1
Guo Y, Xiong T, Shi Y, et al. A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations[J]. Journal of Computational Physics, 2014: 505-523.
2
Kokkinakis I W, Drikakis D. Implicit large eddy simulation of weakly-compressible turbulent channel flow[J]. Computer Methods in Applied Mechanics and Engineering, 2015: 229-261.
3
Jemison M, Sussman M, Arienti M, et al. Compressible, multiphase semi-implicit method with moment of fluid interface representation[J]. Journal of Computational Physics, 2014: 182-217.
4
Vilar F, Shu C, Maire P, et al. Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case[J]. Journal of Computational Physics, 2016: 385-415.
5
Wu K, Tang H. High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics[J]. Journal of Computational Physics, 2015: 539-564.
6
Puri K, Ramachandran P. Approximate Riemann solvers for the Godunov SPH (GSPH)[J]. Journal of Computational Physics, 2014: 432-458.
7
Despres B, Labourasse E. Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids[J]. Journal of Computational Physics, 2015: 28-54.
8
Endeve E, Hauck C D, Xing Y, et al. Bound-preserving discontinuous Galerkin methods for conservative phase space advection in curvilinear coordinates[J]. Journal of Computational Physics, 2015: 151-183.
9
Waltz J, Morgan N R, Canfield T R, et al. A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids: A NODAL GODUNOV METHOD FOR LAGRANGIAN HYDRODYNAMICS[J]. International Journal for Numerical Methods in Fluids, 2014, 76(3): 129-146.
10
Shu C. High order WENO and DG methods for time-dependent convection-dominated PDEs[J]. Journal of Computational Physics, 2016: 598-613.