Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators

Pedro A. García-Sánchez Departamento de Álgebra, Universidad de Granada José C. Rosales Departamento de Álgebra, Universidad de Granada

TBD mathscidoc:1701.333035

Arkiv for Matematik, 42, (2), 301-306, 2003.2
Let$g$be a positive integer. We prove that there are positive integers$n$_{1},$n$_{2},$n$_{3}and$n$_{4}such that the semigroup$S=(n$_{1},$n$_{2},$n$_{3},$n$_{4}) is an irreducible (symmetric or pseudosymmetric) numerical semigroup with g($S$)=$g$.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:11 uploaded by arkivadmin ] [ 941 downloads ] [ 0 comments ] [ Cited by 5 ]
@inproceedings{pedro2003every,
  title={Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators},
  author={Pedro A. García-Sánchez, and José C. Rosales},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203611471724844},
  booktitle={Arkiv for Matematik},
  volume={42},
  number={2},
  pages={301-306},
  year={2003},
}
Pedro A. García-Sánchez, and José C. Rosales. Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators. 2003. Vol. 42. In Arkiv for Matematik. pp.301-306. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203611471724844.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved