, such as LAPACK [2], ARPACK [24],
PETSc [4], SPLEPc [17], etc., are capable of handling these problems. Nevertheless, the
existing packages may still encounter some difficulties such as getting erratic or unwanted
solutions, suffering from slow convergence, or even failing to converge. Therefore, it is still
an important issue to study accurate, efficient and robust numerical algorithms as well as
mathematical analyses specially tailored to take advantage of the structures and properties
of the target problem. In this paper, we focus on a generalized eigenvalue problem (GEP)
arising from the spectral conformal parameterization (SCP) [31], which is one of those
free-boundary and angle-preserving mesh parameterizations.

Mesh parameterization is an important and active subject in the research of digital geom-
etry processing. Its goal is to construct a piecewise linear map between a triangulated 3D
mesh surface and a 2D planar mesh. Once we obtain appropriate parameterizations, any
complicated processing tasks on surfaces can be transformed into easier ones on the planar
domain through the correspondences of geometric information between the surface mesh
and the planar mesh. Mesh parameterizations unavoidably introduce distortion in angles,
areas or lengths, and the main challenge for parameterization approaches is to minimize the
resulting distortion in some sense as much as possible. Maps that preserve the angle are
called conformal maps; that preserve the area are called authalic maps and that preserve the
length are called isometric maps. It is known that a mapping, which is both conformal and
authalic, must be isometric. Excellent surveys on various kinds of mesh parameterization
techniques can be found in [8,20,37], and the references therein. Many feasible conformal
parameterization methods have been intensively studied and developed ever since several
applications required angle-preserving parameterizations. Such applications include texture
mapping, remeshing, compression, recognition, and morphing, to name just a few. Accord-
ing to the outputs of conformal parameterizations, most of them can be classified into one
of the following categories: map category [6,9,12,18,25,31], differential 1-form category
[11,14,22,34], angle structure category [23,36,38,42], and metric category [21,41]. For a
comprehensive survey on the topic of theoretical and computational conformal geometry,
we refer to [13,15,16]. Here we only briefly review the most related works to motivate our
research in this paper.

The discrete conformal parameterization (DCP) proposed by Desbrun et al. [6] computes
the conformal parameterization by minimizing the Dirichlet energy defined on triangular
meshes subject to so-called natural boundary conditions. Through the least-squares approx-
imation of the discrete Cauchy–Riemann equation, Lévy et al. [25] introduced the approach
of least squares conformal maps (LSCM) for computing conformal mesh parameterization.
These two methods can achieve parameterizations with much lower angle distortion and,
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as shown in [5], LSCM and DCP are theoretically equivalent. More recently, Mullen et al.
[31] presented a spectral approach, named SCP, to reduce common artifacts of LSCM and
DCP due to positional constraints or mesh sampling irregularity, and thereby achieve high-
quality conformal parameterizations. SCP tends to compute the conformal parameterization
via a constrained energy minimization problem which can be transformed into to a GEP
LC f = λBf [31] with (LC , B) being a symmetric positive semi-definite matrix pair. There-
fore, determining the minimizer of the constrained optimization problem, i.e., the desired
result of the parameterization, is equivalent to finding the smallest positive eigenvalue λ and
the associated eigenvector f of (LC , B).

For the computation of the GEP LC f = λBf , Mullen et al. [31] and, most recently, Alexa
and Wardetzky [1] individually proposed feasible numerical methods. The former considered
an inverted modified eigenvalue problem instead of the original one; the latter reformulated the
original problem as an equivalent small-scale problem. However, when processing large mesh
models, these two approaches require a lot of effort to solve the desired parameterization due
to the amount of vertex numbers. On the other hand, these techniques do not take advantage
of the matrix structures to improve the efficiency of numerical computations. In fact, one
can show that, after a suitable permutation, LC is indeed a symmetric positive semi-definite
skew-Hamiltonian matrix and B is a low-rank positive semi-definite matrix. Based on the
special structures of LC and B, we can compute the SCP by solving an associated eigenvalue
problem with size only related to the number of boundary vertices so that the problem size is
therefore much more smaller than those of the previous methods. This motivates us to study
efficient and robust methods, through the particular matrix structures, for solving the GEP
arising from the SCP.

1.1 Contributions

The contribution of this work can be divided into three components: (1) nonequivalence
deflation: a deflation technique to transform the zero eigenvalues of a GEP into the infinite
ones while preserving all the other eigenvalues and associated eigenvectors; (2) null-space
free compression: an approach of the model reduction to reduce a GEP to a small-scale
standard eigenvalue problem (SEP) based on the low-rank property; (3) SHILA algorithm: a
novel symmetric skew-Hamiltonian Isotropic Lanczos Algorithm for solving the symmetric
skew-Hamiltonian eigenvalue problem that can precisely split the duplicate eigenvalues and
improve the convergence rate. According to these three theoretical frameworks and numerical
algorithms, we propose a novel, efficient, accurate and robust eigensolver for the SCP [31].
Related concepts and techniques can also provide fundamental tools for the issue of spectral
mesh processing.

1.2 Notations and Overview

The following notations are frequently used throughout this paper. Other notations will be
clearly defined whenever they are used.

– nv denotes the number of vertices; ni denotes the number of interior vertices as well
as internal boundaries (if any), while nb represents the number of (external) boundary
vertices.

– Upper case letters indicate matrices and bold face letters denote vectors.
– In denotes the n × n identity matrix with the given size n.
– e j denotes the j th column of the identity matrix In with specified n.
– 1n denotes an n-vector whose elements are all 1.
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– We adopt 0 to denote the zero vectors and matrices of appropriate sizes.
– We use ·� to denote the transpose of vectors or matrices.

This paper is organized as follows. In Sects. 2 and 3, we review the background on discrete
conformal maps and related works on the SCPs, respectively. With these basic concepts and
terminologies, we propose a novel and efficient eigensolver to deal with the GEP arising
from [31]. The theoretical frameworks and practical implementations of our eigensolver
are specifically and successively introduced in Sects. 4 and 5. Numerical experiments and
comparisons are presented in Sect. 6 and the concluding remarks are given in Sect. 7.

2 Discrete Conformal Maps

For a smooth map f : X → U , we define the Dirichlet energy ED( f ) and the area of the
image of f, A( f ) by

ED( f ) = 1

2

∫

X
|∇ f |2 dσ and A( f ) =

∫

X
det(J f )dσ,

respectively, where J f is the Jacobian matrix of f and dσ is the area element of the surface.
The conformal energy of f is the difference of ED( f ) and A( f ), defined by

EC ( f ) = ED( f )−A( f ). (1)

Thanks to the relation ED( f ) ≥ A( f ) [6,33], we always have EC ( f ) ≥ 0 with the equality
only when f is a conformal map.

By the discretization approach, we take X and U to be triangular meshes in R
3 and R

2,

respectively. Let f =
[ u

v

]
= [u1, . . . , un, v1, . . . , vn]� represent a piecewise linear map

from X to U . Then the discrete Dirichlet energy can be expressed as

ED(f) = 1

2

∑
ei j

cot θi j + cot θ j i

2

[
(ui − u j )

2 + (vi − v j )
2] = 1

2
f�L Df, (2)

where θi j and θ j i are the two corner angles opposite to the edge ei j connecting vertices i, j
on X , and

L D =
[

K 0
0 K

]
∈ R

2nv×2nv (3)

is the discrete Laplacian matrix with

Ki j =
⎧⎨
⎩
−∑

�∈N (i) Ki� if j = i,
− 1

2 (cot θi j + cot θ j i ) if j ∈ N (i),
0 otherwise,

in which N (i) denotes the set of all 1-ring neighboring vertices of vertex i . Moreover, we
note that K is symmetric positive semi-definite [19] and K 1nv = 0. On the other hand, the
area of the parameterization can be expressed as

A(f) = 1

2

∑
ei j∈∂U

(uiv j − u jvi ) = 1

2
f�Af, (4)
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where ∂U is the set of boundary edges of U , and

A =
[

0 −S
S 0

]
∈ R

2nv×2nv (5)

is a symmetric matrix with S� = −S and S1nv = 0. Specifically, if (ui , vi ) and (u j , v j ) are
the endpoints of a boundary edge on U , then

uiv j − u jvi =
[

ui u j vi v j

]
⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
2

0 0 − 1
2 0

0 − 1
2 0 0

1
2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ui

u j

vi

v j

⎤
⎥⎥⎥⎦

and the matrix A in (5) is the assembly of the above 2× 2 elementary block matrices. As a
result of (1)–(5), the discrete conformal energy can then be represented in a quadratic form

EC (f) = 1

2
f�LC f, (6)

where

LC = L D − A =
[

K S
−S K

]
(7)

with K and S being symmetric positive semi-definite and skew-symmetric, respectively. In
Marchandise et al. [28], derived the same matrix structure and property based on the finite
element method for the minimization problem of the quadratic energy EC in (6).

Remark 1 The matrix LC satisfies the following properties.

(i) LC is symmetric and skew-Hamiltonian, i.e., L�C = LC and (LC Jnv)
� = −(LC Jnv)

with

Jnv =
[

0 Inv
−Inv 0

]
. (8)

From [39], there is a symplectic orthogonal U ∈ R
2nv×2nv with U� JnvU = Jnv and

U�U = I2nv such that

U�LCU =
[
Λ 0
0 Λ

]
,

where Λ is an nv×nv diagonal matrix. Since LC is additionally, at least in theory, positive
semi-definite, the above equality implies that the eigenvalues of LC are nonnegative and
double.

(ii) Set

I2 =
[

1nv 0
0 1nv

]
∈ R

2nv×2, (9)

where 1nv be an nv-vector as defined in Sect. 1.2. Then we have

LC I2 = 0 (10)

as K 1nv = 0 = S1nv . Moreover, we conclude that 0 is a semisimple eigenvalue of LC

with multiplicity 2.
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3 The Spectral Conformal Parameterization

We briefly review the connection between the minimization problem of the conformal energy
(6) and the associated GEP in SCP [31].

3.1 Minimization of Conformal Energy

The piecewise linear mapping f is called a DCP if it minimizes the conformal energy EC (f) in
(6). Lévy et al. [25] and Desbrun et al. [6] independently proposed LSCM and DCP, which are
theoretically equivalent, to achieve such an energy minimization problem. Through pinning
down two vertices in the parameter region to eliminate the inherent rank deficiency, the non-
trivial parameterization result (f �= constant) of LSCM/DCP can be uniquely determined
by solving the linear system LC f = 0. The choice of which vertices to be fixed, however,
significantly affects the quality of the conformal parameterization.

To remedy this problem, Mullen et al. [31] suggested a spectral approach based on the
so-called (generalized) Fiedler vector [7] to avoid the explicit constraint on specific vertices.
To this end, Mullen et al. focused on the following constrained minimization problem:

min
f

f�LC f subject to f�BI2 = 0, f�Bf = 1, (11)

where EC and I2 are defined as in (6) and (9), respectively, and B is a degenerate and diagonal
binary matrix whose nonzero elements correspond to the (external) boundary vertices. Note
that B can be expressed as the block-diagonal form

B =
[

D 0
0 D

]
∈ R

2nv×2nv , (12)

where D is an nv × nv diagonal binary matrix with 1 at the diagonal entries corresponding
to the boundary vertices (not including any of internal boundaries). The constraints in (11)
indicate that the barycenter of the boundary components must be at zero (f�BI2 = 0), and
the moment of inertia on the boundary must be unit (f�Bf = 1).

The following lemma shows that, solving the optimization problem (11) is equivalent to
finding the eigenvector of the GEP

LC f = λBf (13)

corresponding to the smallest positive eigenvalue.

Lemma 1 A vector f∗ is an optimizer of the constrained energy minimization problem (11)
if and only if f∗ is the eigenvector of the GEP (13) corresponding to the smallest positive
eigenvalue with f�∗ Bf∗ = 1.

Proof Consider the Lagrange function

L (f, μ, λ) = f�LC f − μ
(

f�BI2

)
− λ

(
f�Bf − 1

)

with Lagrange multipliers μ and λ. Then the solution f satisfies

∂L
∂f
= 2LC f − μBI2 − 2λBf = 0, (14a)

∂L
∂μ
= f�BI2 = 0, (14b)

∂L
∂λ
= f�Bf = 1. (14c)
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Premultiplying (14a) by I
�
2 , we get

μ(nb I2) = 2 (LC I2)
� f − 2λ

(
f�BI2

)� = 0, (15)

where the last equality holds because of (10) and (14b). From (15), we must have μ = 0. As
a result, (14a) can be reduced to the GEP (13).

Conversely, if f∗ is the eigenvector corresponding to the smallest positive eigenvalue λ∗
of the GEP (13) with the normalizing requirement f�∗ Bf∗ = 1. Then, by (10), we see that

0 = (LC I2)
� f∗ = I

�
2 (LC f∗) = I

�
2 (λ∗Bf∗) , (16)

which implies that f�∗ BI2 = 0. So, f∗ satisfies the requirements of constraints in (11).
Furthermore, for any vector g satisfying g�BI2 = 0 and g�Bg = 1, we have

g�LC g ≥ min
f

{
f�LC f : f�BI2 = 0, f�Bf = 1

}
= λ∗ = f�∗ LC f∗.

Thus, f∗ solve the constrained minimization problem (11). 	

In other words, the solution to (13) with the smallest positive eigenvalue determines the entire
coordinates of the SCP, named by Mullen et al. [31].

3.2 Previous Numerical Methods

To treat the GEP (13), Mullen et al. [31] considered the modified GEP:
[

B − 1
nb

(BI2)(BI2)
�]

f = 1

λ
LC f . (17)

By taking f =
[ 1nv

0

]
or f =

[ 0
1nv

]
, we see that both sides of (17) are equal to zero vectors

which means that it is a singular GEP. So, the modified GEP (17) can be ill posed in the
sense that an arbitrary small perturbation may cause a large change of the eigenvalues and
the associated eigenvectors [3,30]. Later, we will see that although (BI2)

�f is theoretically
equivalent to zero, it, in practice, still has a significant numerical error and can further affect
the residual norm ‖LC f − λBf‖2.

Alexa and Wardetzky [1] recently addressed the GEP (13) via an equivalent smaller
eigenvalue problem that only contains the boundary vertices. By reordering the vertex indices,
the GEP (13) can be rewritten as[

Lii Lib

L�ib Lbb

] [
fi
fb

]
= λ

[
0 0
0 Bb

] [
fi
fb

]
, (18)

where i and b refer as to inner and (external) boundary vertices, respectively, fi =
[ ui

vi

]
∈

R
2ni , fb =

[ ub
vb

]
∈ R

2nb , and Bb is a 2nb×2nb diagonal matrix with 1’s on the diagonal cor-

responding to the (external) boundary vertices.1 Under such a structure, Alexa and Wardetzky
considered the Schur complement of Lii from (18), i.e., Lbb − L�ibL−1

ii Lib ∈ R
2nb×2nb .

Thus, (18) can be reduced to a small-scale GEP(
Lbb − L�ibL−1

ii Lib

)
fb = λBbfb, (19)

1 For mesh with single boundary, we have Bb = I2nb .
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and fi as well as fb satisfy the relationship

fi = −L−1
ii Libfb. (20)

Compared with Mullen et al. who directly cope with the GEP (13), Alexa and Wardetzky first
handle the reduced GEP (19) to obtain fb and then determine the parameterization coordinates
of interior vertices fi via the Eq. (20).

Yet this approach still has some drawbacks and difficulties. First of all, λ = 0 remains a

semisimple eigenvalue of the reduced GEP (19) associated with the eigenvectors fb =
[ 1nb

0

]

and fb =
[ 0

1nb

]
so its kernel still affects the convergence and increases the computational

cost. Secondly, to deal with the reduced GEP (19), we may first face the problem of solving
a linear system

LiiX = Lib. (21)

Even though Lii is well-conditioned, it can be impractical or even impossible to solve the
linear system beforehand just in order to solve “one” desired eigenvector. Here, the main
reason is that the number of right hand sides equals the number of all boundary vertices
which may be more than hundreds or thousands of points, in particular for large meshes.
Last but not least, as opposed to solving the linear system (21) in advance, we may adopt the
iterative method to solve (19). The computational cost is due to the problem of inner-outer
iterations. Especially for the inner step, we need to solve a singular linear system with the
coefficient matrix Lbb − L�ibL−1

ii Lib.

4 Theoretical Frameworks

In this section, we will propose a clever compression technique together with a novel eigen-
solver for solving the smallest positive eigenvalue and associated eigenvector of the GEP (13)

LC f = λBf,

where LC is symmetric positive semi-definite, skew-Hamiltonian as defined in (7) and B,
given in (12), is symmetric positive semi-definite.

4.1 Nonequivalence Deflations

The GEP (13) possesses the zero eigenvalue with algebraic multiplicity 2 and, in fact,

Ker(LC ) = span
{[ 1nv

0

]
,
[ 0

1nv

]}
. To find the eigenpairs associated with the smallest posi-

tive eigenvalue of the GEP (13) and, at the same time, to exclude undesired eigenpairs corre-
sponding the zero eigenvalue, we introduce a nonequivalence deflation technique, based on
the idea in [26,27], to transform the zero eigenvalues of the GEP (13) into the infinite ones
while preserving all the other eigenvalues of (13).

Observe that since
d ≡ D1nv �= 0, (22)

we have BI2 =
[

d 0
0 d

]
�= 0, where D and I2 are defined in (12) and (9), respectively. The

nonequivalence transformation of the matrix pair (LC , B) is defined by
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L̃C ≡ LC + (
1

nb
BI2)(BI2)

� =
[

K̃ S
−S K̃

]
, K̃ = K + 1

nb
dd�, (23a)

B̃ ≡ B − (
1

nb
BI2)(BI2)

� =
[

D̃ 0
0 D̃

]
, D̃ = D − 1

nb
dd�. (23b)

Observe that
L̃C I2 = BI2 �= 0, (24)

and
B̃I2 = 0. (25)

This indicates that such a nonequivalence deflation technique transforms the kernel matrix
I2 of LC to be parts of the kernel of B̃. As a matter of fact, this technique can tell us more
about the spectral behavior.

To begin with, we first investigate the spectrum of the deflated matrix D̃ in (23b). Let Ii
and Ib =

{
b1, . . . , bnb

}
denote ordered index sets of the interior vertices (including interior

boundary vertices) and the (external) boundary vertices, respectively. Let bk be an nv-vector
defined by

(bk)i =

⎧⎪⎨
⎪⎩

1√
k(k+1)

, i = b1, · · · , bk,

−k√
k(k+1)

, i = bk+1,

0, otherwise,

k = 1, . . . , nb − 1. (26)

Lemma 2 The deflated matrix D̃ in (23b) has semisimple eigenvalues 0 and 1 with algebraic
multiplicity ni + 1 and nb − 1, respectively. Moreover, the kernel of D̃ has an orthonormal

basis
{

e j ,
1√
nb

d : j ∈ Ii
}

, where d is defined in (22); the eigenspace of D̃ corresponding

to the eigenvalue 1 is spanned by the orthonormal set
{
b1, . . . , bnb−1

}
.

Proof For simplicity, we first reorder the columns and rows of D in (12) to get

D =
[ nb ni

nb Inb 0
ni 0 0

]
.

Then, we have

D̃ = D − 1

nb
dd� =

[
Inb − 1

nb
1nb1�nb 0

0 0

]
, d = D1n =

[
1nb
0

]
,

Ib = {1, . . . , nb}, Ii = {nb + 1, . . . , n},
and (26) can be rewritten as

bk = 1√
k(k + 1)

⎡
⎣ 1k

−k
0

⎤
⎦ , k = 1, . . . , nb − 1. (27)

The orthogonality of the nv vectors {b1, . . . , bnb−1,
1√
nb

d, enb+1, . . . , env} is straightfor-

ward via a simple calculation. It is obvious to see that D̃d = 0 and D̃ek = 0 for each k ∈ Ii
which imply that the ni + 1 vectors, 1√

nb
d, enb+1, . . . , env , are eigenvectors of D̃ corre-

sponding to the zero eigenvalue. On the other hand, owing to the orthogonality of d�bk = 0
for k = 1, . . . , nb − 1, we have D̃bk = Dbk = bk . This shows that the nb − 1 vectors,
b1, . . . , bnb−1, are eigenvectors of D̃ corresponding to the eigenvalue 1. 	
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Theorem 1 Let (L̃C , B̃) be the deflated pair as defined in (23). Then

(i) L̃C is symmetric positive definite and skew-Hamiltonian.
(ii) B̃ is symmetric positive semi-definite with 2(ni + 1)’s semisimple eigenvalues 0 and

2(nb − 1)’s semisimple eigenvalues 1.
(iii) The deflated GEP

L̃C f = λB̃f (28)

preserves all eigenpairs of the original GEP (13) except the case that λ = 0. Instead,
two semisimple zero eigenvalues of (13) are transformed into two semisimple infinite

eigenvalues of (28) associated with eigenvectors
[ 1nv

0

]
and

[ 0
1nv

]
.

Proof (i) Clearly, L̃C is symmetric and positive definite directly from the facts that LC as well
as 1

nb
(BI2)(BI2)

� are both symmetric positive semi-definite, and their individual Rayleigh
quotient cannot vanish simultaneously as

Ker(LC ) ∩ Ker((BI2)(BI2)
�) = ∅.

Let Jnv be the matrix in (8). It is easy to verify that Jnv B = B Jnv and JnvI2I
�
2 = I2I

�
2 Jnv .

Therefore, noting that LC is a skew-Hamiltonian matrix and J�nv = −Jnv , we get

(L̃C Jnv)
� = −LC Jnv − 1

nb
(BI2)(BI2)

� Jnv = −(L̃C Jnv),

i.e., L̃C is also a skew-Hamiltonian matrix.
(ii) Since B̃ is a block-diagonal matrix composed of the deflated matrix D̃ as in (23b),

from Lemma 2, we conclude that the nullity of B̃ is equal to 2(ni+ 1) and the dimension of
the eigenspace associated with the eigenvalue 1 of B̃ is 2(nb − 1).

(iii) By the same proof technique as used for (16), we first observe that if (θ, g) is an
eigenpair of the GEP (13) with θ �= 0 then, I2 and g are B-orthogonal, i.e., I

�
2 Bg = 0. As

a result, from (23a) and (23b), we see that

L̃C g = LC g = θ Bg = θ B̃g. (29)

In addition, (24) and (25) imply that
[ 1nv

0

]
and

[ 0
1nv

]
are eigenvectors of the deflated GEP

(28) corresponding to the infinite eigenvalues. 	

It is well known that the iterative projection methods, such as the Lanczos method or the

Arnoldi method, rapidly provide approximate eigenvalues with large magnitude. To compute
the smallest positive eigenvalue(s) and the associated eigenvector(s) of the deflated GEP (28),
we may invert the L̃C and straightforwardly apply the Lanczos method to the SEP of the
form

(L̃−1
C B̃)f = 1

λ
f . (30)

However, to deal directly with the problem (30) does not make use of the special structures
of the coefficient matrices that L̃C is symmetric positive definite, skew-Hamiltonian and
B̃ is symmetric positive semi-definite with low-rank. In the subsequent subsections, we
will first expound how to draw on the low-rank property of B̃ to reduce the SEP (30) to a
symmetric positive definite and skew-Hamiltonian eigenvalue problem which is of the small
size 2(nb − 1). Then, we will propose a modified Lanczos algorithm to solve this reduced
problem efficiently.
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4.2 Null-Space Free Compression

The matrix B is a diagonal matrix with rank 2nb and the subsequent rank-two update deflating
procedure causes the rank of B̃ to be deficient by two (see Theorem 1 and Lemma 2).
Compared with the matrix size of B̃, 2nv, the rank of B̃, 2(nb − 1), seems “extremely
small”. Therefore, a low-rank compression technique on B̃ will have the benefits of reducing
the matrix size, computational cost and memory storage for efficiently solving the SEP (30).
As we mentioned above in Theorem 1, 0 and 1 are the only two eigenvalues of B̃ and,
particularly, all of its eigenvectors can be formulated explicitly. We will also return to this
point in Sect. 5.1.

We next explain the concept of low-rank compression to reduce the SEP (30).

Lemma 3 Let B̃1 be a 2nv × 2(nb − 1) column orthonormal matrix whose columns form
an orthonormal basis of the eigenspace of B̃ associated with the eigenvalue 1. Then B̃1 can
be represented in the form:

B̃1 =
[

E1 0
0 E1

]
, (31)

where E1 ∈ R
nv×(nb−1) satisfying E1 E�1 = D̃ with D̃ as in (23b).

Proof By Lemma 2, it holds that rank(D̃) = nb − 1. Let D̃ = E1 E�1 be a low-rank
compression of D̃. Then, according to the matrix structure of B̃ in (23b), we see that

B̃ =
[

D̃ 0
0 D̃

]
=

[
E1 E�1 0

0 E1 E�1

]
=

[
E1 0
0 E1

] [
E�1 0
0 E�1

]
≡ B̃1 B̃�1 .

	

Theorem 2 Under the assumption in Lemma 3, the SEP (30) can be reduced to the small-
scale, compressed and deflated SEP

(B̃�1 L̃−1
C B̃1)s1 = 1

λ
s1, (32)

where B̃�1 L̃−1
C B̃1 is symmetric positive definite and skew-Hamiltonian with size 2(nb − 1).

From now on, we use CDSEP to indicate the eigenvalue problem (32).

Proof Since B̃ is symmetric positive semi-definite, we can first rewrite the matrix B̃ to a
condensed form

B̃ = B̃1 B̃�1 , (33)

where B̃1 is a 2nv × 2(nb − 1) matrix as in (31). Moreover, if B̃0 is a 2nv × 2(ni + 1)

orthonormal matrix so that its columns span the kernel of B̃, then any 2nv-vector f can be
uniquely expressed as a linear combination of B̃0 and B̃1, that is,

f = B̃0s0 + B̃1s1 (34)

for some s0 ∈ R
2(ni+1) and s1 ∈ R

2(nb−1). Substituting Eqs. (33) and (34) into (30), and
premultiplying the resulting equation by B̃�1 , we can further reduce the SEP (30) to the
small-scale CDSEP (32) with size 2(nb − 1) due to the orthogonality B̃�1 B̃0 = 0.

It is obviously that B̃�1 L̃−1
C B̃1 is symmetric. Since B̃1 is column orthonormal, by Theorem 1

(i), we conclude that B̃�1 L̃−1
C B̃1 is positive definite. We now show that B̃�1 L̃−1

C B̃1 is skew-

Hamiltonian. Let J� =
[

0 −I�
I� 0

]
with � = 2(nb− 1). According to the block-diagonal-like

123



J Sci Comput (2014) 61:558–583 569

form of B̃1 in (31), we see that B̃1 J� = Jnv B̃1 where Jnv is the matrix defined in (8).
Since J�nv = −Jnv = J−1

nv and L̃C is symmetric skew-Hamiltonian, it is easy to verify that

L̃−1
C Jnv = Jnv L̃−1

C . Therefore, we can deduce that

(B̃�1 L̃−1
C B̃1 J�)

� = (J� B̃�1 L̃−1
C B̃1)

� = −B̃�1 L̃−1
C B̃1 J�.

	

From (30)–(34), as soon as we obtain an eigenpair (λ−1, s1) of the CDSEP (32), the desired
eigenvector f of the deflated GEP (28) (and hence of the original GEP (13)) can be obtained
directly through the relation

f = λL̃−1
C B̃1s1. (35)

Based on (16) in Lemma 1, f and I2 must be B-orthogonal. In addition, from (32) and (35),
since

B̃�1 f = λ(B̃�1 L̃−1
C B̃1)s1 = s1,

the B-orthogonality of f and I2 implies that

f�Bf = f�
(

B̃ + (
1

nb
BI2)(BI2)

�
)

f = f� B̃1 B̃�1 f = s�1 s1.

Consequently, f�Bf = 1 provided that s�1 s1 = 1.

Remark 2 We remark on the difference between these two eigenproblems (19) and (32). In
the first place, the reduced problem (32) excludes the possibility of interference induced by
the kernel of LC [Theorem 1 (i)]. Second, the inverted CDSEP (32) allows us to seek the
smallest positive eigenvalue directly through any well-known iterative methods without the
need to previously construct the coefficient matrix. To put it another way, we only need to
devise effective techniques to compute the matrix-vector multiplication B̃1q, and to solve the
linear system L̃C p = r for given vectors q, r. Thus, for large meshes, through the CDSEP (32)
to determine the smallest positive eigenvalue and its associated eigenvector of the original
GEP (13) is more efficient and robust than the equivalent problem (19).

4.3 SHILA: The Symmetric Skew-Hamiltonian Isotropic Lanczos Algorithm

Subsequently, we will propose a novel and efficient eigensolver for the SEP Ms = λs with
a symmetric skew-Hamiltonian operator M . In our case, M is given by B̃�1 L̃−1

C B̃1 and the
practical realization will be discussed in Sect. 5.

Let n be a positive integer. Suppose that M ∈ R
2n×2n is a skew-Hamiltonian matrix (not

necessarily symmetric). Van Loan [40], showed that there is a 2n × 2n symplectic2 and

orthogonal matrix of the form
[
Q J Q

]
with Q ∈ R

2n×n and J =
[

0 −In

In 0

]
such that

[
Q�

(J Q)�
]

M
[
Q J Q

] =
[

H F
0 H�

]
, (36)

where H ∈ R
n×n is upper Hessenberg and F ∈ R

n×n is skew-symmetric. The matrix
structure in (36) presents the multiplicity of the eigenvalues of M . For each double eigenvalue
of M , one copy resides in H , and the other copy is in H�. Consequently, the eigenvalues of
M can be captured by H without missing any information.

2 A 2n × 2n matrix G is said to be symplectic if G� J G = J .
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Recall that the Krylov subspace Kk(M, q) of M with respect to q and k is defined by

Kk(M, q) = span
{

q, Mq, M2q, . . . , Mk−1q
}

.

It can be shown that when M is skew-Hamiltonian, the associated Krylov subspace is
isotropic, which means that s� J t = 0 for all s, t ∈ Kk(M, q) [29]. To compute an ortho-
normal and symplectic basis

{
q j

}k
j=1 of such a k-dimensional isotropic Krylov subspace,

Mehrmann and Watkins [29] introduced the so-called isotropic Arnoldi process

q j+1h j+1, j = Mq j −
j∑

i=1

qi hi j −
j∑

i=1

Jqi ri j , j = 1, . . . , k − 1, (37)

where hi j = q�i Mq j , h j+1, j is chosen to be a positive number so that ‖q j+1‖2 = 1 and

ri j = (Jqi )
�Mq j . (38)

For a skew-Hamiltonian matrix M with exact arithmetic, ri j in (37) will all be zero, so
the isotropic Arnoldi process and the standard Arnoldi process are theoretically equiva-
lent. However, in the practical implementation, some tiny values for ri j caused by round-
off error will destroy the isotropic property. To prevent the loss of isotropicity, we need
to subtract out the tiny component Jqi ri j . The process terminates after n − 1 steps as
{q1, . . . , qn, Jq1, . . . , Jqn} forms an orthonormal basis of R

2n . Based on the isotropic
Arnoldi process, Mehrmann and Watkins [29] further developed the SHIRA method, which is
the abbreviation of skew-Hamiltonian, isotropic, implicitly restarted shift-and-invert Arnoldi
method, for solving for the large-scale SEP Ms = λs with a real skew-Hamiltonian
operator M .

For our model problem, M = B̃�1 L̃−1
C B̃1 in (32) is skew-Hamiltonian, and, additionally,

itself is symmetric. In this case, the equality in (36) can be reduced as
[

Q�
(J Q)�

]
M

[
Q J Q

] =
[

T 0
0 T

]
,

where T is an n × n tridiagonal matrix. Based on the isotropic Arnoldi process, we now
introduce an isotropic Lanczos procedure for a symmetric skew-Hamiltonian matrix. As M
itself is symmetric, the associated orthogonalization in (37) possesses a much simpler form,
given by

q j+1β j = Mq j − q j−1β j−1 − q jα j −
j∑

i=1

Jqi ri j , j = 1, . . . , k − 1, (39)

where
α j = q�j Mq j , β j = q�j+1 Mq j ,

and ri j is given as in (38) which also equals zero in exact arithmetic. The equation (39) can
be represented by the matrix form

M Qk = Qk Tk + J Qk Rk + qk+1βke�k , (40)

where Tk = tridiag(β j−1, α j , β j ) ∈ R
k×k is tridiagonal, Rk = [ri j ] ∈ R

k×k is upper
triangular, Qk =

[
q1 · · · qk

] ∈ R
2n×k is orthonormal and isotropic, and q j+1 is a suitable

vector satisfying
Q�k q j+1 = 0 and (J Qk)

�q j+1 = 0. (41)
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According to (40) and (41), we get

Q�k M Qk = Tk and

[
Q�k

(J Qk)
�
]

M
[
Qk J Qk

] =
[

Tk 0
0 Tk

]
.

Not only does the isotropic Lanczos process generate an orthonormal basis Qk for the
k-dimensional isotropic Krylov subspace, but also it splits the duplicate eigenvalues of M
when M is projected onto the subspace generated by Qk . So, to compute eigenvalues of Tk ,
and hence the Ritz values of M , we get each eigenvalue once, not twice. The critical essence
of this numerical approach is that if we try to find, for instance, 2m distinct eigenvalues from
M , then our method can produce 2m distinct eigenvalues from Tk , not a copy of m different
eigenvalues.

Suppose that (θ, z) is an eigenpair of Tk , i.e., Tkz = θz. Then (θ, Qkz) is a Ritz pair of
M . Then from (40) and (41) again, we have

‖(M − θ I )Qkz‖2 = ‖(M Qk − Tk Qk)z‖2
= ‖J Qk Rkz+ qk+1βke�k z‖2 =

∥∥∥∥
[

Rkz
βke�k z

]∥∥∥∥
2
≈ |βk ||e�k z|. (42)

The approximately equal sign in (42) holds since Rk is an upper triangular matrix with tiny,
or even zero, entries. Equation (42) provides us a simple and easy estimation of the residual
‖(M − θ I )Qkz‖2 as we obtain a Ritz pair (θ, Qkz) of M via the SHILA method.

Remark 3 If we directly perform the classical Lanczos method to solve the CDSEP (32),
the required iteration number may be more than the result of the SHILA method. This is
because the double eigenvalues will hold each other up and tend to converge simultaneously.
In contrast, the SHILA method can effectively exclude the inference of double eigenvalues
and make efforts to the desired one. For more in-depth discussion, we refer to [32].

5 Practical Implementations

The techniques of nonequivalence deflation and null-space free compression successfully
reduce the original GEP (13) to a small-scale CDSEP (32). On the implementation, it is
neither possible nor necessary to construct the inverse of deflating matrix L̃C in (23a) and
the compressed matrix B̃1 in (5.1).

In this section, we focus on how to efficiently compute the matrix-vector multiplication
(B̃�1 L̃−1

C B̃1)q for a given vector q when we perform the SHILA iteration through the struc-
tures of “undeflated” matrices LC and B themselves.

5.1 Explicit Eigendecomposition and Implicit Multiplication of B̃

As B̃ is a block-diagonal matrix consisting of D̃ in (23b), it is sufficient to determine the
eigendecomposition of D̃.

As in Sect. 4.1, we denote an ordered index set of the interior vertices by Ii and use the
notation Ib =

{
b1, . . . , bnb

}
to indicate the corresponding ordered index set of boundary

vertices. Let E0 ∈ R
nv×(ni+1) and E1 ∈ R

nv×(nb−1) be, respectively, defined by

E0 =
[
e j1 · · · e jni

1√
nb

d
]
, j1, . . . , jni ∈ Ii, (43a)

E1 =
[
b1 · · · bnb−1

]
, (43b)
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where d is the nonzero vector defined in (22) and columns of E1 are those nv-vectors in (26).
Then, by Lemma 2, we know that E0, E1 are column orthonormal matrices with E�0 E1 = 0.
Moreover, column vectors of the following enlarging matrices

B̃0 =
[

E0 0
0 E0

]
and B̃1 =

[
E1 0
0 E1

]
(44)

are orthonormal eigenvectors of B̃ corresponding to its eigenvalues 0 and 1, respectively (cf.
Lemma 3). Based on the above deductions, we conclude that B̃ is orthogonally diagonalizable,

B̃ = [
B̃0 B̃1

] [
0 0
0 I2(nb−1)

] [
B̃�0
B̃�1

]
= B̃1 B̃�1 ,

which is an explicit decomposition formula.
Although the low-rank compressed matrix B̃1 can be explicitly constructed, we still

encounter another problem on the dense factorization. Nevertheless, we just need to know
how to compute the product of B̃1 (or B̃�1 ) and a given vector when we use the SHILA method
to solve the desired eigenpair. Fortunately, the specific structure of B̃1 provides an implicitly
computational scheme of matrix-vector multiplication without explicitly generating B̃1 itself
beforehand. From (44), it is thus sufficient to consider the matrix-vector multiplications: E1q
and E�1 p for given q ∈ R

nb−1 and p ∈ R
nv . In order to make the expression clearer, we also

adapt the reordering notations so that each column vector bk of E1 in (43b) is of the form
(27). The actual computing can be achieved via appropriate index correspondences. For a
fixed vector q = [q1 · · · qnb−1]�, E1q is an nv-vector given by

(E1q)i =

⎧⎪⎨
⎪⎩

(∑nb−1
k=i

1√
k(k+1)

qk

)
− i−1√

(i−1)i
qi−1, i = 1, . . . , nb − 1,

− nb−1√
(nb−1)nb

qnb−1, i = nb,

0, i = nb + 1, . . . , nv,

(45)

where q0 = 0. Similarly, the product of E�1 and a given vector p = [p1 · · · pnv ]� is the
following (nb − 1)-vector

(
E�1 p

)
i
= 1√

i(i + 1)

i∑
k=1

(pk − pi+1) , i = 1, . . . , nb − 1. (46)

5.2 The Inverse of L̃C

When we apply the nonequivalence transformation (Sect. 4.1) and then reduce the deflating
GEP (28) to the small-scale problem (32), at first glance, it seems definitely to modify LC

by a rank-2 update as presented in (23a). It is not advisable to construct the deflated matrix
L̃C as well as its inverse since the symmetric matrix (BI2)(BI2)

� in (23), dependent on the
boundary vertices, may be practically non-sparse. However, it is not necessary to actually
compute L̃C as we only need to be capable to find an equivalent way for solving the linear
systems whose coefficient matrix is L̃C .

To perform the SHILA method for solving the CDSEP (32) with the symmetric positive
definite and skew-Hamiltonian matrix B̃�1 L̃−1

C B̃1, we must solve a linear system

L̃C p = q (47)

with a given 2nv-vector q in each step for the subspace expansion. Since L̃C is a rank-2 update
of LC , this motivates us to solve the linear system (47) based on the Sherman–Morrison–
Woodbury formula (SMWF) [10]. Consider G̃ = G+U V� where G ∈ R

n×n is nonsingular,
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U, V ∈ R
n×r are of rank r � n so that Ir + V�G−1U is an r × r invertible matrix. The

SMWF suggests computing G̃−1 through the identity

G̃−1 = (In −W V�)G−1 with W = G−1U (Ir + V�G−1U )−1. (48)

This formula is valid only if G is nonsingular while LC fails to satisfy this requirement
because of the zero row sum property [see (23a)]. However, we can rewrite L̃C as

L̃C = L+C +
[

1
nb

BI2 −e1 −env+1

] [
BI2 e1 env+1

]�
, (49)

where

L+C ≡ LC + e1e�1 + env+1e�nv+1 =
[

K+ S
−S K+

]
, K+ = K + e1e�1 . (50)

To contrast (49) with the SMWF formula (48), we see that n = 2nv, r = 4, G =
L+C , V = [

BI2 e1 env+1
]

and W can be expressly formulated as follows. Let x, y ∈ R
nv

satisfy L+C
[ x

y

]
= 1

nb

[ d
0

]
, where d is defined as in (22). Set χ = 1

nb
(d�x + 1), η =

1
nb

(d�y), σ = (x2
1 + y2

1 )−1nbx1, τ = (x2
1 + y2

1 )−1nby1 with x1 = e�1 x and y1 = e�1 y.
Then

W = 1

nb

[
1nv 0 h k
0 1nv −k h

]
, (51)

where h = σx + τy− (σχ + τη)1nv and k = τx − σy− (τχ − ση)1nv .
This representation views L̃C as a rank-4 update of L+C . L+C itself is a simple perturbation,

virtually no-cost, on the first diagonal element of LC as well as its dual. From (50), one can
see that L+C completely preserves the structure and sparsity of LC , and, in general, L+C will
be a nonsingular matrix. Therefore, we present a feasible alternative for applying the SMWF
to L̃C for solving (47).

Remark 4 The low-rank update formula (50) can be written in a more general form

K+ = K + eke�k , 1 ≤ k ≤ nv.

In other words, we can select suitable vertex index k to destroy the zero row sum property of
K so that K+ (and hence L+C ) becomes a nonsingular matrix. Fixed 1 ≤ k ≤ nv, the 2nv-
vector e1 and its dual one env+1 in Eqs. (49)–(51), of course, will be changed accordingly.
The resulting matrix L+C and the original one LC always have the same structure and sparsity
as shown in (49) and (50). So one can adaptively choose the perturbation term to construct
an invertible matrix L+C so that SMWF formula (48) is applicable for solving the linear
system (47).

5.3 SHILA for Spectral Conformal Parameterizations

Algorithm 5.1 summarizes the SHILA method for solving the smallest positive eigenvalue
and corresponding eigenvector of the GEP (13) based on a null-space free compression
technique to the deflated matrix pair (L̃C , B̃) in (23). We then explain some key points for
our MATLAB implementation of Algorithm 5.1.

(i) All matrix-vector multiplications, including B̃1 in (31) and its transpose B̃�1 , can be
performed by multiply-add operations on vectors with appropriate indices [cf. (44)–(46)].
So, it does not require any extra cost to construct and store these matrices.
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Algorithm 5.1 SHILA Procedure for Spectral Conformal Parameterizations
Input: The matrix LC in (7); a random unit vector q1; the maximum iteration maxit and the tolerance tol.
Output: (λ, f) where λ is the smallest positive eigenvalue of the GEP (13) and f is the associated eigenvector.

1: % Initialization
2: Set Q1 = q1 and P0 = [ ];
3: LC ← L+C by (50);

4: % The SHILA procedure
5: for j = 1, 2, . . . , maxit do

6: % Compute q = B̃�1 L̃−1
C B̃1q j

7: Compute t = B̃1q j =
[

E1 0
0 E1

]
q j implicitly by (45);

8: Solve L̃C p j = t by SMWF with (49)–(50);

9: Set Pj = [Pj−1, p j ] = L̃−1
C B̃1 Q j ;

10: Compute q = B̃�1 p j =
[

E�1 0
0 E�1

]
p j implicitly by (46);

11: % Orthogonalization process
12: Compute α j = q�j q;
13: q← q− α j q j ;
14: if j > 1 then
15: q← q− β j−1q j−1;
16: end if

17: % Isotropic orthogonalization process
18: Compute r = (J Q j )

�q, where J is the matrix (8);
19: q← q− (J Q j )r;

20: % Full reorthogonalization process
21: Compute r = Q�j q;
22: q← q− Q j r;

23: % Compute the j + 1 Lanczos vector q j+1
24: Compute β j = ‖q‖2;
25: Set q j+1 = q/β j and Q j+1 = [Q j , q j+1];
26: % Compute approximate eigenpair
27: Compute the largest magnitude eigenvalue θ and the associated eigenvector z of Tj where T1 := [α1],

T2 :=
[

α1 β1
β1 α2

]
and Tj :=

⎡
⎣ Tj−1

0
β j−1

0 β j−1 α j

⎤
⎦ , j ≥ 3;

28: % Check residual
29: if |β j ||e�j z| < tol then

30: Set λ = θ−1 and f = λPj z;
return (λ, f)

31: end if
32: end for

(ii) In order to improve the efficiency of solving the linear system in line 8 of Algorithm 5.1,
we first compute the Cholesky factorization of L+C by the MATLAB function chol,
beforefor-loop procedure of Algorithm 5.1, and use the resulting factorization together
with SMWF as well as the MATLAB built-in function matrix left division (i.e., \) to solve
the linear system in line 8 at each isotropic Lanczos step. If the matrix size is extremely
large, any suitable iterative method can be a feasible alternative.
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(iii) It is essential to prevent the loss of isotropicity and orthogonality of Lanczos vectors. To
this end, we perform the isotropic reorthogonalization and the full reorthogonalization
as shown in lines 17–19 and 20–22 of Algorithm 5.1, respectively.

(iv) To seek the eigenpair of the small-scale Tj with largest magnitude (line 27), we call the
eig function to accomplish this task.

(v) To determine the stopping criterion tol in line 29 of Algorithm 5.1, we propose a lower
bound estimation of the residual ‖LC f − λBf‖2 as follows.

Lemma 4 Let (λ−1, s1) be an approximate eigenpair of the CDSEP (32) which is the can-
didate for approximating the largest real positive eigenvalue and its associated eigenvector.
Then

(λ‖L̃−1
C ‖−1

2 )

∥∥∥B̃�1 L̃−1
C B̃1s1 − 1

λ
s1

∥∥∥
2
≤ ‖LC f − λBf‖2, (52)

where f is defined as in (35).

Proof By (33)–(35) and (29), we get∥∥∥B̃�1 L̃−1
C B̃1s1 − 1

λ
s1

∥∥∥
2
=

∥∥∥B̃�1 (L̃−1
C B̃f − 1

λ
f)

∥∥∥
2

≤ 1

λ
‖L̃−1

C ‖2‖L̃C − λB̃f‖2 = 1

λ
‖L̃−1

C ‖2‖LC − λBf‖2.
	


Note that ‖L̃−1
C ‖−1

2 equals to the smallest positive eigenvalue of LC , the right hand side of
(52) can be approximated by λ2‖B̃�1 L̃−1

C B̃1s1− 1
λ

s1‖2. Since the smallest positive eigenvalue
λ of the GEP (13) can be close to zero, we expect that the lower bound of ‖LC f − λBf‖2 in
(52) can be very small when λ is very close to the desire target. Lemma 4 therefore provides
us an estimation to determine the stopping criterion tol in line 29 Algorithm 5.1 [(see also
(42)]. In each SHILA step, we can adaptively set tol so that

λ2‖B̃�1 L̃−1
C B̃1s1 − 1

λ
s1‖2 ≤ λ2tol ≈ eps.

In our implementations, we observe that almost all (approximate) eigenvalues are < 10−5

(see Table 1) and hence the lower bound on the left hand side of (52) is approximate to
‖B̃�1 L̃−1

C B̃1s1− 1
λ

s1‖2 times a factor < 10−10. Therefore, for simplicity, we take tol = 10−5

to be a fixed tolerance as the stopping criterion of SHILA algorithm and expect that the
accuracy for the residual of the returning Ritz pair (λ, f) in line 30 of Algorithm 5.1 will be
sufficiently precise.

(vi) Finally, and most importantly, we highlight the statements in lines 9 and 30 of Algo-
rithm 5.1 which need further explanation. Suppose we obtain an desired eigenpair (θ, z)
of Tk at step k, i.e., (θ, z) satisfies the stopping criterion (42) in line 29 of Algorithm 5.1.
Then, (θ, Qkz) is a Ritz pair of the CDSEP (32). With the aid of (35), we know that

λ = θ−1 and f = λL̃−1
C B̃1 Qkz (53)

are the approximate eigenvalue and the associated eigenvector of the original eigen-
problem (13). Therefore, to get the desired eigenvector, (53) indicates that we need to
perform two matrix-vector multiplications and solve one linear system. But this is only
a theoretical expression. In practice, the pre-stored matrix Pk in line 9 of Algorithm 5.1
collects the computational results of L̃−1

C B̃1 Qk in our past effort in lines 7 and 8. So, to
transform z back to the vector f in (53), we actually just need to compute one matrix-
vector multiplication together with a scalar product as shown in line 30 of Algorithm 5.1,
without extra cost for solving a linear system.
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6 Numerical Experiments

We demonstrate the efficiency and accuracy of our novel numerical technique, SHILA (Algo-
rithm 5.1), to solve the new derived CDSEP (32) for the computation of DCPs of various
mesh models.

6.1 Performance

All numerical demonstrations in this work were carried out using MATLAB R2013a on a
MacBook Pro Retina with 2.6 GHz Intel Core i5 processor and 8 GB of RAM. The maximum
iteration maxit and the stopping tolerance tol in Algorithm 5.1 are taken as maxit = 30 and
tol = 10−5 [see (v) of Sect. 5.3], respectively.

In order to show the advantages of SHILA, we additionally apply the classical Lanczos
method to solve our CDSEP (32). Almost all of the procedures of its implementations are
the same as those of the SHILA method (as described in Sect. 5.3) except for the isotropic
orthogonalization process in lines 17–19 of Algorithm 5.1. Moreover, we also consider the
performance of the modified GEP (17) in [31] and the Schur complement reduction (19) in
[1]. To solve the modified GEP (17), we call the eigs function from the MATLAB library
to find the largest eigenvalue and associated eigenvector of (17) with a function handle to
compute the matrix-vector product on the left-hand side of (17) without explicitly forming
this matrix. For the approach introduced in [1], we first compute the coefficient matrix
of the Schur complement as in (19) (via mldivide) and subsequently solve the reduced
eigenvalue problem by calling eigs. Note that the reduced system (19) still has double
eigenvalues including the zeros, so we call eigs to compute 4 eigenvalues with the smallest
magnitude—two of them are 0 and the others are (theoretically) identical to the smallest
positive eigenvalue of the GEP (13).

To express numerical results of these four methods, we denote SLCDSEP, LCDSEP, EMGEP and
SCRGEP as follows:

– SLCDSEP: Solving the CDSEP (32) by the SHILA method (Algorithm 5.1).
– LCDSEP: Solving the CDSEP (32) by the classical Lanczos method.
– EMGEP: Solving the modified GEP (17) by the MATLAB function eigs.
– SCRGEP: Solving the reduced GEP (19) by the Schur complement method.

To quantitatively measure the conformality, we adapt the quasi-conformal (QC) distortion
[35]. The QC distortion factor is computed per mesh triangle face as the ratio Γ

γ
, where

Γ and γ are larger and smaller eigenvalues of the Jacobian of the map. The ideal conformality
is 1, larger values indicate worse conformality.

Table 1 shows the computational time of these methods. For SLCDSEP and LCDSEP, we
additionally present the individual iteration numbers. Moreover, as we obtain the desired
eigenpair (λ, f) from SLCDSEP, LCDSEP, EMGEP or SCRGEP, we compute the residual ‖LC f −
λBf‖2 and ‖f�BI2‖2 for each approach as shown in Fig. 1. Note that if f is the eigenvector
computed from EMGEP, then, in general, ‖f�Bf−1‖2 � 0. So, in this case, f should be further
normalized by f√

f�Bf
.

For the sake of brevity, we only present 10 representative figures (Figs. 2, 3, 4, 5, 6, 7, 8, 9,
10, 11) to show the parameterization results among these models (all parameterizations can
be found on the website of the first author 3). In each figure, (a) is the original triangular mesh
model, (b) shows the embedded parameter domain of SCP with color coded QC distortion,
and (c) presents the SCP result with texture mapping.

3 http://jupiter.math.nctu.edu.tw/~wqhuang/shila/shila_scp.pdf
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(a) (b)

Fig. 1 Residuals and B-orthogonality for SLCDSEP, LCDSEP, EMGEP and SCRGEP. a Mesh Models versus
Residuals, b Mesh Models versus B-orthogonality

Fig. 2 The Beetle model

Fig. 3 The Bimba model

6.2 Discussions

• Efficiency From Table 1, we observe that the SCRGEP scheme is competitive with other
methods only when the number of boundary vertex nb is moderate. As nv and nb increase,
especially for large nb, SCRGEP approach takes more and more time as well as memory
to solve the matrix equation (21) and to store the computed results. Even in the example
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Fig. 4 The Julius Caesar model

Fig. 5 The Chinese Lion model

Fig. 6 The Foot model

on the Uzzano model, the SCRGEP method was unable to solve the matrix equation (21)
in 30 min and it eventually ran out of memory after 2,331 s. In contrast, EMGEP has much
better efficiency than the SCRGEP approach. But, with the increasing numbers of ni and
nb, we see that, once again, EMGEP spends even two to four times more CPU time than
those of these two Lanczos-type methods. The isotropic orthogonalization process is
the significant difference between SHILA and the classical Lanczos method. First of
all, the CPU time costs in Table 1 show that the isotropic orthogonalization process (in
lines 17–19 of Algorithm 5.1) does not have a significant amount of time spent even
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Fig. 7 The Gargoyle model

Fig. 8 The Hand model

when the iteration number of SLCDSEP is equal to that of LCDSEP. Moreover, according to
the numbers of iterations, one can see that SHILA can absolutely remove the influence
of duplicate eigenvalues, while the iteration numbers of LCDSEP show that the classical
Lanczos method can suffer the impact of double eigenvalues. Our experiments reveal that
the iteration numbers of SLCDSEP are less than five to nine iterations of LCDSEP procedure.
This indicates that SHILA can efficiently improve the convergence rate and reduce the
required CPU time.
• Accuracy From Fig. 1, we observe that EMGEP lose the precision of the residuals ‖LC f −

λf‖2, and the B-orthogonality (f�BI2 = 0). Since (17) is a singular GEP and almost
any perturbation of a singular pencil will turn to a regular one (nearly singular), the
eigs function can be used to compute the desired eigenpair of the nearly singular pencil
corresponding to (17). Nevertheless, to compute the eigenpairs of a nearly singular pencil
is very sensitive [3,30]. As shown in Fig. 1b, we see that the eigenvector f of (17),
computed by eigs, cannot possess the B-orthogonality. Consequently, EMGEP has only
the accuracy of residuals between 10−6 ∼ 10−9 (see Fig. 1a). On the other hand, SLCDSEP

and LCDSEP always have the same accuracy and are almost more accurate than SCRGEP
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Fig. 9 The Isis model

Fig. 10 The Nicolo da Uzzano model

Fig. 11 The Vase Lion model
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Table 1 CPU time and number of iterations. Note that for the Uzzano model, SCRGEP did not complete and
encountered the ”out of memory” error in 2,331 s after

Model nv nb λ Time (#Its) [seconds]

SLCDSEP LCDSEP EMGEP SCRGEP

Susan 5,161 321 4.8045e−6 0.1 (7) 0.1 (7) 0.1 0.7

Fandisk 6,699 450 2.6814e−6 0.1 (8) 0.1 (8) 0.1 0.8

Saddle 8,321 256 3.3305e−7 0.1 (6) 0.1 (11) 0.4 1.0

Foot 10,211 454 1.9270e−6 0.1 (8) 0.1 (13) 0.3 1.1

Gargoyle 10,229 456 1.6899e−5 0.1 (10) 0.1 (10) 0.4 1.2

Beetle 15,053 375 5.2974e−7 0.2 (7) 0.3 (12) 0.3 6.5

Sophie 15,282 562 2.1015e−6 0.2 (7) 0.3 (13) 0.3 4.2

Pipes 20,304 64 1.0470e−4 0.3 (6) 0.3 (6) 1.1 3.7

Dino 24,605 1,248 1.0443e−6 0.3 (10) 0.4 (17) 0.9 7.8

Bunny 35,190 927 1.9835e−6 0.6 (10) 0.6 (10) 1.9 15.0

Hand 37,234 1,508 2.0250e−7 0.6 (9) 0.8 (15) 1.7 26.0

Camel 402,40 2,334 5.4112e−7 0.7 (11) 1.0 (20) 2.1 45.4

Vase-Lion 178,491 625 6.8350e−6 2.6 (9) 2.6 (9) 3.8 59.2

Isis 188,144 1,977 6.4689e−8 4.4 (10) 5.0 (15) 11.6 679

Planck 199,169 293 2.7225e−6 4.3 (7) 4.3 (7) 11.8 34.8

Chinese-Lion 255,284 928 7.5866e−6 5.7 (11) 5.7 (11) 9.2 371

Caesar 387,900 1,634 9.2161e−7 11.3 (9) 13.4 (16) 48.6 1,227

Bimba 423,713 1,308 8.2092e−8 7.6 (8) 8.8 (13) 23.8 1,180

Uzzano 946,451 2,581 1.4856e−7 36.3 (10) 61.8 (17) 65.9 –

(about 1 significant digit). Moreover, both SLCDSEP and LCDSEP have high precision on the
requirements of the B-orthogonality.

In summary, SLCDSEP has much better efficiency than SCRGEP and better than LCDSEP and
EMGEP. For accuracy, SLCDSEP and LCDSEP present high numerical accuracy. The accuracy of
SLCDSEP is much better than EMGEP and is better than SCRGEP. These data advocate the efficiency
and accuracy ofSLCDSEP, a new derived CDSEP (32) together with the novel SHILA algorithm,
as a fundamental tool for computing SCPs.

7 Conclusions

Spectral methods are not new in computer graphics and geometry processing, and have been
developed to solve a diversity of problems. For an up-to-date survey on this topic, we refer
to [43]. Since the potential quantities, such as eigenvalues and eigenvectors, of a spectral
method are the primary factors in solving such problems, how to accurately and efficiently
dig out these pieces of eigeninformation is always an important issue.

Spectral conformal parameterization (SCP) [31] is one of the various applications in
spectral mesh processing. To compute a conformal mesh parameterization, SCP suggests to
compute the eigenvector the GEP (13) corresponding to its smallest positive eigenvalue. By
inspecting the particular matrix structures of the pair (LC , B) in (13), we can apply appro-
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priate nonequivalence deflation and null-space free compression techniques to transform this
eigenproblem into the small-scale CDSEP (32) with a symmetric positive definite skew-
Hamiltonian operator. We derive an explicit representation for the coefficient matrices of the
CDSEP (32) and propose an implicit technique for practical implementation. Furthermore,
We develop a novel SHILA algorithm for solving the CDSEP (32).

Numerical experiments show that, compared with the numerical implementations in [31]
and [1], the new derived CDSEP together with the SHILA algorithm can accurately and
robustly compute the parameterization results of SCP.

Acknowledgments Some of the mesh models are available on the websites CCGL (Susan and Sophie);
Unwrapped meshes (Bunny, Camel, Dino, Fandisk, Hand, Foot and Isis), and Project page of ARAP (Beetle
and Gorgyle). The remaining mesh models are courtesy of AIM@SHAPE Shape Repository. The first and
third authors would like to acknowledge the support from the National Science Council and the National
Centre for Theoretical Sciences in Taiwan. They also like to thank the ST Yau Centre at the National Chiao
Tung University for the support.
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