Four-ball genus bounds and a refinement of the Ozsvath-Szabo tau-invariant

Jen Hom Georgia Tech Zhongtao Wu Chinese University of Hong Kong

Geometric Analysis and Geometric Topology mathscidoc:1709.15003

J. Symp. Geom., 14, 305-323, 2016
Based on work of Rasmussen [Ras03], we construct a concordance invariant associated to the knot Floer complex, and exhibit examples in which this invariant gives arbitrarily better bounds on the 4-ball genus than the Ozsv ́ath-Szab ́o τ invariant.
No keywords uploaded!
[ Download ] [ 2017-09-27 15:55:28 uploaded by zbarwu ] [ 1152 downloads ] [ 0 comments ]
@inproceedings{jen2016four-ball,
  title={Four-ball genus bounds and a refinement of the Ozsvath-Szabo tau-invariant},
  author={Jen Hom, and Zhongtao Wu},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170927155528314367841},
  booktitle={J. Symp. Geom.},
  volume={14},
  pages={305-323},
  year={2016},
}
Jen Hom, and Zhongtao Wu. Four-ball genus bounds and a refinement of the Ozsvath-Szabo tau-invariant. 2016. Vol. 14. In J. Symp. Geom.. pp.305-323. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20170927155528314367841.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved