Closures of finitely generated ideals in Hardy spaces

Artur Nicolau Departament de Matemàtiques, Universitat Autònoma de Barcelona Jordi Pau Department de Matemàtiques, Universitat Autònoma de Barcelona

TBD mathscidoc:1701.332956

Arkiv for Matematik, 39, (1), 137-149, 1999.7
Let$H$^{∞}be the algebra of bounded analytic functions in the unit disk$D$. Let$I=I(f$_{1},...,$f$_{N}) be the ideal generated by$f$_{1},...,$f$_{N}∈$H$^{∞}and$J=J(f$_{1},...,$f$_{N}) the ideal of the functions$f∈H$^{∞}for which there exists a constant$C=C(f)$such that |$f(z)|≤C(|f$_{1}$(z)|+$...;$+|f$_{N}$(z)$|),$z$∈$D$. It is clear that $$I \subseteq J$$ , but an example due to J. Bourgain shows that$J$is not, in general, in the norm closure of$I$. Our first result asserts that$J$is included in the norm closure of$I$if$I$contains a Carleson-Newman Blaschke product, or equivalently, if there exists$s$>0 such that $$\mathop {\inf }\limits_{z \in D} \sum\limits_{k = 0}^s {(1 - |z|)^k } \sum\limits_{j = 1}^N {|f_j^{(k)} (z)| > 0.} $$
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:01 uploaded by arkivadmin ] [ 175 downloads ] [ 0 comments ]
@inproceedings{artur1999closures,
  title={Closures of finitely generated ideals in Hardy spaces},
  author={Artur Nicolau, and Jordi Pau},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203601259852765},
  booktitle={Arkiv for Matematik},
  volume={39},
  number={1},
  pages={137-149},
  year={1999},
}
Artur Nicolau, and Jordi Pau. Closures of finitely generated ideals in Hardy spaces. 1999. Vol. 39. In Arkiv for Matematik. pp.137-149. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203601259852765.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved