Distance near the origin between elements of a strongly continuous semigroup

Jean Esterle Laboratoire d'Analyse et Géométrie UMR 5467, Université Bordeaux 1

TBD mathscidoc:1701.333062

Arkiv for Matematik, 43, (2), 365-382, 2004.1
Set $$\theta (s/t): = (s/t - 1)(t/s)^{\frac{{s/t}}{{s/t - 1}}} = (s - t)\frac{{t^{t/(s - t)} }}{{s^{s/(s - t)} }}$$ if 0<$t$<$s$. The key result of the paper shows that if ($T (t))$_{$t$>0}is a nontrivial strongly continuous quasinilpotent semigroup of bounded operators on a Banach space then there exists δ>0 such that ║$T(t)-T(s)$║>θ(s/t) for 0<$t$<$s$≤δ. Also if ($T(t)$)_{$t$>0}is a strongly continuous semigroup of bounded operators on a Banach space, and if there exists η>0 and a continuous function$t$→$s(t)$on [0, ν], satisfying$s$(0)=0, and such that 0<$t$<$s(t)$and ║$T(t)-T(s(t))║<θ(s/t)$for$t$∈(o, η], then the infinitesimal generator of the semigroup is bounded. Various examples show that these results are sharp.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:14 uploaded by arkivadmin ] [ 1000 downloads ] [ 0 comments ] [ Cited by 5 ]
@inproceedings{jean2004distance,
  title={Distance near the origin between elements of a strongly continuous semigroup},
  author={Jean Esterle},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203614941749871},
  booktitle={Arkiv for Matematik},
  volume={43},
  number={2},
  pages={365-382},
  year={2004},
}
Jean Esterle. Distance near the origin between elements of a strongly continuous semigroup. 2004. Vol. 43. In Arkiv for Matematik. pp.365-382. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203614941749871.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved