Nonlinear Stability of Strong Rarefaction Waves for Compressible Navier--Stokes Equations

Kenji Nishihara Tong Yang Huijiang Zhao

Analysis of PDEs mathscidoc:1912.43932

SIAM journal on mathematical analysis, 35, (6), 1561-1597, 2004
This paper is concerned with the time-asymptotic behavior toward strong rarefaction waves of solutions to one-dimensional compressible Navier--Stokes equations. Assume that the corresponding Riemann problem to the compressible Euler equations can be solved by rarefaction waves (<i>V<sup>R</sup></i>, <i>U<sup>R</sup></i>, <i>S<sup>R</sup></i>)(<i>t</i>,<i>x</i>). If the initial data (<i>v</i><sub>0</sub> , <i>u</i><sub>0</sub> ,<i>s</i><sub>0</sub> )(<i>x</i>) to the nonisentropic compressible Navier--Stokes equations is a small perturbation of an approximate rarefaction wave constructed as in [S. Kawashima, A. Matsumura, and K. Nishihara, <i>Proc. Japan Acad. Ser. A</i>, 62 (1986), pp. 249--252], then we show that, for the general gas, the Cauchy problem admits a unique global smooth solution (<i>v</i>, <i>u</i>, <i>s</i>)(<i>t</i>,<i>x</i>) which tends to (<i>V<sup>R</sup></i>, <i>U<sup>R</sup></i>, <i>S<sup>R</sup></i>)(<i>t</i>,<i>x</i>) as <i>t</i> tends to infinity. A global stability result can also be established for the nonisentropic ideal polytropic gas, provided that the adiabatic exponent is close to 1. Furthermore, we show that for the
No keywords uploaded!
[ Download ] [ 2019-12-24 21:07:35 uploaded by Tong_Yang ] [ 408 downloads ] [ 0 comments ]
@inproceedings{kenji2004nonlinear,
  title={Nonlinear Stability of Strong Rarefaction Waves for Compressible Navier--Stokes Equations},
  author={Kenji Nishihara, Tong Yang, and Huijiang Zhao},
  url={http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20191224210735161508496},
  booktitle={SIAM journal on mathematical analysis},
  volume={35},
  number={6},
  pages={1561-1597},
  year={2004},
}
Kenji Nishihara, Tong Yang, and Huijiang Zhao. Nonlinear Stability of Strong Rarefaction Waves for Compressible Navier--Stokes Equations. 2004. Vol. 35. In SIAM journal on mathematical analysis. pp.1561-1597. http://archive.ymsc.tsinghua.edu.cn/pacm_paperurl/20191224210735161508496.
Please log in for comment!
 
 
Contact us: office-iccm@tsinghua.edu.cn | Copyright Reserved