Sur la formule $$hu'_x = \Delta u_x - \frac{h}{2} \cdot \Delta u'_x + \frac{{B_1 \cdot h^2 }}{{I \cdot 2}} \cdot \Delta u''_x - \frac{{B_2 h^4 }}{{I \cdot 2 \cdot 3 \cdot 4}} \cdot \Delta u_x^{IV} + etc.$$

C. J. Malmsten Upsal

TBD mathscidoc:1701.33075

Acta Mathematica, 5, (1), 1-46, 1884.12
No abstract uploaded!
No keywords uploaded!
[ Download ] [ 2017-01-08 20:29:34 uploaded by actaadmin ] [ 782 downloads ] [ 0 comments ]
@inproceedings{c.1884sur,
  title={Sur la formule $$hu'_x = \Delta u_x - \frac{h}{2} \cdot \Delta u'_x + \frac{{B_1 \cdot h^2 }}{{I \cdot 2}} \cdot \Delta u''_x - \frac{{B_2 h^4 }}{{I \cdot 2 \cdot 3 \cdot 4}} \cdot \Delta u_x^{IV} + etc.$$ },
  author={C. J. Malmsten},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108202934140023784},
  booktitle={Acta Mathematica},
  volume={5},
  number={1},
  pages={1-46},
  year={1884},
}
C. J. Malmsten. Sur la formule $$hu'_x = \Delta u_x - \frac{h}{2} \cdot \Delta u'_x + \frac{{B_1 \cdot h^2 }}{{I \cdot 2}} \cdot \Delta u''_x - \frac{{B_2 h^4 }}{{I \cdot 2 \cdot 3 \cdot 4}} \cdot \Delta u_x^{IV} + etc.$$ . 1884. Vol. 5. In Acta Mathematica. pp.1-46. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108202934140023784.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved