Sur l'équation $$\begin{array}{l} \frac{{d^2 y}}{{dx^2 }} + \left[ {2\nu \frac{{k^2 sn x cn x}}{{dn x}} + 2\nu _1 \frac{{sn x dn x}}{{cn x}} - 2\nu _2 \frac{{cn x dn x}}{{sn x}}} \right]\frac{{dy}}{{dx}} = \\ = \left[ {\frac{I}{{sn^2 x}}(n_3 - \nu _2 )(n_3 + \nu _2 + 1) + \frac{{dn^2 x}}{{cn^2 x}}(n_2 - \nu _1 )(n_2 + \nu _1 + 1) + } \right. \\ \left. { + \frac{{k^2 cn^2 x}}{{dn^2 x}}(n_1 - \nu )(n_1 + \nu + 1) + k^2 sn^2 x(n + \nu + \nu _1 + \nu _2 )(n - \nu - \nu _1 - \nu _2 + 1) + h} \right] \\ \end{array}$$

Cte de Sparre Lyon

TBD mathscidoc:1701.33046

Acta Mathematica, 3, (1), 105-140, 1883.12
No abstract uploaded!
No keywords uploaded!
[ Download ] [ 2017-01-08 20:29:30 uploaded by actaadmin ] [ 588 downloads ] [ 0 comments ]
@inproceedings{cte1883sur,
  title={Sur l'équation $$\begin{array}{l} \frac{{d^2 y}}{{dx^2 }} + \left[ {2\nu \frac{{k^2 sn x cn x}}{{dn x}} + 2\nu _1 \frac{{sn x dn x}}{{cn x}} - 2\nu _2 \frac{{cn x dn x}}{{sn x}}} \right]\frac{{dy}}{{dx}} = \\ = \left[ {\frac{I}{{sn^2 x}}(n_3 - \nu _2 )(n_3 + \nu _2 + 1) + \frac{{dn^2 x}}{{cn^2 x}}(n_2 - \nu _1 )(n_2 + \nu _1 + 1) + } \right. \\ \left. { + \frac{{k^2 cn^2 x}}{{dn^2 x}}(n_1 - \nu )(n_1 + \nu + 1) + k^2 sn^2 x(n + \nu + \nu _1 + \nu _2 )(n - \nu - \nu _1 - \nu _2 + 1) + h} \right] \\ \end{array}$$ },
  author={Cte de Sparre},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108202930972924755},
  booktitle={Acta Mathematica},
  volume={3},
  number={1},
  pages={105-140},
  year={1883},
}
Cte de Sparre. Sur l'équation $$\begin{array}{l} \frac{{d^2 y}}{{dx^2 }} + \left[ {2\nu \frac{{k^2 sn x cn x}}{{dn x}} + 2\nu _1 \frac{{sn x dn x}}{{cn x}} - 2\nu _2 \frac{{cn x dn x}}{{sn x}}} \right]\frac{{dy}}{{dx}} = \\ = \left[ {\frac{I}{{sn^2 x}}(n_3 - \nu _2 )(n_3 + \nu _2 + 1) + \frac{{dn^2 x}}{{cn^2 x}}(n_2 - \nu _1 )(n_2 + \nu _1 + 1) + } \right. \\ \left. { + \frac{{k^2 cn^2 x}}{{dn^2 x}}(n_1 - \nu )(n_1 + \nu + 1) + k^2 sn^2 x(n + \nu + \nu _1 + \nu _2 )(n - \nu - \nu _1 - \nu _2 + 1) + h} \right] \\ \end{array}$$ . 1883. Vol. 3. In Acta Mathematica. pp.105-140. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108202930972924755.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved