# MathSciDoc: An Archive for Mathematician ∫

#### TBDmathscidoc:1701.333035

Arkiv for Matematik, 42, (2), 301-306, 2003.2
Let\$g\$be a positive integer. We prove that there are positive integers\$n\$_{1},\$n\$_{2},\$n\$_{3}and\$n\$_{4}such that the semigroup\$S=(n\$_{1},\$n\$_{2},\$n\$_{3},\$n\$_{4}) is an irreducible (symmetric or pseudosymmetric) numerical semigroup with g(\$S\$)=\$g\$.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:11 uploaded by arkivadmin ] [ 814 downloads ] [ 0 comments ] [ Cited by 5 ]
```@inproceedings{pedro2003every,
title={Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators},
author={Pedro A. García-Sánchez, and José C. Rosales},
url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203611471724844},
booktitle={Arkiv for Matematik},
volume={42},
number={2},
pages={301-306},
year={2003},
}
```
Pedro A. García-Sánchez, and José C. Rosales. Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators. 2003. Vol. 42. In Arkiv for Matematik. pp.301-306. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203611471724844.
Please log in for comment!