A Newton-Type Method with Non-equivalence Deflation for Nonlinear Eigenvalue Problems Arising in Photonic Crystal Modeling

Tsung-Ming Huang National Taiwan Normal University Wen-Wei Lin National Chiao Tung University Volker Mehrmann TU Berlin

Numerical Analysis and Scientific Computing mathscidoc:1609.25018

SIAM J. Sci. Comput., 38, B191-B218, 2016
The numerical simulation of the band structure of three-dimensional dispersive metallic photonic crystals with face-centered cubic lattices leads to large-scale nonlinear eigenvalue problems, which are very challenging due to a high dimensional subspace associated with the eigenvalue zero and the fact that the desired eigenvalues (with smallest real part) cluster and close to the zero eigenvalues. For the solution of the nonlinear eigenvalue problem, a Newton-type iterative method is proposed and the nullspace-free method is applied to exclude the zero eigenvalues from the associated generalized eigenvalue problem. To find the successive eigenvalue/eigenvector pairs, we propose a new non-equivalence deflation method to transform converged eigenvalues to infinity, while all other eigenvalues remain unchanged. The deflated problem is then solved by the same Newton-type method, which is used as a hybrid method that combines with the Jacobi-Davidson and the nonlinear Arnoldi methods to compute the clustering eigenvalues. Numerical results illustrate that the proposed method is robust even for the case of computing many clustering eigenvalues in very large problems.
No keywords uploaded!
[ Download ] [ 2016-09-22 16:35:23 uploaded by TMHuang ] [ 753 downloads ] [ 0 comments ]
@inproceedings{tsung-ming2016a,
  title={A Newton-Type Method with  Non-equivalence Deflation  for Nonlinear Eigenvalue Problems Arising in Photonic Crystal Modeling},
  author={Tsung-Ming Huang, Wen-Wei Lin, and Volker Mehrmann},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160922163523389402043},
  booktitle={SIAM J. Sci. Comput.},
  volume={38},
  pages={B191-B218},
  year={2016},
}
Tsung-Ming Huang, Wen-Wei Lin, and Volker Mehrmann. A Newton-Type Method with Non-equivalence Deflation for Nonlinear Eigenvalue Problems Arising in Photonic Crystal Modeling. 2016. Vol. 38. In SIAM J. Sci. Comput.. pp.B191-B218. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20160922163523389402043.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved