A classification of semilocal vortices in a Chern-Simons theory.

Jann-Long Chern National Central University Zhi-You Chen National Changhua University of Education Sze-Guang Yang National Central University

Mathematical Physics mathscidoc:1609.22005

Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, (2), 575–595, 2016.3
We consider a Chern–Simons theory of planar matter fields interacting with the Chern–Simons gauge field in a SU(N)_global ⊗ U(1)_local invariant fashion. We classify the radially symmetric soliton solutions of the system in terms of the prescribed value of magnetic flux associated with this model. We also prove the uniqueness of the topological solution in a certain condition
Chern–Simons–Higgs model; Classification of nontopological solutions for elliptic system; Uniqueness result of topological solutions
[ Download ] [ 2016-09-07 20:35:38 uploaded by chern ] [ 914 downloads ] [ 0 comments ]
@inproceedings{jann-long2016a,
  title={A classification of semilocal vortices in a Chern-Simons theory.},
  author={Jann-Long Chern, Zhi-You Chen, and Sze-Guang Yang},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160907203538771171652},
  booktitle={Ann. Inst. H. Poincaré Anal. Non Linéaire},
  volume={33},
  number={2},
  pages={575–595},
  year={2016},
}
Jann-Long Chern, Zhi-You Chen, and Sze-Guang Yang. A classification of semilocal vortices in a Chern-Simons theory.. 2016. Vol. 33. In Ann. Inst. H. Poincaré Anal. Non Linéaire. pp.575–595. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160907203538771171652.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved