# MathSciDoc: An Archive for Mathematician ∫

#### TBDmathscidoc:1701.332956

Arkiv for Matematik, 39, (1), 137-149, 1999.7
Let$H$^{∞}be the algebra of bounded analytic functions in the unit disk$D$. Let$I=I(f$_{1},...,$f$_{N}) be the ideal generated by$f$_{1},...,$f$_{N}∈$H$^{∞}and$J=J(f$_{1},...,$f$_{N}) the ideal of the functions$f∈H$^{∞}for which there exists a constant$C=C(f)$such that |$f(z)|≤C(|f$_{1}$(z)|+$...;$+|f$_{N}$(z)$|),$z$∈$D$. It is clear that $$I \subseteq J$$ , but an example due to J. Bourgain shows that$J$is not, in general, in the norm closure of$I$. Our first result asserts that$J$is included in the norm closure of$I$if$I$contains a Carleson-Newman Blaschke product, or equivalently, if there exists$s$>0 such that $$\mathop {\inf }\limits_{z \in D} \sum\limits_{k = 0}^s {(1 - |z|)^k } \sum\limits_{j = 1}^N {|f_j^{(k)} (z)| > 0.}$$
@inproceedings{artur1999closures,
title={Closures of finitely generated ideals in Hardy spaces},
author={Artur Nicolau, and Jordi Pau},
url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203601259852765},
booktitle={Arkiv for Matematik},
volume={39},
number={1},
pages={137-149},
year={1999},
}

Artur Nicolau, and Jordi Pau. Closures of finitely generated ideals in Hardy spaces. 1999. Vol. 39. In Arkiv for Matematik. pp.137-149. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203601259852765.