Higher order Riesz transforms associated with Bessel operators

Jorge J. Betancor Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta Juan C. Fariña Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta Teresa Martinez Departamento de Matemáticas, Faculdad de Ciencias, Universidad Autónoma de Madrid Lourdes Rodríguez-Mesa Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta

TBD mathscidoc:1701.333134

Arkiv for Matematik, 46, (2), 219-250, 2006.11
In this paper we investigate Riesz transforms$R$_{μ}^{($k$)}of order$k$≥1 related to the Bessel operator Δ_{μ}$f$($x$)=-$f$”($x$)-((2μ+1)/$x$)$f$’($x$) and extend the results of Muckenhoupt and Stein for the conjugate Hankel transform (a Riesz transform of order one). We obtain that for every$k$≥1,$R$_{μ}^{($k$)}is a principal value operator of strong type ($p$,$p$),$p$∈(1,∞), and weak type (1,1) with respect to the measure$d$λ($x$)=$x$^{2μ+1}$dx$in (0,∞). We also characterize the class of weights ω on (0,∞) for which$R$_{μ}^{($k$)}maps$L$^{$p$}(ω) into itself and$L$^{1}(ω) into$L$^{1,∞}(ω) boundedly. This class of weights is wider than the Muckenhoupt class $\mathcal{A}_{p}^\mu$ of weights for the doubling measure$d$λ. These weighted results extend the ones obtained by Andersen and Kerman.
No keywords uploaded!
[ Download ] [ 2017-01-08 20:36:23 uploaded by arkivadmin ] [ 934 downloads ] [ 0 comments ] [ Cited by 10 ]
@inproceedings{jorge2006higher,
  title={Higher order Riesz transforms associated with Bessel operators},
  author={Jorge J. Betancor, Juan C. Fariña, Teresa Martinez, and Lourdes Rodríguez-Mesa},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203623312130943},
  booktitle={Arkiv for Matematik},
  volume={46},
  number={2},
  pages={219-250},
  year={2006},
}
Jorge J. Betancor, Juan C. Fariña, Teresa Martinez, and Lourdes Rodríguez-Mesa. Higher order Riesz transforms associated with Bessel operators. 2006. Vol. 46. In Arkiv for Matematik. pp.219-250. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170108203623312130943.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved