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The dynamics of gas‑bubble 
formation at saturated conditions 
in porous media flow
K. Alex Chang1* & W. Brent Lindquist2

We investigate the stability of gas bubbles formed at saturated (bubble-point) conditions during two-
component ( CO

2
 , H

2
O), two-phase (gas, liquid) flow by developing and analyzing a 2× 2 dynamical 

system describing flow through a single pore to study the dynamics of gas bubble formation and 
evolution. Our analysis indicates that three regimes occur at conditions pertinent to petroleum 
reservoirs. These regimes correspond to a critical point changing type from an unstable node to an 
unstable spiral and then to a stable spiral as flow rates increase. In the stable spiral case gas bubbles 
will achieve a steady-state finite size only if they form within the attractor region of the stable 
spiral. Otherwise, all gas bubbles that form undergo, possibly oscillatory, growth and then dissolve 
completely. Under steady flow conditions, this formation and dissolution repeats cyclically.

Compositional flow involving a dissolved gas is of importance in many areas, including oil reservoir production3, 

14, 22, pipeline transport12, 19, 25, 28, CO2 sequestration6, 27, and the disposal of radioactive waste4, 5. Such flow 
involves the inherent possibility of creation of a gas phase and its subsequent transport. Excluding specific tertiary 
recovery practices such as CO2 foam flooding24, keeping potential gas components dissolved in fluid phases is 
important for efficient extraction in reservoirs; the presence of gas bubbles and the resultant fluid–gas menisci 
complicates flow and can compete with fluid movement. The ability to prevent bubble formation through control 
of formation pressure or flow rates is therefore important for extraction efficiency.

Once formed in a porous medium, the gas phase is typically non-wetting. During imbibition (displacement by 
a wetting phase) a non-wetting phase can either exit pore space completely under piston-like displacement, or a 
fraction of it may become trapped in the form of one or more bubbles by a process known as snap-off. The snap-
off process is strongly dependent on pore-geometry, wettability, viscosity and interfacial-tension conditions26. 
While snap-off is an important process in trapping the non-wetting phase, the process requires a starting condi-
tion in which both phases—non-wetting and wetting—are present.

In this study, we focus instead on the process by which a gas phase comes out of a saturated solution—forming 
bubbles. We therefore directly address the transition between single- and two-phase flow and the initial dynam-
ics of those gas bubbles that do form. We are consequently studying flow conditions that would occur before 
sufficient (local) volumes of non-wetting phase have formed to begin any process of snap-off.

A challenge to the numerical simulation of compositional flow in porous media is the change in the sys-
tem of equations that accompanies the appearance or disappearance of the gas phase. This difficulty has been 
addressed in several computational approaches1, 2, 6–8, 10, 21. In our computations of two-phase, two-component 
( H2O , CO2 ) flow in a 3D pore network6, we noted the periodic appearance and dissolution of the gas phase in 
certain pores. Intensive evaluation of our algorithms led us to conclude that this observed cyclic phenomenon 
was not numerical in origin. In reviewing the literature on gas transport in porous media at reservoir scales13, in 
micromodel studies23, specific studies on gas bubble formation17, and mathematical studies of gas phase disap-
pearance in water-hydrogen systems15, we have been unable to find any mention of this periodic phenomenon. 
We have therefore pursued a mathematical investigation. In this article, we extract a 2× 2 dynamical system 
from the mathematical model upon which our computations in Chang and Lindquist6 were based in order to 
study the dynamics of gas bubble formation and evolution and the mechanics of this phase-cycling phenomenon. 
We summarize the mathematical model and derive the dynamical system. We analyze the direction fields for this 
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non-linear system, demonstrate the existence of critical points, and study solution trajectories. To support our 
analysis of the dynamical system, we obtain numerical solutions and conclude with a discussion of our results.

The mathematical model and the dynamical system
Here we summarize the model6 in the context of flow through a single pore and develop the dynamical system.

The physical model.  Consider a 3D, horizontal, axially symmetric network model consisting of a single 
spherical pore of radius Rpore and volume V (Fig. 1). The flow through the network is from left to right at the 
constant volumetric rate Q. The inflow solution is a liquid phase consisting of water with dissolved CO2 ; the 
concentrations of H2 O and CO2 in the solution are CW and CC , respectively.

The pore is initially filled with pure water. At the outlet, the pore is connected to a large reservoir of pure 
water held at pressure p. The length of the outlet channel is L and the radius of the cross section of the inlet and 
outlet channel is a. The system is held at constant temperature T.

The mathematical model.  Under single-phase flow conditions (flow remains under-saturated with dis-
solved CO2 ) the fluid transport is governed by the equations

where CCl and pl are, respectively, the concentration of CO2 and the pressure of the liquid phase in the pore and 
�l is the conductivity of the liquid phase from the pore to the outlet. The liquid phase is assumed incompressible 
with H2 O remaining the dominant species; therefore the concentration of water in the liquid phase is assumed 
to be the constant value CW = 1/18 mol cm−3 . Under these assumptions, the equations in (1) simplify to

which provide the single-phase liquid pressure of the water and the CO2 concentration in the pore.
A gas phase is generated in the pore when the concentration of CO2 exceeds the solubility (see equation (17) 

of Chang and Lindquist6) of dissolved CO2 in the liquid phase at the pressure pspl  , and the resulting two-phase 
flow follows the system below (these are, respectively, Eqs. (1), (9), (3), (4), (14) and (15) of Chang and Lindquist6 
applied to our single pore geometry): 

 In this system, sl and sg are the saturations of the liquid and gas phases; pl and pg are the pressures in the liquid 
and gas phase in the pore; CHg is the gas phase H2 O concentration; CCl and CCg are the liquid and gas phase CO2 
concentrations; mH , mC are the pore averaged concentrations of H2O and CO2,

(1)V
dCW

dt
= QCW − CW�l(pl − p), V

dCCl

dt
= QCC − CCl�l(pl − p),

(2)p
sp
l = Q/�l + p, CCl(t) = CC(1− e−Qt/V ),

(3a)sl + sg = 1,

(3b)pg = pl + pc ,

(4a)V
dmH

dt
=

{
QCW − QlCW − QgCHg, pg > p,
QCW − QlCW, p ≥ pg,

(4b)V
dmC

dt
=





QCC − QlCCl − QgCCg, pg > pl > p,
QCC − QgCCg, pg > p ≥ pl ,
QCC, p ≥ pg > pl ,

(5a)µ⊖
Hl + RT ln

(
CW

CW + CCl

)
= µ⊖

Hg + RT ln

(
CHgRT

p∗H

)
,

(5b)µ⊖
Cl + RT ln

(
CCl

CW + CCl

)
= µ⊖

Cg + RT ln

(
CCgRT

p∗C

)
.

Figure 1.   A cross section of the axially symmetric 3D geometry. The arrow indicating flow direction is placed 
on the axis of symmetry.
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and Ql , Q g are, respectively, the volumetric flow rates of the liquid and gas phases exiting the pore,

In (7), f (sg) and g(sg) are the relative permeabilities of the liquid and gas phases respectively. As in Chang and 
Lindquist6, we adopt the models11

Equations (4) and (8) are written to reflect the assumption that the outlet reservoir is sufficiently large that it can 
be assumed to remain pure water (i.e. any dissolved CO2 in the outlet reservoir mixes to negligible concentration 
and exiting gas bubbles rise due to buoyancy and cannot flow back into the pore). Therefore, under the backflow 
condition, pl < p , (4) and (8) reflect the fact that pure water flows into the pore from the outlet.

The variables �l and �g are the channel conductivities of the liquid and gas phase between the pore and 
the outlet reservoir. Conductivity values are modeled from the Hagen-Poiseuille equation, �l = πa4/8νlL and 
�g = πa4/8νg L . The viscosities, νl and νg , of liquid and gas phases are given in units of Pa s by Lide and 
Kehiaian18,

over the temperature range 273.15 ◦K ≤ T ≤ 373.15 ◦K.
Equations (5) express the equality (between the liquid and gas phases at equilibrium) of the chemical poten-

tials of H2 O and CO2 . Inherent in our analysis is the assumption that phase changes occur rapidly compared to 
fluid transport so that equilibrium conditions are essentially maintained. µ⊖

βl and µ⊖
βg are the chemical potentials 

of the species β = H2 O or CO2 in the liquid and gas phase at standard conditions. p∗H and p∗C are standard pres-
sures which we take to be 1 bar. Equations (5) can be rewritten

where

Over the range of temperatures of interest, [273.15 ◦K, 373.15 ◦K] ,  KH(T) lies in the range 
[1.82864× 10−5, 1.94313× 10−5] and the ratio KH(T)/KC(T) is in the range [5.76231× 10−4, 4.25324× 10−3].

Assuming the liquid phase is perfectly wetting, the capillary pressure in (3b) is modeled by the Young–Laplace 
equation,

where γ is the surface tension and r is the radius of the gas bubble. We assume that the gas phase forms as a single 
bubble in the pore and therefore estimate r = s

1/3
g Rpore . The surface tension, γ , is evaluated by the Eötvös rule,

where Tc = 647◦K  is the critical temperature for water and κ = 2.1× 10−7 JK−1mol−2/3 . We also assume the 
gas phase is ideal; therefore the total pressure of the gas phase is

The dynamical system.  It will be convenient to divide concentration variables by CW , pressure variables 
by CWRT , flow rates by V, and denote the resultant variables using “over-bar” notation (e.g. CCl = CCl/CW , 
mH = mH/CW , p = p/CWRT , KC = KC/CWRT , Q = Q/V  ). As a result, all variables become dimensionless 
except for the volumetric flow rates, Q , Ql , Qg , which have dimension of time−1 . The natural time variable 
(through which to introduce dimensionless flow rates) is the quantity Q−1 . However, the flow rate Q will be a 
critical variable in our analysis. We therefore retain the variable Q in our equations and consequently keep an 
explicit non-dimensional time variable in the dynamical system.

We identify the fundamental variables, w, y, of the dynamical system as

(6)mH = slCW + sgCHg, mC = slCCl + sgCCg;

(7)Ql = �l f (sg)(pl − p), Qg = �g g(sg)(pg − p).

(8)f (sg) =
{

1
2 (1− sg)

2(2+ sg), pl ≥ p,
1, pl < p,

g(sg) =
{
s3g, pg ≥ p,

0, pg < p.

ln(νl) = −10.4349−
507.881

(149.39− T)
,

νg = 4.6086× 10−8T + 3.6436× 10−11T2 − 9.5765× 10−14T3 + 6.1091× 10−17T4,

(9)CHgRT = KH
CW

CW + CCl
, CCgRT = KC

CCl

CW + CCl
,

KH(T) = p∗H exp[(µ⊖
Hl − µ⊖

Hg)/RT], KC(T) = p∗C exp[(µ⊖
Cl − µ⊖

Cg)/RT].

(10)pc =
2γ

r
,

γC
−2/3
W =

{
κ(Tc − T), T ≤ Tc ,
0, T > Tc ,

(11)pg = CCgRT + CHgRT .

(12)w = CCg, 0 ≤ w ≤
KCCC

1+ CC

def= CCg(CC); y = sg, 0 ≤ y ≤ 1.
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Since the inlet solution is an aqueous phase, we require CC < 1 . Therefore w ≤ CCg(CC) < KC . From (9), the 
concentrations CHg and CCl can be expressed in terms of w:

Note that the definition of CCg(CC) in (12) and the relation for CCl in (13) gives the identity 
CC = CCg(CC)/(KC − CCg(CC)) = CCl(CCg(CC)).

From (10), (11) and (3b), the dimensionless pore phase pressures are expressed in terms of w and y as

where we have defined s = 2γ /(RporeCWRT) . From (14) we note pl < pg . Equations (4) become 

We can obtain alternate expressions to (15) for �H and �C . Starting from (6), we have

Taking the time derivative of (16) gives the alternate expressions, 

 where for notational brevity, we have introduced the functions G1 , G2 , F1 , F2 . Solving (17) for dw/dt and dy/dt 
gives the dynamical system

Using (13) to evaluate the concentrations and concentration derivatives in (17) and noting that KH < 2× 10−5 
and KH/KC < O(10−3) over the range of temperatures of interest, we have, to good approximation,

The statement KH/KC ≪ 1 has a physical consequence, namely that the H2 O component in the gas phase remains 
small in comparison to the CO2 component. Approximations (19) imply the simplifications: of (14) to

of (15) to

(13)
CHg = KH

KC − w

KC
, CHg ∈

[
KH

1+ CC
,KH

]
;

CCl =
w

KC − w
, CCl ∈ [0,CC].

(14)
pc = sy−1/3, pg =

(
1−

K H

KC

)
w + K H ,

pl =
(
1−

KH

K C

)
w + KH − sy−1/3,

(15a)

dmH

dt
=

{
Q − Ql(w, y)− CHg(w)Qg(w, y), pg > p,

Q − Ql(w, y), p ≥ pg,

}

def=�H(w, y),

(15b)

dmC

dt
=





CCQ − CCl(w)Ql(w, y)− wQg(w, y), pg > pl > p,

CCQ − wQg(w, y), pg > p ≥ pl ,

CCQ, p ≥ pg > pl ,





def=�C(w, y).

(16)mH(w, y) = 1− y + yC Hg (w), mC(w, y) = (1− y)CCl(w)+ yw.

(17a)
�H(w, y) = y

dCHg(w)

dw

dw

dt
+ (CHg(w)− 1)

dy

dt

def=G1(w, y)
dw

dt
+ G2(w)

dy

dt
,

(17b)
�C(w, y) =

[
(1− y)

dCCl(w)

dw
+ y

]
dw

dt
+ (w − CCl(w))

dy

dt

def=F1(w, y)
dw

dt
+ F2(w)

dy

dt
,

(18)

dw

dt
=

�C(w, y)G2(w)− F2(w)�H(w, y)

F1(w, y)G2(w)− F2(w)G1(w, y)
,

dy

dt
=

F1(w, y)�H(w, y)−�C(w, y)G1(w, y)

F1(w, y)G2(w)− F2(w)G1(w, y)
.

(19)CHg(w) ≈ 0 ⇒ G2(w) ≈ −1;
dCHg(w)

dw
= −

KH

KC
≈ 0 ⇒ G1(w, y) ≈ 0.

(14′)pc(y) = sy−1/3, pg(w) ≈ w, pl(w, y) ≈ w − sy−1/3;
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and of (18) to

The second and third equations of (14′) hold only for w ≫ KH = O(10−5) . This approximation will ultimately 
effect computation of phase space trajectories for values of w � 10−4 . Our results will demonstrate that the 
region of phase space governing bubble formation occurs well away from “small w” values, and we proceed with 
the approximation (14′).

In (18′) we have used a standard notation, F(w, y) and G(w, y), for the right-hand side of this two-by-two 
system of ODEs. The dynamical system we consider is (18′) with: �H , �C defined by (15 ′  ); F1 , F2 defined by 
(17b); Ql , Qg given by (7) and (8) appropriately normalized,

where �α = �αCWRT/V  , α = l, g ; and the phase pressures given by (14′).

Analysis of the dynamical system
The curves Q

l
= 0 and Qg = 0.  The physical w, y phase space for (18′) is 0 ≤ w ≤ CCg(CC) , 0 < y ≤ 1 . 

It contains two important curves. The first is the curve Ŵl0 defined by the condition Ql(w, y) = pl(w, y)− p = 0 
which, from (14′), can be written either as

From (20), wl0(1) = p+ s  . Note that, for any point (w, y) ∈ [0,CCg(CC)] × (0, 1] on Ŵl0 , we have 
CCg(CC) ≥ pg = p+ sy−1/3 > p+ s , by which we confirm that the value p+ s lies strictly in the range 
0 < p+ s < CCg(CC) . Thus, 0 < yl0(w) ≤ 1 for all w ∈ [p+ s,CCg(CC)] . Furthermore, from (20) we note that 
the slope dyl0(w)/dw < 0 for w ∈ [p+ s,CCg(CC)] . Thus yl0(w) decreases from its maximum value yl0(p+ s) = 1 
over the domain [p+ s,CCg(CC)] . At the w = CCg(CC) endpoint of Ŵl0 we have

The second important curve in the phase space, Ŵg0 , is defined by

i.e., Ŵg0 is the vertical line w = p.
The curves Ŵl0 and Ŵg0 divide the phase space into three regions. Let: Ŵ++ denote the region of the phase space 

where p g (w) > pl(w, y) > p ; Ŵ−+ denote the region where p g (w) > p > pl(w, y) ; and Ŵ−− denote the region 
where p > p g (w) > pl(w, y) . Figure 2 provides sketches of Ŵl0 , Ŵg0 and indicates the regions Ŵ++ , Ŵ−+ and Ŵ−−.

(15′a)�H(w, y) ≈ Q − Ql(w, y),

(15′b)�C(w, y) =





CCQ − CCl(w)Ql(w, y)− wQg(w, y), pg(w) > pl(w, y) > p,

CCQ − wQ g (w, y), pg(w) > p ≥ pl(w, y),

CCQ, p ≥ pg(w) > pl(w, y);

(18′)
dw

dt
≈

F2(w)�H(w, y)+�C(w, y)

F1(w, y)

def=F(w, y),
dy

dt
≈ −�H(w, y)

def=G(w, y).

(7′a)Ql(w, y) =





�l f (y)(pl(w, y)− p), pl(w, y) > p,
0, pl(w, y) = p,
�l(pl(w, y)− p), pl(w, y) < p,

(7′b)Qg(w, y) =
{
�gg(y)(pg(w)− p), pg(w) > p,

0, pg(w) ≤ p,

(20)yl0(w) = (s/(w − p))3 or wl0(y) = p+ s/y1/3.

1 > yl0(CCg(CC)) =
(

s

CCg(CC)− p

)3

> 0.

(21)Q g = pg(w)− p = w − p = 0;

Figure 2.   The phase space is divided into three regions, Ŵ++ , Ŵ−+ and Ŵ−− , by the curves Ŵl0 and Ŵg0.
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Direction fields.  As the dynamical system (18′) is complex and the details of its analysis are not straightfor-
ward, to respect article length we have relegated most of these details to a series of appendices in the accompany-
ing supplementary material. The manuscript text references the appropriate appendix as needed.

The direction field dy/dt = G(w, y).  The direction field dy/dt is analyzed in Appendix A of the supplemen-
tary material by considering the isoclines of G(w, y). All isoclines in the region Ŵ−− ∪ Ŵg0 ∪ Ŵ−+ ∪ Ŵl0 are 
of the monotonic form (A.9) given in Appendix A and are negative-valued. The curve Ŵg0 is not an isocline; 
explicit evaluation using (18′), (15′a), (7′a), (3b), (21) and (14′) gives G(p, y) = −�l sy

−1/3 − Q < 0 . From (18′) 
and (15′a) it is straightforward to see that Ŵl0 is the G(w, y) = −Q isocline.

The G(w, y) isoclines in Ŵ++ have the form (A.4) of Appendix A and are “concave-up” in the direction w → ∞ 
(see Fig. A.1(a) of Appendix A). The only region where G(w, y) can take positive values (implying gas bubble 
growth) is Ŵ++.

There exists a maximum value of Q such that, for flow strengths above this value, the isocline G(w, y) = 0 
does not (and hence no positive-valued isoclines can) appear in the physical phase space and no gas bubble 
growth is possible. Computation for this maximum flow strength Qmax = αmax�l s , is illustrated in Fig. A.1(b) 
of Appendix A. With the condition Q < Qmax satisfied, the form of the isocline G(w, y) = 0 is shown in Fig. 3 
where, following the notation introduced in Appendix A, it is referred to as WG(y) . WG(y) intersects the phase 
space boundary w = CCg(CC) at the values yG1 and yG2.

The direction field dw/dt = F(w, y).  The direction field F(w, y) is more complex and we have relied on esti-
mation procedures to determine its behavior. To proceed, we express F(w, y) in (18′) as

Since the denominator in (22) is always positive, we note that F and F̃ have the same zero-points and signs. Using 
(15 ′  ), and (7 ′  ) we obtain the following expressions for F̃ : 

(22)F(w, y) =
(KC − w)[F2(w)�H(w, y)+�C(w, y)]

(KC − w)F1(w, y)

def=
F̃(w, y)

(KC − w)F1(w, y)
.

(23a)
F̃(w, y)|Ŵ++ = (KC − w){(F2(w)+ CC)Q − w[�l f (y)+�gg(y)](w − p)

+ w�l f (y)sy
−1/3};

(23b)F̃(w, y)|Ŵl0
= (KC − w){(F2(w)+ CC)Q − w�gsy

8/3
l0 };

(23c)
F̃(w, y)|Ŵ−+ = (KC − w){(F2(w)+ CC)Q − [F2(w)�l + w�gy

3](w − p)

+ F2(w)�l sy
−1/3};

(23d)F̃(w, y)|Ŵg0 = (KC − p){(F2(p)+ CC)Q + F2(p)�l sy
−1/3};

(23e)
F̃(w, y)|Ŵ−− = (KC − w){(F2(w)+ CC)Q − F2(w)�l(w − p)

+ F2(w)�l sy
−1/3};

Figure 3.   Sketch of the relevant phase space curves and regions discussed in the text and Appendices A to E in 
the supplementary material. The difference in the curve W2(y) in cases DI and DII is discussed in Appendix D.
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 where by (17b) and (13), F2(w) = w − w/(KC − w) . Note F2(w) < 0 providing KC < 1 , which is indeed the 
case in our numerical computations (see Table 1). However, F2(w)+ CC > 0 in the domain of interest. The 
expressions for F̃(w, y) in (23) are continuous across the curves Ŵl0 and Ŵg0.

We introduce four restrictions on the range of Q to make our estimations tractable. Evaluating (23b) at the 
point (p+ s, 1) , we have

Restricting Q < (p+ s)�gs/
[
F2(p+ s)+ CC

]
 will guarantee that F̃(p+ s, 1) < 0 . Evaluating (23b) at the point 

(CCg(CC), yl0(CCg(CC))) , we have

Restricting Q > �gs
[
s/(CCg(CC)− p)

]8 will guarantee that F̃(CCg(CC), yl0(CCg(CC))) > 0 . Evaluating (23d) 
at the point (p, 1) we have

Restricting Q < −F2(p)�l s/(F2(p)+ CC) will guarantee that F̃(p, 1) < 0 . We also note from the previous sec-
tion that the restriction Q < Qmax guarantees that there is a region G(w, y) > 0 within Ŵ++ . We combine these 
restrictions on Q into the single statement,

The behavior of F̃(w, y) in the phase space is discussed next.

F̃(w, y) on Ŵl0.  In Appendix B (supplementary material) we show F̃(w, y) has the following behavior on Ŵl0:

The existence of the point (w∗, y∗ = yl0(w∗)) within the physical domain is guaranteed by assumption (24). The 
point (w∗, y∗) is illustrated in Fig. 3.

F̃(w, y) on Ŵg0.  Using (23d) we see that the derivative ∂ F̃(p, y))/∂y = −F2(p)(KC − p)�l sy
−4/3/3 > 0 . Hence 

F̃(p, y) is a strictly increasing function of y. From restriction (24) we have F̃(p, 1) < 0 . Therefore, F̃(p, y) < 0 for 
all y ∈ (0, 1].

F̃(w, y) in Ŵ++.  F̃(w, y)|Ŵ++ is analyzed in Appendix C (supplementary material). There we prove the exist-
ence of a single curve segment, W1(y) , in Ŵ++ on which F̃(w, y)|Ŵ++ = 0 . W1(y) connects the point (w∗, y∗) on 
Ŵl0 to a point (CCg(CC), y F1 ) where y F1 lies in the interval (yl0(CCg(CC)), yG1) . By Lemma C of Appendix C, 

F̃(p+ s, 1) = (KC − p− s)
[
F2(p+ s)+ CC

]
{
Q −

(p+ s)�gs[
F2(p+ s)+ CC

]
}
.

F̃(CCg(C C ), yl0(CCg(CC))) = (KC − CCg(CC))CCg(CC)

{
Q −�gs

(
s

CCg(CC)− p

)8
}
.

F̃(p, 1) = (KC − p)
{
(F2(p)+ CC)Q + F2(p)�l s

}
.

(24)
(

s

CCg(CC)− p

)8

<
Q

�gs
< min

(
p+ s

F2(p+ s)+ CC
,

−�lF2(p)

�g(F2(p)+ CC)
,αmax

�l

�g

)
.

(B.9)�F(w, y)|Ŵl0





< 0, w ∈ [p+ s,w∗),
= 0, w = w∗,
> 0, w ∈ (w∗,CCg(CC)].

Figure 4.   Signs for the direction fields F(w, y), G(w, y) in the phase space for (a) Case DI and (b) Case DII. 
F+G− denotes a region where F(w, y) > 0 , G(w, y) < 0 , etc.
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y F1 < y∗ . W1(y) is a continuous function of y; for each value of y ∈ [y F1 , y∗] there is a unique value W1(y) . A 
sketch of this curve segment is shown in Fig. 3. Regions where F̃(w, y)|Ŵ++ ≷ 0 are indicated in Fig. 4.

F̃(w, y) in Ŵ−+.  F̃(w, y)|Ŵ−+ is analyzed in Appendix D (supplementary material). There we show Ŵ−+ contains 
a curve, ymax(w) , on which ∂ F̃(w, y)/∂y|Ŵ−+ = 0 . ymax(w) joins a unique point (ŵ1, 1) , where p < ŵ1 < p+ s , 
to a unique point (wŴ , yŴ) on Ŵl0 . In addition, F̃(w, y)|Ŵ−+ = 0 in Ŵ−+ on a single curve segment W2(y) joining 
the point (w∗, y∗) to (CCg(CC), y F2 ) , where y F2 is a unique value satisfying 0 < y F2 < yl0(CCg(CC)) . The curve 
W2(y) can have two possible forms, depending on the relative size of wŴ and w∗ (cases DI and DII in Appendix 
D). The curves ymax(w) and W2(y) are sketched in Fig. 3 and the points (ŵ1, 1) , (wŴ , yŴ) and (CCg(CC), y F2 ) are 
indicated. Regions where F̃(w, y)|Ŵ−+ ≷ 0 are shown in Fig. 4.

F̃(w, y) in Ŵ−−.  The function ̃F(w, y)|Ŵ−− is analyzed in Appendix E (supplementary material). On the bound-
ary y = 1 there exists a unique value wF3 ∈ (0, p) such that ̃F(wF3, 1) = 0 . In the interior of Ŵ−− , ̃F(w, y)|Ŵ−− = 0 
only on a curve W3(y) having the properties: limy→0+ W3(y) → 0 , W3(1) = wF3 , and dW3(y)/dy > 0 . Fig. 3 
shows a sketch of the curve W3(y) and the point (wF3, 1) . Regions where F̃(w, y)|Ŵ−− ≷ 0 are indicated in Fig.  4.

Critical point existence.  A point (wc , yc) is a critical point of (18′) if F(wc , yc) = G(wc , yc) = 0 . From 
(18′), we conclude (wc , yc) is a critical point of (18′) iff �H(wc, yc) = �C(wc, yc) = 0 . From (18′), the equation 
�H(w, y) = 0 defines the isocline G(w, y) = 0 , i.e. the curve WG . Similarly the equation �C(w, y) = 0 implicitly 
defines a curve WF . Thus (wc , yc) is a critical point iff it is a crossing point of the curves WG and WF.

The curve WF is complicated to analyze. However, examining (15′ b) in Ŵ++ we recognize that the curve WC 
defined by the equation

also crosses the curve WG at exactly the same critical points. Equation (25) can be explicitly solved for y|WC,

We are only interested in the form of WC within Ŵ++.
By examining the behavior of the curves WG and WC with respect to Q , it is straightforward to determine that 

there exist values Q1 and Q2 such that, for Q ∈ (Q1,Q2) , WG and WC cross at two critical points c1 = (wc1, yc1) 
and c2 = (wc2, yc2) in Ŵ++ . At each of the values Q = Q1 and Q = Q2 , WG and WC touch tangentially at a single 
critical point. And for Q < Q1 or Q2 < Q there are no critical points. A sketch of this behavior is given in Fig. 5. 
Critical points c1 and c2 are also shown in Fig. 3, which is drawn for the case Q1 < Q < Q2.

Critical point classification.  A critical point is classified by analyzing the solution of the linearized form of (18′) 
in the local neighborhood of equilibrium16, 20. With u = w − wc , v = y − yc denoting the components of a small 
perturbation from the critical point, the linearized system is

(25)�′
C(w, y) = (CC − CCl(w))Q − wQg(w, y) = 0,

(26)(y|WC )
3 =

(
CC −

w

KC − w

)
1

w(w − p)

Q

�g
.

(27)

(
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dt
dv
dt

)
=
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dF
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dG
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dG
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)

wc ,yc

(
u
v

)

=

(
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F1

∂�H
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∂�C
∂w
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F1

∂�H
∂y + 1
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∂�C
∂y
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)
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(
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v

)
.

Figure 5.   Sketches of the curves WC and WG for values of Q in the three ranges (a) Q < Q1 ; (b) Q ∈ (Q1,Q2) 
and (c) Q2 < Q . In (a), for clarity, only a subset of the y-axis range is shown. Note that WG approaches very close 
to, but always lies above, the curve Ŵl0.
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In (27) we have used (18′) and the fact that �H(wc, yc) = �C(wc, yc) = 0 . The matrix in (27) has characteristic 
values �± = (A±

√
A2 − 4D)/2 where A and D are, respectively, the trace and determinant of the matrix in 

(27). Characterization of the critical points in terms of A and D is well known16, 20.

Solution trajectories.  Single‑phase flow trajectory.  In the single-phase flow regime, the dynamical sys-
tem variable y satisfies y(t) = 0 . From (13) we have the relation w = KCCCl/(1+ CCl) . We use this relation to 
extend the definition of the variable w into the single-phase regime. Then (2) provides the time development of 
w(t) during single phase flow.

Transition to two‑phase flow; initial condition for gas bubble formation.  An initial condition (w0, y0) is needed 
to solve the two-phase flow system (18′). This is set by the initial size of the gas bubble, y0 , and its initial CO2 
concentration, w0 . Initial bubble size is determined by microscopic, non-linear dynamics at a nucleation site9 
that are beyond the scope of this paper. In order to perform numerical computation using a transition from the 
single-phase to the two-phase region we determine initial bubble formation time, size and CO2 concentration 
using approximations outlined in Appendix F. We recognize that conditions (F.1)–(F.3) provide an approxima-
tion to actual bubble formation. While we use these conditions in some of our numerical solutions, we also 
explore other bubble trajectories under the recognition that our initial conditions may not be sufficiently accu-
rate. We note that unless ( w0, y0 ) lies on a trajectory that either starts in, or enters, the region G(w, y) > 0 , the 
bubble size will monotonically decrease to 0 (the bubble dissolves). 

Solution trajectories in Ŵ++ and Ŵ−+.  The sign of the direction field F(w, y) changes across the curves W1(y) , 
W2(y) , W3(y) ; the sign of G(w, y) changes across the curve WG(y) . The critical points c1 and c2 play a decisive role 
in trajectory behaviors. In our numerical computations we show that, as Q increases, c1 changes type: from an 
unstable node, to an unstable spiral point and then to a stable spiral point; while c2 always remains a saddle point.

For purposes of illustration of solution trajectories we consider the case when c1 is a stable spiral point and c2 
is a saddle point. Let σ(t) = (w(t), y(t)) , w(0) = w0 , y(0) = y0 , be the trajectory of a solution of (18′), where the 
initial condition w(0), y(0) is assumed to lie in the region Ŵ++ . There are four general patterns for the behavior 
of σ(t) . These are illustrated in Fig. 6 which is drawn for W2(y) having the form of case DII in Appendix D. The 
first behavior, illustrated by the trajectory labeled σ1(t) , is that the trajectory remains in the region of Ŵ++ and 
spirals into the critical point c1 . The remaining patterns shown involve those trajectories that cross the curve Ŵl0 . 
The second trajectory type, σ2(t) , does not escape the zone of attraction of the spiral point; it enters the region 
F+G− in Ŵ−+ , re-enters Ŵ++ , and spirals into the critical point c1 . The third, σ3(t) , is outside of the zone of 
attraction; after it enters the region F+G− in Ŵ−+ , it never leaves Ŵ−+ , ultimately entering the region F−G− and 
subsequently reaches the w-axis. The last behavior, illustrated by σ4(t) , enters and remains in the region F−G− 
after crossing Ŵl0 ; subsequently reaching the w-axis.

For trajectories σ1(t) and σ2(t) , the gas bubble in the pore approaches a steady-state size. For trajectories 
σ3(t) and σ4(t) the bubble first grows to a maximum size before decreasing and ultimately dissolving completely. 
(See the section below that discusses how trajectories approach the w-axis.)

Solution trajectories Ŵ−−.  From the signs of the direction fields on each side of W3(y) (Fig. 7) we deduce the 
following behaviors. No trajectory in the F−G− region to the right of W3(y) can enter the F+G− region to the left 
of W3(y) , and any trajectory that starts in the F+G− region must exit. In particular, the trajectory labelled σd(t) 

Figure 6.   Illustration of possible trajectory behaviors in the vicinity of ( w∗, y∗ ) when the critical point c1 is 
a spiral point and c2 is a saddle. There are four trajectory behaviors, σk(t) , k = 1, . . . , 4 , illustrated for W2(y) 
having the form in case DII.
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in Fig. 7 that passes through the point ( w F3 , 1 ) acts as a separator between trajectories leaving the region F+G− 
and those remaining in the region F−G−.

Solution trajectories approaching the w‑axis.  Finally, we address the slope of trajectories approaching the w−
axis. From (18′) and (22) it is straightforward to show that, in the regions Ŵ−− and Ŵ−+,

Thus the slope, dy/dw, of a trajectory approaches a finite, w-dependent value as y → 0 . Consequently, solution 
trajectories like σ3(t) and σ4(t) in Fig. 6 will evolve toward the w-axis. For such a trajectory, σ(t) = (w(t), y(t)) , 
there will therefore be a time, td , such that y(td) = 0 (i.e. the bubble is completely dissolved) and w(td) is under-
saturated. Since CCg(CC) is greater than w(td) , w(t) will then increase (under single-phase flow conditions) for 
t > td until w(t) reaches a critical saturation value (Appendix F of the supplementary material), a new bubble 
will form, and a new trajectory cycle will commence.

Numerical computations
Using Maple, numerical computations were performed to verify and illustrate our analytic results. The numerical 
values of all pore, physical and fluid parameters used in the computations are summarized in Table 1. With these 
parameter values, (24) sets a flow range limit of Qlo = 7.19379× 10−5 ≤ Q ≤ Qhi = 3.41059× 103 . However, 
the discussion in the section on critical point existence states that critical points can only exist for flows between 
Q1 and Q2 (where Q2 = Qmax ). From the data in Table 1, we have Q1 = 1.6× 10−3 and Q2 = 9.61673× 103 . 
Therefore we have the relative sizes Qlo < Q1 < Qhi < Q2 = Qmax . Note that two critical points always exist for 
the flow range Q1 < Qhi (see Fig. 5b). We perform our numerical computations in this range.

Critical point changes and flow regimes.  We first examine the Q dependence of the character of 
the critical point using the linearized model (27). We find three flow regimes: R1: Q1 ≤ Q < 14.6431 ; R2: 
14.6431 ≤ Q < 70.7865 and R3: 70.7865 ≤ Q ≤ Qhi . In R1 the critical point c1 is an unstable node; in R2 it is an 
unstable spiral; and in R3 it is a stable spiral. In all regimes c2 is a saddle point. Figure 8 shows the movement of 
the point w∗, y∗ and the critical points c1 and c2 as a function of Q . We make the following observations.

(O1) The huge difference in scales between the w- and y-axes distorts perception of angles. Fig. G (supple-
mentary material) shows a properly scaled view of angles in the vicinity of c2 for Q = 494.

lim
y→0

G(w, y)

F(w, y)
=

KC

w(1− KC + w)(KC − w)
.

Figure 7.   Sketch of solution trajectories in Ŵ−− . All solution trajectories must exit the F+G− region. The 
solution trajectory σd(t) separates F+G− trajectories from all remaining trajectories in the F−G− region.

Table 1.   Parameters and values used in the numerical computations.

Rpore 5× 10−3 cm V 5.236× 10−7 cm3

a 10−3 cm L 5× 10−3 cm

T 323.15 K R 8.31441× 107 dyne cm mol−1K−1

νl 5.4648× 10−3 dyne s cm−2 νg 1.6132× 10−4 dyne s cm−2

�l 1.4372× 10−8 cm5dyne−1s−1    �g 4.86854× 10−6 cm5 dyne−1 s−1

KC 2.2623× 107 dyne cm−2 KH 4.1339× 104 dyne cm−2

γ 99.0640 dyne cm−1 s 3.96256× 104 dyne cm−2

p 107 dyne cm−2 Cc 4.8× 10−2 mol
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(O2) The curve WG closely approaches Ŵl0 , both in the vicinity of c2 and as Q decreases. This is evident in 
Fig. 8 and Fig. G (Appendix G).

(O3) The critical point c2 moves very slowly with Q , remaining in the close vicinity of the point (CCg(CC) , 
yl0(CC)) with wc2 ≤ CCg(CC) , yc2 > yl0(CC) . At the value Q = Qmax , the critical points c1 and c2 coalesce on 
the w = CCg(CC) boundary.

Gas bubble dynamics.  To detail the evolution of gas bubbles, we performed computations using the non-
linear system (18′) for a value of Q from each regime. The first computation is for regime R3 using the value 
Q = 475.

Figure 9a shows a portion of a phase-space trajectory ( σ5 ). For this value of Q , using the bubble-point 
equations (F.1)–(F.3) the pore reaches critical saturation at t = 8.3296× 10−3 . A gas bubble forms in Ŵ++ with 
(w0, y0) = (6.9806× 10−3, 8× 10−3) . The gas bubble growth trajectory crosses Ŵl0 at a time t1 = 8.6718× 10−3 
at the point (wl0, yl0) = (6.733216× 10−3, 0.484318) where yl0 ≥ y∗ . At this point, dw/dt < 0 and dy/dt < 0 , 
σ5 enters Ŵ−+ , and evolves (Fig. 9b) to the y-axis with the complete dissolution of the bubble at a finite time 
t2 = 8.7116× 10−3 . For t > t2 , σ5 follows the w-axis under single-phase flow conditions with w(t) increasing 

Figure 8.   Movement of the points w∗, y∗ (green), c1 (red), and c2 (yellow) with Q . The flow rate Qvalue labels the 
point w∗, y∗ as it moves on the Ŵl0 curve. The critical points c1 and c2 are shown on their respective WG curves, 
which are also labeled by the appropriate flow rate.

Figure 9.   (a) A view of two solution trajectories for Q = 475 . For trajectory σ5 , 
(w0, y0) = (6.9806× 10−3, 8× 10−3) and for trajectory σ6 , (w0, y0) = (6.8437× 10−3, 8× 10−3) . (b) A view 
showing one complete cycle of σ5.
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until, again using (F.1)–(F.3), at t3 = 1.6626× 10−2 the trajectory reaches the bubble point (6.9806× 10−3, 0) , 
the gas bubble re-emerges and a new cycle begins. Fig. 9b shows the complete trajectory cycle for σ5.

Figure 10a,b plot w(t) and y(t) over two cycles of σ5 . The dissolved CO2 concentration in the liquid phase, 
w(t), accumulates in the pore until the bubble point is reached. Once the bubble point is reached, time scales 
shorten dramatically as the bubble expands and subsequently dissolves very rapidly (Fig. 10b). Over this period, 
the CO2 concentration in the liquid phase drops precipitously.

Figure 9a also shows the trajectory σ6 for a bubble that is assumed (i.e. not using equations (F.1)–(F.3)) to 
form with (w0, y0) = (6.8437× 10−3, 8× 10−3) . In this case the trajectory lies within the attractor region of c1 
and spirals into the critical point. The values w(t) and y(t) for σ6 are plotted in Fig. 10c,d, documenting how the 
dissolved CO2 concentration in the liquid phase and the gas phase saturation approach steady state values. Note 
there is a rather sharp oscillation of the bubble prior to reaching steady state.

The second computations explore regime R2 using the flow rate Q = 68 . Only cyclic bubble formation occurs 
in this flow regime. If a bubble forms sufficiently close to the unstable spiral point, c1 , the cycle may involve an 
initial period of instability in the bubble growth (Fig. 11a). If the bubble initializes on a more “remote” trajectory, 
the cycle of bubble formation and dissolution is more regular (Fig. 11b). Fig. 11c,d plot w(t) and y(t) over a time 
range covering two cycles of the trajectory σ7 in Fig. 11a.

The third computations explored regime R1 using the flow rate Q = 13 . Only cyclic bubble formation occurs 
in this flow regime. Trajectories are similar to that shown for σ8 in Fig. 11b.

Discussion
The mathematical analysis presented in this paper, motivated and supported by our earlier network flow 
computations6, leads us to a somewhat unexpected conclusion: namely that when a gas component “bubbles-
out” from a saturated solution under steady state flow in porous media, the phase space conditions under which 
such bubbles achieve a stable size is limited. Our results indicate that, for sufficiently low flow rates (regimes R1 
and R2), any gas bubble that forms will re-dissolve, possibly (regime R2) after undergoing oscillatory behavior. In 
the (much wider) range of faster flow rates (regime R3), whether a gas bubble remains stable or decays depends 
on the fine-scale details of bubble initiation. In all cases involving bubble dissolution, under steady flow condi-
tions the behavior of bubble formation and re-dissolution repeats cyclically.

Our numerical computations show that these regimes cover a range of conditions pertinent to reservoir 
flow. Therefore, with respect to flow management in reservoir operations (specifically trying to maintain multi-
component, saturated, single phase flow), our results imply that, once pressure conditions allow bubble formation, 
there is a small “window of opportunity” at low flow rates (regimes R1 and R2) to restrict bubble formation to at 

Figure 10.   Graphs of (a) w(t) and (b) y(t) for two cycles of σ5 , and of (c) w(t) and (d) y(t) for σ6 of Fig. 9.
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most cyclic behavior. However once flow rates exceed the rather low threshold delineating regime R3, whether 
bubbles form stably or cyclically depends on microscopic processes beyond reservoir management control.

Our investigation is not exhaustive; we have analyzed the dynamical system (18′) by employing a number 
of assumptions. These assumptions are summarized in Appendix H (supplementary material) and fall into two 
general categories, physical (e.g. liquid phase is perfectly wetting) and technical. The technical assumptions rely 
on having parameter values similar to petroleum reservoirs (Table 1). We have not investigated removing these 
assumptions, except to make a comment regarding the flow-rate restriction (24). Two of the inequalities in (24) 
ensure that the point ( w∗, y∗ ) on Ŵl0 lies within the phase space. This restriction can be lifted to some extent, 
allowing ( w∗, y∗ ) to move somewhat outside of the phase space. Reducing this restriction will extend the analysis 
to a larger range of flow values but will produce little change in the qualitative aspects of our analysis.

The y-dependence in the dynamical system is a critical determinant in the resulting behavior. This dependence 
comes from three sources: the capillary pressure term (10) where we assume r = y1/3Rpore , the distribution of 
water and CO2 mass (16) where the y-dependence is linear, and from the fractional flow functions f(y) and g(y) 
which introduce complicated nonlinear dependence. It is possible that different forms for the fractional flow 
functions could significantly alter the gas bubble behavior of this dynamical system.

One possible critique of our analysis is that bubble dissolution, which is governed by the evolution of trajec-
tories in Ŵ−− and Ŵ−+ (i.e. under back-flow conditions), is solely due to our assumption that back-flow involves 
pure water invading the pore from the outlet reservoir. Such back-flow reduces CCl concentration in the pore, 
potentially forcing dissolution of the gas phase. In actual porous media flow situations, back-flow would involve 
water containing CO2 (at concentrations less than CCl ) infiltrating the pore. Back-flow under these more real-
istic conditions would affect the shape of trajectories in the regions Ŵ−− and Ŵ−+ , opening the possibility that 
trajectories that enter Ŵ−+ from Ŵ++ may re-enter Ŵ++ . However, changing back-flow conditions should not 
affect the analysis in Ŵ++ , and specifically not affect the type of critical points. Thus, at low flow conditions there 
would still be no attractor node to produce stable bubbles. At higher flow rates a stable spiral node exists, but it 
has a finite-sized region of attraction (as can be inferred from trajectory segments in the vicinity of the saddle c2 
in Fig. 6). Thus not all trajectories would lead to the growth of stable bubbles. Finally, we note that our computa-
tions in Chang and Lindquist6, which included realistic back-flow conditions, did produce bubble dissolution.

Figure 11.   Solution trajectories for Q = 68 when (a) (w0, y0) = (6.744× 10−3, 2.12× 10−1) and (b) 
(w0, y0) = (6.83× 10−3, 8× 10−3) . Graphs of (c) w(t) and (d) y(t) for three cycles of σ7.
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While we have examined the case where the gas phase is CO2 , the analysis should hold for any other gas 
that preserves the assumptions used. Similarly, we have considered a liquid phase consisting solely of H2 O, with 
dissolved CO2 . This invites the question of how applicable our analysis is to a more complicated brine phase.
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Appendix A The direction field dy/dt = G(w,y)
From (18′), (15′a), (7′a), and (14′) we start with the expression for the direction field dy/dt = G(w,y),

G(w,y) =−Q+Λl f (y)[w− p− sy−1/3], (A.1)

where f (y) is given by (8). It will simplify exposition (just for this appendix) to switch variables from (w,y) to (ω,z) defined
by ω = [w− p]/s, z = y1/3. The map ω(w) has the range ω ∈ [−p/s,ω(CC)] where ω(CC)

def
= [CCg(CC)− p)]/s. The points

w = p and w = p+ s correspond to the values ω = 0 and ω = 1 respectively. Under this change of variables, (A.1) can be
written

G(ω,z)
Λls

=− Q
Λls

+ f (z)[ω− z−1]. (A.2)

We consider the isoclines of G(ω,z). Parametrizing the isoclines by the value G = βQ, where β is a free parameter, from
(A.2) each isocline has the form

ω(z;α) =
1
z
+

α

f (z)
, where α = (1+β )Q/(Λls). (A.3)

The value α = 0 (i.e. β = −1) corresponds to the curve Γl0 on which G = −Q. The equation for Γl0 in (ω,z) space is
ω(z,0) = 1/z. The α > 0 isoclines correspond to Ql > 0, thus they cover the region Γ++, while the α < 0 isoclines cover the
regions Γ−+ and Γ−−. From (A.3) note that all isoclines have the value G < 0 in Γ−+ and Γ−−. Thus the condition G = 0 is
only possible in the region Γ++.

We first consider the α > 0 isoclines. From (8), in Γ++ f (z) has the form, f (z) = (1+ z3/2)(1− z3)
2. It is straightforward

to show that f (z) is monotonically decreasing on z∈ [0,1] with f (0) = 1, f (1) = 0, f ′(0) = f ′(1) = 0, f ′(z)< 0, and f ′′(z)< 0
on (0,2−1/3) while f ′′(z)> 0 on (2−1/3,1]. Defining h(z) = 1/ f (z), we have

ω(z;α) = 1/z+αh(z)> ω(z;0), (A.4)

which satisfies d2ω(z;α)/dz2 > 0. For α > 0, ω(z;α) is a function that is “concave up” having a unique minimum ωmin(α) at
the point zmin(α) ∈ (0,1) satisfying,

z2
minh′(zmin) = α

−1, ωmin(α) = 1/zmin +αh(zmin). (A.5)

In physical space ω is bounded above by the value ω(CC). However, viewed as a function of z, (A.3) implicitly extends the
range of ω values comprising the α’th islocline to ω(z;α)∈ [ωmin(α),∞] with limz→0+ ω(z;α) = limz→1− ω(z;α)→∞. There
exists some isocline value αmax > 0 such that ωmin(αmax) = ω(CC) and ωmin(α)< ω(CC) for 0 < α < αmax. Consequently,
from (A.4) and (A.5) we conclude there exist values zG1(α) and zG2(α) satisfying 0 < zG1(α)< zmin(α)< zG2(α)< 1 such that

ω(zG1(α);α) = ω(zG2(α);α) = ω(CC) for α < αmax.

For the isocline ω(z;αmax), we have zG1(αmax) = zmin(αmax) = zG2(αmax). Fig. A.1(a) provides a sketch of the isoclines
ω(z;0) and ω(z;α < αmax), indicating the points (ωmin(α),zmin(α)), (ω(CC),zG1(α)) and (ω(CC),zG2(α)).

The value of αmax places restrictions on Q. From (A.3) we note that the isocline α = Q/(Λls) carries the constant value
G = 0. Therefore if Q/(Λls)> αmax, then G < 0 everywhere in Γ++ (and therefore everywhere in the physical phase space).
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(a) (b)

Figure A.1. (a) Plots of Γl0 = ω(z;0) and example isocline ω(z;α)(α < αmax) showing the fold curve ωfold(z) and the
values zG1(α), zmin(α), zG2(α), ωmin(α), and ω(CC). (b) Plots of the curves (A.7a) and (A.8) and an illustration of the
computation needed to determine the value αmax.

Consequently, the direction field dy/dt would be negative everywhere in the physical phase space and no critical point could
exist. Under these conditions, any gas bubble that tries to form dissolves rapidly and the physical phase space will not support
gas bubbles. Therefore Q must be sufficiently small such that

Q < αmaxΛls
def
= Qmax. (A.6)

To compute αmax note that, as α increases from the value 0, the points (zmin(α),ωmin(α)) trace out a curve. This curve
defines a “fold” in the function G(ω,z) across which G achieves maximum values in the z (but not ω) direction. The parameter
α can be eliminated from the two equations in (A.5) giving the equation for this fold curve,

ωfold(z) =
1
z
+

h(z)
z2h′(z)

=
2
9
(1+2z3)2

z4(1+ z3)
. (A.7a)

Note that ωfold(z)> 0 on [0,1] with ωfold(1) = 1. In w, y coordinates, the fold curve will be denoted

Wfold(y) = p+ s
2
9

(1+2y)2

y4/3(1+ y)
. (A.7b)

A sketch of the curve ωfold(z) is also provided in Fig. A.1(a).
Inverting the first equation in (A.5) gives the values of α along the fold curve ωfold(z),

αfold(z) =
1

z2h′(z)
=

2
9
(1+ z3/2)2(1− z3)3

z4(1+ z3)
. (A.8)

Note that the right-hand sides of (A.7a) and (A.8) are only functions of z (i.e. of y = sg), independent of any other physical
parameter in the problem. Thus the two curves ωfold(z) and αfold(z) can be computed, independent of any particular flow
problem in this geometry. These two curves are plotted in Fig. A.1(b). This figure illustrates how αmax is computed and how
the physical parameters (KC, CC, p, s and Λl) enter through the value w(CC) and the computation (A.6) for Qmax.

With the value of Q restricted by (A.6), the isocline G(w,y) = 0 exists in Γ++. In the text we shall refer to this isocline as
the curve WG(y) (see Fig. A.2(a)), and the two values where this curve intersects the boundary w =CCg(CC) will be denoted yG1

and yG2, where yG1 < yG2.
We will have need of the partial derivatives ∂G(w,y)/∂w and ∂G(w,y)/∂y. In Γ++ these can be computed directly from
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(a) (b)

Figure A.2. (a) Variation of the sign of G(w,y) and its partial derivative Gy in Γ++. Note that the curves Γl0 and WG(y) may
approach very close, but do not cross. (b) Example G(ω,z) isoclines in Γ−+ and Γ−−, showing axis intersection values.

(A.1):

∂G(w,y)
∂w

= Λl f (y)
{

> 0 on y ∈ [0,1),
= 0 for y = 1,

∂G(w,y)
∂y

= Λl f ′(y)
{

w− p− s
[

1
y1/3 −

f (y)
3 f ′(y)y3/4

]}
=−3

2
Λl(1− y)2[w−Wfold(y)].

Note that ∂G(w,y)/∂y = 0 on the curves y = 1 and Wfold(y). Thus when crossing the curve Wfold(y), the partial ∂G(w,y)/∂y
changes sign, while the sign of the partial ∂G(w,y)/∂w remains unchanged. Fig. A.2(a) illustrates the respective signs of
G(w,y) and its partial derivative Gy in Γ++.

We now consider the form of the isoclines for α < 0 in the regions Γ−+ and Γ−−. With f (z) = 1, the equation of each
isocline is simply

ω(z;α) =
1
z
+α. (A.9)

Fig. A.2(b) plots two of these isoclines showing relevant intersection points with the physical axes. Note that as α →−∞, the
isoclines approach the z = 0 axis.

The needed partial derivatives of G(w,y) in Γ−+ and Γ−− are straightforward to compute from (A.1) (with f (y) = 1),

∂G(w,y)
∂w

= Λl > 0,
∂G(w,y)

∂y
=

Λls
3y4/3 > 0.

There is no change in the signs of G(w,y) or its partial derivatives Gw, Gy across the curves Γl0 or Γg0.

Appendix B F̃(w,y) on Γl0

We address the sign of F̃(w,y) along the curve Γl0. We begin with the form of F̃(w,y) in (23b) which we write as

F̃(w,y)|Γl0 = Λgs(KC−w)w

[
Q

Λgs

(
1+

CC

w
− 1

KC−w

)
−
(

s
w− p

)8
]

def
= H1(w)

[
H2(w)−

(
s

w− p

)8
]
. (B.10)

Our interest is in the domain p+ s≤ w≤CCg(CC). Here H1(w)> 0. From restriction (24) we note that

Q
Λgs

(
1+

CC

p+ s
− 1

KC− p− s

)
< 1,

Q
Λgs

>

(
s

CCg(CC)− p

)8

. (B.11)
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Lemma B. Given (B.11) and the assumption

4KC

(1+CC +KC)2
� 1, (B.12)

then F̃(w,y)|Γl0 = 0 at a single point w∗, y∗ = yl0(w∗) where p+ s < w∗ <CCg(CC).
Proof: We show that the functions H2(w) and yl0(w)8/3 = [s/(w− p)]8 in (B.10) intersect at a single value w∗ in the interval
(p+ s,CCg(CC)). We proceed by elucidating the properties of H2(w) and yl0(w)8/3 needed for this proof. For H2(w) we have
the following observations:

lim
w→0+

H2(w)→ ∞; lim
w→K−C

H2(w)→−∞;

H2(w+) = 0, where w+ ≈CCg(CC +KC) and CCg(CC)< w+ < KC.
(B.13)

To verify (B.13), note from (B.10) that H2(w) = 0 for w satisfying w2 +(CC +KC)w−CCKC = 0. Solving this quadratic for
the positive root under assumption (B.12) we have, to first order in a Taylor expansion of the square-root of the quadratic
discriminant,

w+ ≈
KC(CC +KC)

1+CC +KC
.

The first two derivatives of H2(w) are

H ′2(w) =−
Q

Λgs

[
CC

w2 +
1

(KC−w)2

]
< 0, H ′′2 (w) = 2

Q
Λgs

[
CC

w3 −
1

(KC−w)3

]
. (B.14)

From (B.14), H ′′2 (w) must have a single root in the interval w ∈ (0,KC). Since limw→0+ H ′′2 (w)> 0 and

H ′′2 (CCg(CC)) = 2
Q

Λgs

[
CC

(CCg(CC))3
− 1

(KC−CCg(CC))3

]
= 2

Q
Λgs

CC(1−C2
C)

(CCg(CC))3
> 0, (B.15)

then the single root of H ′′2 (w) must lie between CCg(CC) and KC. In (B.15) we have used the fact that CC < 1. Thus from (B.14)
and (B.15) we have

H ′′2 (w)> 0 on (0,CCg(CC)). (B.16)

For yl0(w)8/3 we have the observations that, for w > 0,

d
dw

(yl0(w))8/3 =−8(yl0(w))3 s−1 < 0, (B.17a)

d2

dw2 (yl0(w))8/3 = 72(yl0(w))10/3 s−2 > 0. (B.17b)

Equations (B.14), (B.16) and (B.17) state that H2(w) and yl0(w)8/3 are both monotonic, decreasing, concave-up functions
on the interval (0,CCg(CC)). In addition (B.11) guarantees that H2(p+ s)< yl0(p+ s)8/3 and H2(CCg(CC))> yl0(CCg(CC))

8/3.
Thus we have the existence of a single value w∗ in the interval (p+ s,CCg(CC)) such that H2(w∗) = yl0(w∗)8/3, i.e. such that

F̃(w∗,yl0(w∗)) = 0. Let y∗
def
= yl0(w∗). �

As a consequence of Lemma B, we have

F̃(w,yl0(w))


< 0, w ∈ [p+ s,w∗),
= 0, w = w∗,
> 0, w ∈ (w∗,CCg(CC)].

(B.18)
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Appendix C F̃(w,y) in Γ++

We address the variation of the sign of F̃(w,y) in Γ++ by analyzing (23a). We begin with the behavior of F̃(w,y) on the
boundaries of Γ++. The behavior of F̃(w,y) on the boundary Γl0 was analyzed in Appendix B. On the boundary y = 1,

F̃(w,1) = Λgs(KC−w)(F2(w)+CC)

{
Q

Λgs
− w(w− p)

(F2(w)+CC)s

}
. (C.19)

On this boundary, p+ s≤ w≤CCg(CC)< KC; therefore the term (KC−w)(F2(w)+CC) is positive. In addition,

Q
Λgs

<
(p+ s)

(F2(p+ s)+CC)

(p+ s− p)
s

<
w(w− p)

(F2(w)+CC)s
, (C.20)

where the first inequality in (C.20) comes from (24). By (C.20), F̃(w,1)< 0 for p+ s≤ w≤CCg(CC)< KC.
The final boundary is w =CCg(CC), y ∈ (yl0(CC),1). Using (18′) and (15′), we can derive an expression relating F̃(w,y)

and G(w,y),

F̃(w,y) = (KC−w){−[F2(w)+CC]G(w,y)+(CC−CCl(w))Ql(w,y)−wQg(w,y)}.

This expression simplifies considerably when evaluated at w =CCg(CC),

F̃(CCg(CC),y) =−
K2

CCC

(1+CC)2

{
G(CCg(CC),y)+Qg(CCg(CC),y)

}
. (C.21)

We note that Qg(CCg(CC),y)> 0. From (C.21) and the results on the signs of G(w,y) summarized in Fig. A.2(a), we have

F̃(CCg(CC),y)< 0 for y ∈ [yG1,yG2]. (C.22)

From (B.18) we have

F̃(CCg(CC),yl0(CC))> 0. (C.23)

Taking the derivative of (C.21) with respect to y yields

dF̃(CCg(CC),y)
dy

=− K2
CCC

(1+CC)2

{
dG(CCg(CC),y)

dy
+3Λg

(
CCg(CC)− p

)
y2
}
. (C.24)

From (C.24) and the results on the signs of the partial ∂G/∂y summarized in Fig. A.2(a), we conclude

dF̃(CCg(CC),y)
dy

< 0 for y ∈ [yl0(CC),yG1]. (C.25)

Therefore (C.22), (C.23) and (C.25) imply there exists a single value yF1 such that

F̃(CCg(CC),yF1) = 0 with yl0(CCg(CC))< yF1 < yG1. (C.26)

From (C.22) and the discussion relative to (C.19) we know F̃(CCg(CC),yG2)< 0 and F̃(CCg(CC),1)< 0. If y∗ ≤ yG2, the results
from cases C1 and C2 discussed below lead to the conclusion that F̃(CCg(CC),y) < 0 for y ∈ [yG2,1]. However if y∗ > yG2,
there exists the possibility that F̃(CCg(CC),y) has an even number of roots on the interval y ∈ (yG2,y∗). Evaluating (C.24) for
parameter values typical to those in Table 1 we can demonstrate that dF̃(CCg(CC),y)/dy < 0 for y ∈ [yG2,1]; consequently
F̃(CCg(CC),y) has no zero on y ∈ [yG2,1]. Summarizing the results on this boundary we have

F̃(CCg(CC),y)


< 0, y ∈ (yF1,1],
= 0, y = yF1,
> 0, y ∈ [yl0(CCg(CC)),yF1).

(C.27)

We now consider the behavior of F̃(w,y) in the interior of Γ++. We begin by explicitly isolating the w dependence of F̃(w,y).
From (23a)

F̃(w,y) = KCCCQ+ c1(y)w+ c2(y)w2 +(Λl f (y)+Λgg(y))w3, (C.28a)
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where

c1(y) = (KC−CC−1)Q+KC p(Λl f (y)+Λgg(y))+KCsΛl f (y)y−1/3, (C.28b)

c2(y) =−Q− (KC + p)(Λl f (y)+Λgg(y))− sΛl f (y)y−1/3. (C.28c)

For any fixed value of y ∈ (yl0(CC),1) we examine the behavior of (C.28a) as a function of w over the interval (−∞,∞). We
have

lim
w→−∞

F̃(w,y)→−∞, F̃(0,y)> 0, lim
w→∞

F̃(w,y)→ ∞. (C.29a)

From (23a) we have

lim
w→K−C

F̃(w,y)|Γ++ =−wQ < 0. (C.29b)

Equations (C.28a) and (C.29) specify that F̃(w,y) has three real roots, w1(y), w2(y), w3(y), where we assign −∞ < w1(y)< 0
and KC < w3(y)< ∞. Before proceeding to determine the root w2(y), we note the following lemma.
Lemma C. y∗ > yF1, where y∗ is defined in Lemma B and yF1 is defined in (C.26).
Proof: Assume y∗ ≤ yF1. First consider the case y∗ < yF1. Let y be a fixed value lying in the interval (y∗,yF1). By (B.18),
F̃(wl0(y),y)< 0. We therefore conclude that the root w2(y) lies in the interval (0,wl0(y)). However, F̃(CCg(CC),y)> 0 implying
there is a fourth root of F̃(w,y) lying in the interval (wl0(y),CCg(CC)). Since F̃(w,y) is a polynomial of degree 3 in w, this is
impossible. Therefore, the case y∗ < yF1 is untenable. For the case y∗ = yF1, F̃(w∗,y∗) = F̃(CCg(CC),yF1) = 0, again implying
the existence of at least four real roots. Thus we conclude y∗ > yF1. �

Note that Lemma C implies the relationship yF1(y∗) which must satisfy yF1→ yl0(CC) as y∗→ yl0(CC) while maintaining the
inequality y∗ > yF1.

In determining w2(y), we examine all possible cases on the fixed value of y ∈ (yl0(CCg(CC)),1).
Case C1. Let y lie in the interval (y∗,1). By (B.18), F̃(wl0(y),y)< 0 and we conclude that the root w2(y) lies in the interval
(0,wl0(y)).
Case C2. Let y = y∗. Then F̃(wl0(y∗),y∗) = 0 and we identify w2(y∗) = wl0(y∗). (As noted above, if y∗ ≤ yG2, cases C1 and C2
lead to the conclusion that F̃(CCg(CC),y)< 0 for y ∈ [yG2,1].)
Case C3. Let y lie in the interval (yF1,y∗). By (B.18), F̃(wl0(y),y)> 0. From (C.27) F̃(CCg(CC),y)< 0, and we conclude w2(y)
lies in the interval (wl0(y),CCg(CC)).
Case C4. Let y = yF1. By (B.18), F̃(wl0(y),y)> 0. From (C.27), F̃(CCg(CC),yF1) = 0 and we conclude w2(y) =CCg(CC).
Case C5. Let y lie in the interval (yl0(CCg(CC)),yF1). By (B.18), F̃(wl0(y),y)> 0. From (C.27), F̃(CCg(CC),y)> 0. Therefore,
CCg(CC)< w2(y)< KC. (Note we have assigned the root w3(y) to lie in (KC,∞).)

Cases C1 through C5 imply that F̃(w,y)|Γ++ = 0 only on a curve segment W1(y) traced out by the root w2(y) for y ∈ [y∗,yF1].
A sketch of W1(y), which joins the point (w∗,y∗) to (CCg(CC),yF1), is shown in Fig. 3 in the text.

Appendix D F̃(w,y) in Γ−+

We address the variation of the sign of F̃(w,y) in Γ−+ by analyzing (23c). We start with the behavior of F̃(w,y) on the
boundaries of Γ−+. On the boundary y = 0, w ∈ [p,CCg(CC)],

lim
y→0+

F̃(w,y)→ Λls(KC−w)F2(w)y−1/3→−∞. (D.30)

From (23d) and restriction (24) we have demonstrated in the paper that F̃(w,y)< 0 on the boundary Γg0. On the boundary
y = 1, w ∈ [p, p+ s],

F̃(w,1) = KCCCQ+d1w+d2w2 +(Λl +Λg)w3, (D.31)

where

d1 =−(1−KC +CC)Q−Λl(1−KC)(p+ s)+ΛgKC p,

d2 =−Q+Λl(1−KC− p− s)−Λg(KC + p).
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Considering (D.31) as a function of w on (−∞,∞) we note

lim
w→−∞

F̃(w,1)→−∞, lim
w→∞

F̃(w,1)→ ∞,

F̃(0,1)> 0, F̃(p,1)< 0, F̃(p+ s,1)< 0.
(D.32)

The last two inequalities in (D.32) follow from (24). Equations (D.32) imply that F̃(w,1) has exactly three real roots, w1, w2,
w3, satisfying w1 < 0 < w2 < p < p+ s < w3. We therefore conclude F̃(w,1)< 0 on [p, p+ s].

The behavior of F̃(w,y) on the boundary Γl0 was analyzed in Appendix B. For the boundary segment w = CCg(CC),
y ∈ (0,yl0(CCg(CC))), we know F̃(CCg(CC),yl0(CCg(CC)))> 0 while limy→0+ F̃(CCg(CC),y)→−∞. Thus, there exists at least
one point yF2 on this boundary interval such that F̃(CCg(CC),yF2) = 0. We assert here that yF2 ∈ (0,yl0(CCg(CC))) is a unique
value on this boundary interval satisfying

F̃(CCg(CC),y)

 > 0, y ∈ (yF2,yl0(CCg(CC))),
= 0, y = yF2,
< 0, y ∈ (0,yF2).

(D.33)

This assertion is proven below as part of the analysis (cases DI and DII) on the dependence of F̃(w,y)|Γ−+ on y.
We consider the behavior of F̃(w,y)|Γ−+ in the interior of Γ−+ by first examing its dependence along lines of constant y.

From (23c),

F̃(w,y) = KCCCQ+d1(y)w+d2(y)w2 +(Λl +Λgg(y))w3, (D.34a)

where

d1 = c1(y)| f (y)=1−Λl

(
p+ sy−1/3

)
, d2(y) = c2(y)| f (y)=1 +Λl , (D.34b)

with c1(y), c2(y) given by (C.28). We examine all possible cases (labelled D0a-f) on the fixed value of y ∈ (0,1).
D0a: For any fixed value y1 ∈ (y∗,1), from (D.34a),

lim
w→−∞

F̃(w,y1)→−∞, lim
w→∞

F̃(w,y1)→ ∞,

F̃(0,y1)> 0 F̃(p,y1)< 0, F̃(wl0(y1),y1)< 0.
(D.35)

Equations (D.34a) and (D.35) specify that F̃(w,y1) has only three real roots, w1(y1), w2(y1), w3(y1), where w1(y1)< 0 < w2(y1)<
p and wl0(y1)< w3(y1). Thus F̃(w,y1) 6= 0 for any (w,y1 > y∗) ∈ Γ−+.
D0b: If y1 = y∗, then (D.35) holds with the last equation changed to F̃(w∗,y∗) = 0 and we conclude the third real root satisfies
w3(y1) = w∗.
D0c: If y1 ∈ [yl0(CCg(CC)),y∗), then (D.35) holds with the last equation changed to F̃(wl0(y1),y1) > 0 and we conclude
p < w3(y1)< wl0(y1).
D0d: If y1 ∈ (yF2,yl0(CCg(CC))), then (D.35) holds with the last equation changed to F̃(CCg(CC),y1) > 0 and we conclude
p < w3(y1)<CCg(CC).
D0e: If y1 = yF2, then (D.35) holds with the last equation changed to F̃(CCg(CC),y1) = 0 and we conclude w3(y1) =CCg(CC).
D0f: If y1 ∈ (0,yF2), then (D.35) holds with the last equation changed to F̃(CCg(CC),y1)< 0 and we conclude CCg(CC)< w3(y1).
Thus F̃(w,y1) 6= 0 for any point (w,y1 < yF2) ∈ Γ−+.

As F̃(w,y)|Γ−+ is a continuous function in both of its variables, cases D0a through D0f imply that F̃(w,y)|Γ−+ = 0 only
on a continuous curve segment W2(y) traced out by the root w3(y) for y ∈ [yF2,y∗]. W2(y) joins the point (w∗,y∗) to the point
(CCg(CC),yF2). Note W2(y) is a single-valued function of y.

To further explore the behavior of the curve W2(y) we examine the y-dependence of F̃(w,y)|Γ−+ along lines of constant w.
From (23c) the first two partial derivatives of F̃(w,y)|Γ−+ with respect to y are

∂ F̃(w,y)
∂y

= (KC−w)
{
−F2(w)

Λls
3y4/3 −3Λgw(w− p)y2

}
, (D.36a)

∂ 2F̃(w,y)
∂y2 = (KC−w)

{
F2(w)

4Λls
9y7/3 −6Λgw(w− p)y

}
< 0. (D.36b)
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In obtaining the inequality in (D.36b), recall that F2(w)< 0. For any fixed value of w ∈ (p,CCg(CC)], F̃(w,y)|Γ−+ is concave
down having maximum value at ymax(w) where the first partial, (∂ F̃(w,y)/∂y, vanishes. From (D.36a), ymax(w) satisfies

(ymax(w))10/3 =
−F2(w)sδ

w(w− p)
=

sδ [1− (KC−w)]
(w− p)(KC−w)

, p < w < KC, (D.37)

where δ ≡ Λl/(9Λg). Note, ymax(w) > 0 for w ∈ (p,KC). As a function of w, the curve (D.37) has the following limits:
limw→p+ ymax(w)→ ∞ and limw→K−C

ymax(w)→ ∞. From (D.37), ymax(w) = 1 at two values, ŵ±, satisfying the quadratic

ŵ2
±− (KC + p− sδ )ŵ±+KC p+ sδ (1−KC) = 0.

Assuming (see e.g. Table 1) that 4sδ � (KC + p− sδ )2, to first order in a Taylor expansion of the square root in the quadratic
formula solution we have,

ŵ± ∼=
1
2

{
(KC + p− sδ )± (KC− p+ sδ )

[
1− 2sδ

(KC− p+ sδ )2

]}
.

Evaluating these two values we see

ŵ− ∼= p+ sδ
1− (KC− p+ sδ )

KC− p+ sδ
& p, ŵ+

∼= KC−
sδ

KC− p+ sδ
. KC.

Thus only ŵ− lies in the region Γ−+. We rename this value as ŵ−
def
= ŵ1.

We next consider the local extremum values of the curve ymax(w) at which

dymax(w)
dw

=
3

10
[ymax(w)]−7/3 sδ

[(KC−w)2 +2w−KC− p]
(KC−w)2 (w− p)2

= 0.

The extrema occur at two values w∧± satisfying (KC−w∧±)2−2(KC−w∧±)+KC− p = 0, i.e. w∧± = p− (1−KC + p)± (1−
KC + p)1/2. Noting that p < KC < 1, we have 1 > (1−KC + p)1/2 > (1−KC + p). Therefore the root w∧− < p lies outside the
range of interest w ∈ [p,CCg(CC)] and the desired root is w∧+ > p. For notational consistency we rename this value w∧+

def
= ŵ0.

At ŵ0, the curve ymax(w) achieves a minimum y-value. It is not guaranteed that the point (ŵ0,ymax(ŵ0)) lies in the region Γ−+;
in fact for the values in Table 1, CCg(CC)< ŵ0 < KC. Evaluated using parameter values from Table 1, the segment of the curve
ymax(w) lying in Γ−+ is plotted in Fig. 3.

We now consider the crossing point (wΓ,yΓ) of the curves ymax(w) and yl0(w). From (26) and (D.37), wΓ satisfies

U9
Γ(UΓ−∆+1)+ s9(UΓ−∆)/δ = 0, (D.38)

where UΓ = wΓ− p, ∆ = KC− p.
Lemma D. Equation (D.38) has a single solution UΓ ∈ [0,∆] (i.e. wΓ ∈ [p,KC]). In particular, UΓ

∼= (1+ ε)s where ε < 10−1.
Proof: Let h(U) denote the function

h(U) =U9(U +1−∆)+
s9(U−∆)

δ
.

We are only interested in the range U ∈ [0,∆]. Noting that

h(0) =− s9∆

δ
< 0, h(∆) = ∆

9 > 0,

h′(U) =U8[10U +9(1−∆)]+
s9

δ
, h′′(U) = 9U7[10U +8(1−∆)]> 0,

we see that h′(U)> 0 on [0,∆] and conclude that h(U) = 0 for a single UΓ ∈ [0,∆]. Substituting UΓ
∼= (1+ ε)s into (D.38), to

first order in a Taylor expansion in ε (assumed small) we find

ε =
1− (1+δ )(s+1−∆)

(1+10δ )s+9δ (1−∆)
.
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Using parameter values from Table 1 we have ε ≈ 0.094. Using a second order Taylor expansion yields ε ≈ 0.071. �
From Lemma D we conclude the curve ymax(w) crosses Γl0 at the single point wΓ, yΓ where

p+ s. wΓ = p+(1+ ε)s <CCg(CC), yΓ =

[
s

wΓ− p

]3

= (1+ ε)−3.

This crossing point is also shown in Fig. 3.
The behavior of W2(y) depends on two cases, DI: wΓ ≤ w∗ or DII: wΓ > w∗.

Case DI: wΓ ≤ w∗. We examine all possible values of w.
DIa: Let w ∈ (p, ŵ1). Since F̃(w,0)→−∞, F̃(w,1)< 0 and ∂ F̃(w,y)/∂y > 0, we conclude F̃(w,y)|Γ−+ < 0 for w ∈ (p, ŵ1).
DIb: Let w = ŵ1. Since F̃(ŵ1,0)→−∞, F̃(ŵ1,1)< 0 and ∂ F̃(w,y)/∂y|ŵ1 > 0 for 0 < y < 1, we conclude F̃(ŵ1,y)|Γ−+ < 0.
DIc: w ∈ (ŵ1,wΓ). For any w in this range, F̃(w,y) goes through a maximum value at ymax(w). While F̃(w,y) < 0 near the
boundaries y = 0 and y = min(1,yl0(w)), it is possible that F̃(w,ymax(w))≥ 0. Thus for w ∈ (ŵ1,wΓ), F̃(wΓ,y)|Γ−+ may have:
i) no real roots, ii) one real root y(w) = ymax(w), or iii) two real roots y1(w), y2(w) satisfying 0 < y1(w)< ymax(w)< y2(w)<
min(1,yl0(w)).
DId: w = wΓ. This case is similar to DIb with the upper boundary value being yl0(wΓ). Thus F̃(wΓ,y)|Γ−+ < 0.
DIe: w ∈ (wΓ,w∗). This case is similar to DIa with the upper boundary value being yl0(w). Thus F̃(w,y)|Γ−+ < 0.
DIf: w = w∗. F̃(w∗,y)|Γ−+ has one real root at the point (w∗,y∗).
DIg: w ∈ (w∗,CCg(CC)]. Here limy→0+ F̃(w,y)→−∞ and F̃(w,yl0(w)) > 0. Since ∂ F̃(w,y)/∂y > 0 on 0 < y < yl0(w), we
conclude F̃(w,y)|Γ−+ has a single real zero, y1(w), satisfying 0 < y1(w)< yl0(w).

Cases DIf and DIg show that F̃(w,y)|Γ−+ = 0 only on a curve segment traced out by the root y1(w) for w ∈ [w∗,CCg(CC)].
Since DIe states that F̃(w,y)|Γ−+ 6= 0 for w ∈ (wΓ,w∗), we conclude that: 1) the curve segment identified in DIf and DIg is
uniquely the continuous curve segment W2(y) identified previously, and 2) case DIc can only support the conclusion F̃(w,y)< 0
for w ∈ (ŵ1,wΓ). Combining the results of D0 and DI, we have verified that W2(y) connects (w∗,y∗) to (CCg(CC),yF1) and
W2(y) is a continuous, one-to-one, onto map, [w∗,CCg(CC)]↔ [y∗,yF2]. The form of the curve W2(y) for case DI is sketched in
Fig. 3.
Case DII: wΓ > w∗. As in case DI, we examine all possible values of w. As the arguments are generally similar to case DI, we
shorten the presentation for each case.
Cases DIIa and DIIb are identical to DIa and DIb respectively.
DIIc: w ∈ (ŵ1,w∗). For each w in this range, F̃(wΓ,y)|Γ−+ can have: i) no real roots, ii) one real root y1(w) = ymax(w), or iii)
two real roots y1(w), y2(w) satisfying 0 < y1(w)< ymax(w)< y2(w)< min(1,yl0(w)).
DIId: w = w∗. As F̃(w∗,ymax(w∗)) > F̃(w∗,y∗) = 0 then F̃(w∗,y)|Γ−+ has exactly two real roots y1(w∗), y2(w∗) satisfying
0 < y1(w∗)< ymax(w∗)< y2(w∗) = y∗.
DIIe: w ∈ (w∗,wΓ). This case is similar to DIg. Thus F̃(w,y)|Γ−+ has a single real zero y1(w) satisfying 0 < y1(w)< yl0(w).
DIIf: w ∈ [wΓ,CCg(CC)]. The argument follows DIg; we conclude F̃(w,y)|Γ−+ has a single real zero, y1(w), satisfying
0 < y1(w)< yl0(w).

The curve traced out by the root y1(w) in cases DIIa through DIIf must accord with the curve W2(y) on which F̃(w,y)|Γ−+ = 0.
We therefore conclude that case DIIc must read:
DIIc′ w ∈ (ŵ1,w∗). There exists wm ∈ (ŵ1,w∗) such that: for any w ∈ (ŵ1,wm), F̃(w,y)|Γ−+ has no real roots; for w = wm,
F̃(w,y)|Γ−+ has one real root ym = ymax(wm); and for any w ∈ (wm,w∗), F̃(w,y)|Γ−+ has two real roots y1(w), y2(w) satisfying
0 < y1(w)< ymax(w)< y2(w)< y∗. Combined with the results from cases D0, we have that on [yF2,ym], W2(y) strictly decreases
in value from CCg(CC) to wm, and on [ym,y∗], W2(y) strictly increases in value from wm to w∗.The form for the curve W2(y) in
DII and the point (wm,ym) are illustrated in Fig. 3.

Finally we note that cases DIg and DIIf show the existence of a single root of F̃(w,y)|Γ−+ on the boundary segment
w =CCg(CC), y ∈ (0,yl0(CCg(CC))). This root is the unique point (CCg(CC),yF2) claimed in (D.33).

Appendix E F̃(w,y) in Γ−−

We address the variation of the sign of F̃(w,y) in Γ−− by analyzing (23e). We start with the behavior of F̃(w,y) on the
boundaries of Γ−−. From (23d) and restriction (24) we have demonstrated in the paper that F̃(w,y)|Γg0 = F̃(p,y)< 0. On the

boundary y= 0, w∈ [0, p) we have limy→0+ F̃(w,y)→−∞. From (23e) it is straightforward to check that F̃(0,y) =KCCCQ> 0.
The behavior of F̃(w,y)|Γ−− on the boundary y = 1, w ∈ [0, p] can be determined by examining the behavior of F̃(w,1)|Γ−−
with respect to w. From (23e) we can write

F̃(w,y) = KCCCQ+ e1(y)w+ e2(y)w2 +Λlw3, (E.40)
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where e1(y) = d1(y)|g(y)=0 and e2(y) = d2(y)|g(y)=0. From (E.40) we have the following properties

lim
w→−∞

F̃(w,1)→−∞, F̃(0,1)> 0,

F̃(p,1)< 0 by (24), lim
w→∞

F̃(w,1)→ ∞.
(E.41)

Equations (E.40) and (E.41) imply that F̃(w,1) has three real roots, w1, w2, w3, satisfying w1 < 0 < w2 < p < w3. Let w2
def
= wF3.

Then we have

F̃(w,1)> 0, w ∈ [0,wF3), F̃(w,1)< 0, w ∈ (wF3, p]. (E.42)

With the behavior of F̃(w,y)|Γ−− determined on the boundaries, we now consider its behavior in the interior. From (23e),
F̃(w,y) can be written

F̃(w,y) = E0(w)+E1(w)y−1/3, (E.43)

where E1(w) =−wΛl p(1−KC +w)< 0. The first two partials of F̃(w,y) with respect to y are

∂ F̃(w,y)
∂y

=−1
3

E1(w)y−4/3 > 0,
∂ 2F̃(w,y)

∂y2 =
4
9

E1(w)y−7/3 < 0. (E.44)

From (E.42) and (E.44) we conclude the following.
i) For each fixed w ∈ (0,wF3], F̃(w,y) = 0 at exactly one value y =Y3(w), with Y3(wF3) = 1. For y ∈ (0,Y3(w)), F̃(w,y)< 0 and
for y ∈ (Y3(w),1), F̃(w,y)> 0.
ii) For each fixed w ∈ (wF3, p], F̃(w,y)< 0.
From i) and ii) we have the existence of the curve Y3(w) along which F̃(w,Y3(w)) = 0. From (E.43), Y3(w) has the explicit
form Y3(w) = (−E1(w)/E0(w))

3 satisfying limw→0+ Y3(w) = 0.
As F̃(w,Y3(w)) = 0, we can compute an expression for the slope of Y3(w) from (E.43),

0 =
dE0(w)

dw
+

dE1(w)
dw

Y3(w)−1/3− 1
3

E1(w)Y3(w)−4/3
(

dY3(w)
dw

)
,

=
∂ F̃(w,y)

∂w

∣∣∣∣∣
Y3(w)

+
∂ F̃(w,y)

∂y

∣∣∣∣∣
Y3(w)

dY3(w)
dw

,

→ dY3(w)
dw

=− ∂ F̃(w,y)
∂w

∣∣∣∣∣
Y3(w)

/
∂ F̃(w,y)

∂y

∣∣∣∣∣
Y3(w)

. (E.45)

From i) we know that Y3(w) maps the interval w ∈ (0,wF3] onto y ∈ (0,1] in a one-to-one fashion. Therefore Y3(w) implicitly
defines the inverse curve W3(y) which maps y ∈ (0,1] onto w ∈ (0,wF3] in a one-to-one fashion with limy→0+ W3(y) = 0
and W3(1) = wF3. As W3(y) is the only curve on which F̃(w,y)|Γ−− = 0, for each fixed y ∈ (0,1] we have F̃(w,y) > 0
for w ∈ (0,W3(y)), and F̃(w,y) < 0 for w ∈ (W3(y), p]. Thus we conclude ∂ F̃(w,y)/∂w|Y3(w) < 0. By (E.44) we know
∂ F̃(w,y)/∂y|Y3(w) > 0. Applied to (E.45), these observations lead to the conclusion, dY3(w)/dw > 0. The curve W3(y) is
sketched in Fig. 3.

Appendix F Initial conditions for gas bubble formation
As noted in the discussion of solution trajectories in the paper, initial bubble size is determined by microscopic, non-linear
dynamics at a nucleation site. To mimic this, we set the initial bubble radius equal to the radius value of the inlet. Thus,

y0 = (a/Rpore)
3. (F.46)

To determine initial bubble CO2 concentration, we assume that the pressure in the liquid phase does not change at the moment
of bubble formation. From (14′) this assumption gives psp

l = pg− pc = w0− sy−1/3
0 . Using (2) we derive a value for w0,

w0 = p+ sy
− 1

3
0 +Q/Λl = wl0(y0)+Q/Λl . (F.47)
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Finally, we impose mass conservation at the time of bubble formation; the loss of CO2 in the liquid phase must equal the
amount of CO2 in the gas bubble. (This is consistent with our previous assumption that phase changes occur faster than flow
rates.) Using the two-phase flow relation (13) between CCl and w =CCg, CO2 conservation gives

Csp
Cl(tb)−

w0

KC−w0
(1− y0) = w0y0, (F.48a)

where Csp
Cl(tb) denotes the CO2 concentration in the liquid just prior to bubble formation at time tb. Using (2), (F.48a) can be

used to solve for tb,

tb =−
1
Q

ln
{

1− 1
CC

(
w0

KC−w0

)
[1− (1+w0−KC)y0]

}
. (F.48b)

Appendix G

Figure G. Properly scaled figure showing directions at the critical point c2. The red arrow labeled USM corresponds to the
direction of the unstable manifold and the red arrow labeled SM is the direction of the stable manifold. Also noted (black, blue
arrows) are the directions of the curves and WG and W1 at c2. The direction of WG is almost antiparallel to that of the stable
manifold.

Appendix H
Assumptions used in analysis of the dynamical system (18′)
The liquid phase is incompressible
The concentration of water in the liquid phase, CW , is constant
The outlet reservoir remains pure water
Phase changes occur more rapidly than fluid transport
The liquid phase is perfectly wetting
Any gas phase forming in a pore occurs as a single bubble
The gas phase acts as an ideal gas
The thermodynamic values KH(T ) and KC(T ) satisfy KH(T )/KC(T )≈ 0 implying that the concentration of H2O in the gas

phase is negligible, CHg(w)≈ 0
w� KH(T ) = O(10−5)
The flow rate, Q, is restricted to the range given by equation (24)
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Bubble initial conditions: initial bubble radius equals inlet radius liquid pressure does not change at moment of
bubble formation

4KC/(1+CC +KC)
2� 1

F̃(CCg(CC),y) has no zero on the interval y ∈ (yG2,y∗) when y∗ > yG2

4sδ � (KC + p+ sδ )
2 where δ = Λl/(9Λg)
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