The pluripolar hull of {$w$=$e$^{−1/$z$}}

Jan Wiegerinck Faculty of Mathematics, University of Amsterdam

TBD mathscidoc:1701.332938

Arkiv for Matematik, 38, (1), 201-208, 1998.9
In this paper we show that the pluripolar hull of$E$={($z$, ω)∈C^{2}:ω=$e$^{−1/z},$z$≠0} is equal to$E$. This implies that$E$is plurithin at 0, which answers a question of Sadullaev. The result remains valid if$e$^{−1/z}is replaced by certain other holomorphic functions with an essential singularity at 0.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:35:58 uploaded by arkivadmin ] [ 852 downloads ] [ 0 comments ]
@inproceedings{jan1998the,
  title={The pluripolar hull of {$w$=$e$^{−1/$z$}}},
  author={Jan Wiegerinck},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203558972531747},
  booktitle={Arkiv for Matematik},
  volume={38},
  number={1},
  pages={201-208},
  year={1998},
}
Jan Wiegerinck. The pluripolar hull of {$w$=$e$^{−1/$z$}}. 1998. Vol. 38. In Arkiv for Matematik. pp.201-208. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203558972531747.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved