Sharp estimates for maximal operators associated to the wave equation

Keith M. Rogers Departamento de Matemáticas, Universidad Autónoma de Madrid Paco Villarroya University of California, Los Angeles, CA, USA

TBD mathscidoc:1701.333125

Arkiv for Matematik, 46, (1), 143-151, 2006.10
The wave equation, ∂_{$tt$}$u$=Δ$u$, in ℝ^{$n$+1}, considered with initial data$u$($x$,0)=$f$∈$H$^{$s$}(ℝ^{$n$}) and$u$’($x$,0)=0, has a solution which we denote by $\frac{1}{2}(e^{it\sqrt{-\Delta}}f+e^{-it\sqrt{-\Delta}}f)$ . We give almost sharp conditions under which $\sup_{0<t<1}|e^{\pm it\sqrt{-\Delta}}f|$ and $\sup_{t\in\mathbb{R}}|e^{\pm it\sqrt{-\Delta}}f|$ are bounded from$H$^{$s$}(ℝ^{$n$}) to$L$^{$q$}(ℝ^{$n$}).
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:22 uploaded by arkivadmin ] [ 777 downloads ] [ 0 comments ] [ Cited by 1 ]
@inproceedings{keith2006sharp,
  title={Sharp estimates for maximal operators associated to the wave equation},
  author={Keith M. Rogers, and Paco Villarroya},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203622107378934},
  booktitle={Arkiv for Matematik},
  volume={46},
  number={1},
  pages={143-151},
  year={2006},
}
Keith M. Rogers, and Paco Villarroya. Sharp estimates for maximal operators associated to the wave equation. 2006. Vol. 46. In Arkiv for Matematik. pp.143-151. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203622107378934.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved