MathSciDoc: An Archive for Mathematician ∫

S.-T. Yau High School Science Awarded Papersmathscidoc:1608.35009

2008
This paper mainly focuses on the optimized methods of the sprinkling irrigation for greenery patches, by maximally equalizing the amount of water sprayed on a certain area. Various models are being discussed, where the main mathematical tool is analytic geometry, employed to research the possible effects of different proposals. Firstly, the simplest models are built based on a totally ideal situation. Assuming that sprinkling spouts are spinning over plain lawn with a set of specified radii, install them in arrangements of simple geometric figures. Areas of overlapping and blank parts are being calculated and the most reasonable arrangement of all that are studied is selected. Secondly, real factors are taken into consideration separately as follows: 1. The disequilibrium of the water that drops in a line from the sprinkling center is transformed into a functional expression, whose graphs are drawn to show the water distributed over the area; 2. The plane models are changed into solid ones on the assumption that the sprinkling spouts are placed on slopes. Analytic geometry methods are employed to describe the range of sprayed water on the oblique surface. Through calculation and analysis, models can be adjusted to specific situations. Finally, the boundary problems and landscape effects are involved.
Sprinkling irrigation; Optimizing; Spouts arrangements;Rate of covering; Rate of overlapping; Degree of equalizing on the planes;Degree of equalizing on the oblique planes