The quantum development of an asymptotically Euclidean Cauchy hypersurface

Claus Gerhardt Ruprecht-Karls-Universität, Institut für Angewandte Mathematik

Mathematical Physics mathscidoc:1612.22001

2016
In our model of quantum gravity the quantum development of a Cauchy hypersurface is governed by a wave equation derived as the result of a canonical quantization process. To find physically interesting solutions of the wave equation we employ the separation of variables by considering a temporal eigenvalue problem which has a complete countable set of eigenfunctions with positive eigenvalues and also a spatial eigenvalue problem which has a complete set of eigendistributions. Assuming that the Cauchy hypersurface is asymtotically Euclidean we prove that the temporal eigenvalues are also spatial eigenvalues and the product of corresponding eigenfunctions and eigendistributions, which will be smooth functions with polynomial growth, are the physically interesting solutions of the wave equation. We consider these solutions to describe the quantum development of the Cauchy hypersurface.
quantization of gravity, quantum gravity, gravitational wave, quantum development, Yang-Mills field, Gelfand triplet, eigendistributions
[ Download ] [ 2016-12-13 05:55:00 uploaded by gerhardt ] [ 986 downloads ] [ 0 comments ]
  • Added a lemma, Lemma 2.4, and clarified some points in Section2.
@inproceedings{claus2016the,
  title={The quantum development of an asymptotically Euclidean Cauchy hypersurface},
  author={Claus Gerhardt},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20161213055500223194687},
  year={2016},
}
Claus Gerhardt. The quantum development of an asymptotically Euclidean Cauchy hypersurface. 2016. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20161213055500223194687.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved