Symplectic Cohomologies on Phase Space

Chung-Jun Tsai National Taiwan University Li-Sheng Tseng University of California, Irvine Shing-Tung Yau Harvard University

Mathematical Physics mathscidoc:1702.22014

J. Math Phys., 53, (095217), 2012
The phase space of a particle or a mechanical system contains an intrinsic symplectic structure, and hence, it is a symplectic manifold. Recently, new invariants for symplectic manifolds in terms of cohomologies of differential forms have been introduced by Tseng and Yau. Here, we discuss the physical motivation behind the new symplectic invariants and analyze these invariants for phase space, i.e., the non-compact cotangent bundle.
No keywords uploaded!
[ Download ] [ 2017-02-19 07:14:26 uploaded by lstseng ] [ 836 downloads ] [ 0 comments ]
@inproceedings{chung-jun2012symplectic,
  title={Symplectic Cohomologies on Phase Space},
  author={Chung-Jun Tsai, Li-Sheng Tseng, and Shing-Tung Yau},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170219071426019457471},
  booktitle={J. Math Phys.},
  volume={53},
  number={095217},
  year={2012},
}
Chung-Jun Tsai, Li-Sheng Tseng, and Shing-Tung Yau. Symplectic Cohomologies on Phase Space. 2012. Vol. 53. In J. Math Phys.. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170219071426019457471.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved