Function fields of algebraic tori revisited

Shizuo Endo Tokyo Metropolitan University Ming-chang Kang National Taiwan University

Computational Geometry mathscidoc:1608.09001

Let $K/k$ be a finite Galois extension and $\pi = \fn{Gal}(K/k)$. An algebraic torus $T$ defined over $k$ is called a $\pi$-torus if $T\times_{\fn{Spec}(k)} \fn{Spec}(K)\simeq \bm{G}_{m,K}^n$ for some integer $n$. The set of all algebraic $\pi$-tori defined over $k$ under the stably birational equivalence forms a semigroup, denoted by $T(\pi)$. We will give a complete proof of the following theorem due to Endo and Miyata \cite{EM4}. Theorem. Let $\pi$ be a finite group. Then $T(\pi)\simeq C(\Omega_{\bm{Z}\pi})$ where $\Omega_{\bm{Z}\pi}$ is a maximal $\bm{Z}$-order in $\bm{Q}\pi$ containing $\bm{Z}\pi$ and $C(\Omega_{\bm{Z}\pi})$ is the locally free class group of $\Omega_{\bm{Z}\pi}$, provided that $\pi$ is isomorphic to one of the following four types of groups : $C_n$ ($n$ is any positive integer), $D_m$ ($m$ is any odd integer $\ge 3$), $C_{q^f}\times D_m$ ($m$ is any odd integer $\ge 3$, $q$ is an odd prime number not dividing $m$, $f\ge 1$, and $(\bm{Z}/q^f\bm{Z})^{\times}=\langle \bar{p}\rangle$ for any prime divisor $p$ of $m$), $Q_{4m}$ ($m$ is any odd integer $\ge 3$, $p\equiv 3 \pmod{4}$ for any prime divisor $p$ of $m$).
Algebraic torus, rationality problem, locally free class groups
[ Download ] [ 2016-08-18 17:05:42 uploaded by kang ] [ 804 downloads ] [ 0 comments ]
@inproceedings{shizuofunction,
  title={Function fields of algebraic tori revisited},
  author={Shizuo Endo, and Ming-chang Kang},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160818170542896737248},
}
Shizuo Endo, and Ming-chang Kang. Function fields of algebraic tori revisited. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160818170542896737248.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved