When Siri Knows How You Feel: Study of Machine Learning in Automatic Sentiment Recognition from Human Speech

Zhang Liu Anglo-Chinese Junior College

S.-T. Yau High School Science Awarded Papers mathscidoc:1801.35022

Yau Science Award (Math), 2017.12
Opinions and sentiments are essential to human activities and have a wide variety of applications. As many decision makers turn to social media due to large volume of opinion data available, efficient and accurate sentiment analysis is necessary to extract those data. Hence, text sentiment analysis has recently become a popular field and has attracted many researchers. However, extracting sentiments from audio speech remains a challenge. This project explored the possibility of applying supervised Machine Learning in recognizing sentiments in English utterances on a sentence level. In addition, the project also aimed to examine the effect of combining acoustic and linguistic features on classification accuracy. Six audio tracks were randomly selected to be training data from 40 YouTube videos (monologue) with strong presence of sentiments. Speakers expressed sentiments towards products, films, or political events. These sentiments were manually labelled as negative and positive based on independent judgement of 3 experimenters. A wide range of acoustic and linguistic features were then analyzed and extracted using sound editing and text mining tools respectively. A novel approach was proposed, which used a simplified sentiment score to integrate linguistic features and estimate sentiment valence. This approach improved negation analysis and hence increased overall accuracy. Results showed that when both linguistic and acoustic features were used, accuracy of sentiment recognition improved significantly, and that excellent prediction was achieved when the four classifiers were trained respectively, namely kNN, SVM, Neural Network, and Naïve Bayes. Possible sources of error and inherent challenges of audio sentiment analysis were discussed to provide potential directions for future research.
No keywords uploaded!
[ Download ] [ 2018-01-18 02:36:26 uploaded by yauawardadmin ] [ 2532 downloads ] [ 0 comments ]
@inproceedings{zhang2017when,
  title={When Siri Knows How You Feel: Study of Machine Learning in Automatic Sentiment Recognition from Human Speech},
  author={Zhang Liu},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20180118023626241004896},
  booktitle={Yau Science Award (Math)},
  year={2017},
}
Zhang Liu. When Siri Knows How You Feel: Study of Machine Learning in Automatic Sentiment Recognition from Human Speech. 2017. In Yau Science Award (Math). http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20180118023626241004896.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved