Linear resolvent growth test for similarity of a weak contraction to a normal operator

Stanislav Kupin Laboratoire de Mathématiques Pures, Université Bordeaux 1

TBD mathscidoc:1701.332954

Arkiv for Matematik, 39, (1), 95-119, 1999.9
It is proved in Benamara-Nikolski [1] that if the spectrum σ($T$) of a contraction$T$with finite defects (rank($I−T$^{*}$T$)=rank ($I−TT$^{*})<∞) does not coincide with $$\bar D$$ , then the contraction is similar to a normal operator if and only if $$C_1 (T) = \mathop {\sup }\limits_{\lambda \in C\backslash \sigma (T)} \parallel (T - \lambda )^{ - 1} \parallel dist(\lambda ,\sigma (T))< \infty .$$
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:01 uploaded by arkivadmin ] [ 937 downloads ] [ 0 comments ] [ Cited by 7 ]
@inproceedings{stanislav1999linear,
  title={Linear resolvent growth test for similarity of a weak contraction to a normal operator},
  author={Stanislav Kupin},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203601027063763},
  booktitle={Arkiv for Matematik},
  volume={39},
  number={1},
  pages={95-119},
  year={1999},
}
Stanislav Kupin. Linear resolvent growth test for similarity of a weak contraction to a normal operator. 1999. Vol. 39. In Arkiv for Matematik. pp.95-119. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203601027063763.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved